
EUROGRAPHICS 2023 / K. Myszkowski and M. Nießner
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 42 (2023), Number 2

Parallel Transformation of Bounding Volume Hierarchies into
Oriented Bounding Box Trees

N. Vitsas1 , I. Evangelou1 , G. Papaioannou1 , A. Gkaravelis1

1Department of Informatics, Athens University of Economics and Business, Greece

Mesh AABB BVH (level 15) OBB BVH (level 15) Mesh AABB BVH (level 19) OBB BVH (level19)

Figure 1: Examples of direct transformation of an AABB BVH into the corresponding OBB hierarchy. The improved fitting potential of OBBs
can help minimise internal and leaf node intersections during tree traversal for ray tracing.

Abstract
Oriented bounding box (OBB) hierarchies can be used instead of hierarchies based on axis-aligned bounding boxes (AABB),
providing tighter fitting to the underlying geometric structures and resulting in improved interference tests, such as ray-geometry
intersections. In this paper, we present a method for the fast, parallel transformation of an existing bounding volume hierarchy
(BVH), based on AABBs, into a hierarchy based on oriented bounding boxes. To this end, we parallelise a high-quality OBB
extraction algorithm from the literature to operate as a standalone OBB estimator and further extend it to efficiently build an
OBB hierarchy in a bottom up manner. This agglomerative approach allows for fast parallel execution and the formation of
arbitrary, high-quality OBBs in bounding volume hierarchies. The method is fully implemented on the GPU and extensively
evaluated with ray intersections.

CCS Concepts
• Computing methodologies → Ray tracing; Visibility; Mesh geometry models;

1. Introduction

Applying queries on geometric primitives of arbitrary type and
complexity is a common task that emerges in numerous research
and industry fields. One such dominant field is ray tracing, which
is at the core of most high-quality algorithms for image synthesis
and light simulation in general. Object-based partitioning of a scene
with bounding volume hierarchies (BVH) has been the dominant
strategy for fast ray tracing in recent years. A bounding volume
can be chosen to be any closed geometric shape, such as an axis-

aligned bounding box (AABB) [SFD09], an oriented bounding box
(OBB) [CWK10, TY09], a capsule, a sphere, a k-DOP [KHM∗98]
and others, with many of them finding great success in specialised
applications. In this particular work, we focus on the OBB-based
representation of tree nodes. As a bounding volume, OBBs have
a higher tight-fitting potential than AABBs and are moderately
more complex to handle. They are also more robust to orienta-
tion changes and would greatly benefit scenarios with rigid-body
animations, since only the transformation of the box needs to be
updated, thus avoiding the need for a complete re-computation of

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

DOI: 10.1111/cgf.14758

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-0269-6166
https://orcid.org/0000-0003-4556-390X
https://orcid.org/0000-0003-4774-0746
https://orcid.org/0000-0002-9673-2462
https://doi.org/10.1111/cgf.14758

N. Vitsas, I. Evangelou, G. Papaioannou, A. Gkaravelis / Parallel BVH Transformation into OBB Trees

a node’s OBB. They are also very fast to refit in the case of mesh
deformations.

Typical state-of-the-art hierarchies use axis-aligned bounding
boxes due to their simplicity, generality and efficiency in terms
of bound estimation and intersection. Nevertheless, orientation-
aware bounding volumes have been extensively used to accelerate
ray-tracing and other interference computations [RW80, GLM96,
LAM01], such as collision detection and boolean operations, as
well as view frustum culling [AM00]. The two main concerns re-
garding the construction of an OBB hierarchy are a) the fast and
robust calculation of a tightest-fitting OBB and b) the efficiency of
ray-OBB intersection and hierarchy traversal. In this paper, we tar-
get the problem of fast OBB construction, both as a single bounding
volume and a hierarchical representation. We implement a fast par-
allel OBB estimator and propose an agglomerative method for the
conversion of AABB hierarchies to OBB-based ones.

Despite the advantages of using an AABB tree, it has been
shown that under certain scenarios these can dramatically overes-
timate the enclosing shape of a cluster. This is especially appar-
ent when it comes to elongated and arbitrarily oriented clusters of
primitives (e.g. branches, leaves, hair strands). Also, in the case
of rigid animation, OBB hierarchies do not require any refitting to
the animated data, making them vastly superior to AABBs. While
OBB-based representations are considered a theoretically superior
choice, resulting in tighter bounds of their enclosing geometry and
therefore fewer false positive intersections, the extraction of such
hierarchies is generally computationally expensive. Parallelisation
and scaling of an OBB builder is not trivial out of the box, and this
is one of the two major contributions of our work. Furthermore,
the hierarchy traversal requires that the query entity (e.g. a ray or
bound) be transformed to the local reference frame of the node’s
OBB prior to intersection, an operation whose cost often outweighs
the benefits. This has led to ray-OBB intersections not being sup-
ported by today’s ray tracing frameworks at the node level, but only
at the boundary between the top and bottom parts of a two-level
hierarchy. We show next that with careful handling of transforma-
tions and memory within the OBB traversal kernel, the traversal
overhead can be minimised.

The proposed method is executed as a post-process step over an
existing bounding volume hierarchy. In that sense, the algorithm
used for generating the initial BVH is orthogonal, ensuring com-
patibility with any existing fast GPU and CPU builder. In this work
we focus on binary hierarchies, which have some of the most com-
mon and robust builders, although the idea is equally applicable to
wider hierarchies. We contribute to the current state of the art by
a) presenting a fast parallel implementation for the extraction of
OBBs from unordered point sets and b) proposing a parallel ag-
glomerative algorithm for the computation of high-quality OBBs
for all of the nodes of an existing BVH.

The remainder of the paper is structured as follows. In Section 2
we briefly cover the literature of OBBs and its uses in ray tracing
and beyond as well as the state-of-the-art in optimising an existing
BVH. In Section 3 we cover the parallel implementation of both the
standalone OBB extraction from point sets and the agglomerative
approach for transforming existing hierarchies. In Section 4, we
evaluate the performance characteristics of the resulting structures

on various state of the art builders. We conclude with Section 5,
where we summarise our contribution and discuss limitations and
future work.

2. Related Work

Oriented bounding box estimation. Here, we revisit the idea
of the OBB calculation from an input point set, for which we
first briefly discuss notable existing approaches to this generic
problem. The initially proposed algorithm, which calculates an
optimal tightest fit box, albeit the slowest, was demonstrated
by O’Rourke [O’R85]. A popular approach based on the in-
trinsic relationships of the input samples is based on a purely
mathematical formulation that uses Principal Component Analy-
sis (PCA) [AW10] while an ε-approximation algorithm specifically
designed for R3 was designed by [BHP01]. More recently, Chang
et al. [CGM11] approached the problem as an unconstrained opti-
misation problem, computing the orientation of an optimal OBB by
a hybrid global optimisation algorithm that searches in the space of
rotation matrices.

For this work, we shift our focus to another approximate ap-
proach abbreviated to DiTO [LK11], which has demonstrated a
nice balance between bounding volume quality and run-time com-
plexity for triangular meshes, compared to PCA and other approxi-
mate methods. We modify the algorithm and map it to any parallel
computing device, such as a GPU architecture, and most impor-
tantly, adapt it for the complete construction of bounding volume
hierarchies of OBB-based tree nodes.

Bounding volume hierarchies. High performance BVH construc-
tion has been extensively studied and surveyed [MOB∗21] in the
past years. In this field of research and mostly targeting GPU
acceleration, the most common approach is to construct a linear
bounding volume hierarchy [LGS∗09,Kar12,Ape14]. Based on this
method many algorithms have been proposed over the years that are
constantly pushing the state-of-the-art in terms of build time and
resulting tree quality. Gu et al. [GHFB13] presented one of the ear-
liest approximate agglomerative techniques for fast BVH construc-
tion. Karras et al. [KA13] demonstrated an agglomerative BVH
optimisation process based on restructuring small collections of
nodes called treelets, which Domingues et al. [DP15] improved on
in terms of construction time, while at the same time, widening the
treelet size based on a greedy clustering metric. In a similar man-
ner, Meister and Bittner [MB18b], proposed a bottom-up cluster-
ing algorithm for BVH construction based on spatially local neigh-
bours and a parallel topology reorganisation algorithm [MB18a].
Our method contributes in the category of optimisation techniques
of already constructed hierarchies and is orthogonal to other ap-
proaches.

OBB hierarchies. Exploiting OBB-based nodes for a bounding
volume hierarchy is not an entirely new concept in ray tracing.
Closely related to our work, there has been research towards hair
and fur rendering by Woop et al. [WBW∗14] where objects pre-
dominantly consist of thin, long primitives and are well suited
for this type of bounding volume intersection queries. This was
achieved by constructing a hybrid AABB/OBB BVH in a top-
down fashion for a CPU ray tracer in a production environment.

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

246

N. Vitsas, I. Evangelou, G. Papaioannou, A. Gkaravelis / Parallel BVH Transformation into OBB Trees

large base triangle

ditetrahedron

External points
calculation

Ditetrahedron
construction Oriented bounding box candidate selection Re�tting1 2 3 4

Figure 2: The principle of operation of the DiTO oriented bounding box construction method, illustrated in two dimensions.

Our approach does not limit itself to these model inputs and can
be implemented on top of arbitrary primitives defined by points.
Orientation-aware transformations at the primitive level for thin,
oblong geometry, were also exploited by Wald et al. [WMZ∗20] in
order to take advantage of the existing hardware ray tracing cores
and instancing capabilities of modern APIs.

3. Method Overview

Finding a tightly fitting oriented bounding box for a set of geomet-
ric primitives requires the calculation of an orientation, a midpoint
and the box’s extents, so that any primitive in the bounded set is
fully contained withing the OBB. Although an exact, polynomial
time algorithm for OBB computation exists [O’R85], it is not eas-
ily parallelisable. Approximate methods, such as those based on
PCA can be used, instead. However, it has been shown both em-
pirically, by Larson et al. [LK11], and through in-depth analysis,
by Dimitrov et al. [DKKR09], that there is an upper bound on the
accuracy of PCA-based OBB extraction in R2 and R3. In the partic-
ular case of BVH construction for 3D meshes, small inaccuracies,
propagated up the hierarchy, can be very problematic. For this rea-
son, we chose DiTO [LK11], a method specifically designed for
geometry meshes.

We start by parallelising the DiTO algorithm to run on the GPU,
in order to compute a single OBB from an unordered point set.
This can be used as a standalone OBB builder for arbitrarily large
datasets, but also for instance pre-alignment in two-level hierar-
chies. The core concept is then adapted to agglomeratively operate
on the nodes of a hierarchy and output an OBB hierarchy.

3.1. The Ditetrahedron OBB algorithm (DiTO)

DiTO was designed to be applicable to point clouds, polygon
meshes, or polygon soups, without any need for an initial con-
vex hull generation. The algorithm is based on processing a small,
constant number of characteristic vertices selected from the input
model. The selected points are then used to construct a represen-
tative simple shape, a double tetrahedron, or ditetrahedron. A suit-
able orientation for a tight-fitting bounding box can be efficiently
derived from the edges of this shape. To quickly explain the algo-
rithm, let’s consider a point set P of N points in 3D space for which
we want to find a tightly fitting OBB. The DiTO algorithm can be
broken down into 4 distinct steps, illustrated also in Figure 2, as
follows.

External Points Calculation. The algorithm begins by finding the
vertices in P , which have the maximum or minimum projection on
a set of K standard axes. There is no restriction as to which set of
axes one should use, but the authors suggest choosing a number K
that allows to uniformly sample the domain of orientations and po-
tentially accelerate subsequent calculations. Based on the author’s
recommendation, we implement the DiTO-14 variant, which uses
K = 7 standard projection axes. This results in a collection of K
min/max value pairs and a multiset S of 2K external points, in to-
tal. When a point corresponds to either a minimum or a maximum
projection on more than one axes, it is inserted in S multiple times.

Ditetrahedron construction. The next step of the algorithm op-
erates solely on the subset S of vertices. A large base triangle is
formed from 3 of the candidate points in S, using the farthest ver-
tices as one edge of the triangle and the farthest point to that edge as
the third triangle vertex. From this triangle, the algorithm proceeds
to create two joined tetrahedra (a ditetrahedron) using as apexes the
opposite farthest points from the triangle plane.

OBB candidate selection. The DiTO algorithm iterates over all
seven facets of the ditetrahedron, examines all triangle-aligned lo-
cal reference frames as the axes of a candidate tightly fitting OBB,
including an axis-aligned box, and chooses the one that results in
the smallest surface area. Very often, the ditrahedron is degenerate,
for instance when the points in S are fewer than the six vertices
of the ditetrahedron. However, this causes no problems, since we
only use the individual triangular sides and not the polyhedron as a
whole. Collapsed triangles are simply discarded.

OBB refitting. The previous step has defined the orientation of a
good OBB, which must be now refitted to include all points in P ,
since the face orientation of the OBB is derived from the ditetra-
hedron’s facets rather than the min/max axial projections of the
current local reference frame. The OBB extents are calculated by
iteratively determining the minimum and maximum projections of
all points in P on the local OBB axes.

3.2. Parallel OBB Extraction

The standard DiTO algorithm can be parallelised on the GPU. The
first and last steps of the DiTO algorithm essentially comprise a
reduction operation to determine minimum and maximum projec-
tions on a set of axes: K for the first step, 3 for the final one. Such a
reduction is implemented very efficiently on the GPU, using shared

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

247

N. Vitsas, I. Evangelou, G. Papaioannou, A. Gkaravelis / Parallel BVH Transformation into OBB Trees

memory or warp-level shuffle operations. The resulting block-level
results are written to global memory with fast atomic operations.

The intermediate step is significantly less involved, with purely
deterministic iterations over the faces of the ditetrahedron to locate
the best candidate OBB. This is a very fast step, which can be effi-
ciently performed in both CPU and GPU. To keep memory resident
on the GPU between the expensive steps, we simply choose to per-
form the operations on the GPU with a small kernel launch.

The overall, parallel algorithm is extremely fast, even for very
large point sets (see Table 1 in Section 4). Due to the fast OBB
calculation time, apart from the OBB extraction for arbitrarily large
meshes, it can be used as a potential pre-alignment step during the
bottom-level construction of a two-level hierarchy, or in geometric
tasks such as object classification, point cloud registration, etc.

3.3. OBB Extraction for Bounding Volume Hierarchy Nodes

We wanted our agglomerative approach to be applicable to any ex-
isting BVH hierarchy without imposing restrictions to the underly-
ing ordering of the primitives within the leaves. A specific ordering,
which would be exploitable in our case, is unfortunately not guar-
anteed in many of the fast state-of-the-art builders. The proposed
algorithm works in parallel, starting from the leaves of the given
hierarchy and modifies the node bounds, leaving the existing node
linkage unchanged. In order for such an agglomerative method to
operate efficiently, an important property is to maintain a constant
storage payload during the hierarchy traversal and keep the respec-
tive computations complexity constant.

There are two easily attainable requirements for the method.
First, each node must refer to its parent, in order for the bottom-
up traversal to be feasible. This information is very common in
builders [DP15, LGS∗09] and is easy to calculate if its not readily
available [SFD09]. Second, leaves need to have access to vertex
data of the stored primitives. This information is readily available
for meshes or easy to calculate for many non-triangulated prim-
itives. Alternatively, already computed bounds, or representative
points can be provided as leaf data, similar to the case of AABB
trees.

The key insight behind an agglomerative DiTO version is that
each tree node only needs to gather and update the minimum and
maximum projection vertices for the K standard axes, as these
propagate up the hierarchy. An initial set of K minimum and maxi-
mum projection coordinates are determined at the leaves in parallel,
which are subsequently iteratively routed and merged upwards, in
isolation. Projection coordinates are stored in global memory and
are unique for each node. An illustration of the parallel bottom up
traversal can be seen in Figure 3.

After having calculated the required projections and vertices in
the parallel bottom-up pass, the OBB calculation according to the
second and third step of the DiTO method for each node is con-
currently and independently performed. On the GPU, these are im-
plemented as single kernel launch. At the end of this step, the three
OBB axes and their extents for each node are stored in global mem-
ory.

The next step is the refitting operation for each node in order

Left

Left

Right

Right

Left

Internal
node

Internal
node

Leaf

LeafLeaf

. . .

. . .

Figure 3: Parallel OBB hierarchy construction - concurrent prop-
agation of projection extrema.

to ensure the full enclosing of their children. Normally, each node
requires an iteration over all primitives in its stemming sub-trees,
to adjust the OBB extents. However, such a pull operation is ex-
tremely inefficient in any parallel paradigm. Instead, we reverse
the process and make it primitive-driven. Each vertex from the leaf
nodes iteratively traverses the path to the root independently in a
data parallel manner and updates the encountered node extents,
as necessary using atomic min/max operations. We are careful to
initialise the minimum and maximum values from the projections
of the previously calculated OBB to avoid unnecessary atomic up-
dates. The refitting process is fast and embarrassingly parallel, with
full core utilisation up to the root. Its speed and its very small mem-
ory footprint, indicate that node data can be made resident and
reused if the object is dynamically morphed.

A final step determines and stores data for the traversal of the
tree, i.e. the root-to-node transformation matrix, so that intersec-
tions can be computed accurately and fast, with a unit AABB, in-
stead of arbitrary OBBs. The resulting matrix is a typical scaling
and change of reference frame transformation. In our GPU imple-
mentation, this step is performed as a separate kernel launch.

Finally, it is worth mentioning that the OBB hierarchy conver-
sion process is directly applicable to wider trees, not just binary
hierarchies.

3.4. Implementation Details

GPU implementation. We implemented the four-stage process of
DiTO (see Figure 2) with four highly parallel kernels. The first ker-
nel is launched over all leaves of the hierarchy. We calculate the
projection values and store them in global memory and move on to
their parents. The last child to reach the parent during parallel exe-
cution fetches the projection values for all siblings (two here) from
global memory and proceeds to further resolve the min and max
values to be propagated to its ancestor. This strategy is executed
until a single thread reaches the root.

In the second kernel launch, each node uses the projections and
corresponding vertex indices stored in global memory from the pre-
vious pass. A number of instances of the DiTO algorithm equal to

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

248

N. Vitsas, I. Evangelou, G. Papaioannou, A. Gkaravelis / Parallel BVH Transformation into OBB Trees

the number of tree nodes, are executed in parallel, implementing
steps 2 and 3 of Figure 2.

The third kernel performs the refitting of the resulting OBB for
each node. We again launch a kernel over all leaf nodes and ascend
the hierarchy. In contrast to previous bottom-up passes, no node ex-
its upon reaching its parent. This allows to robustly and accurately
grow the OBB bounds taking into account all enclosed primitives
of an internal node, at any level. Therefore, every single thread per-
sists until reaching the root. To avoid excessive stalls by constant
atomic updates to the bounds of each OBB, we make sure to per-
form the updates only if a fast point-in-OBB check fails. This is a
highly data-parallel step that fully employs the GPU. It is also the
fastest of the 3 kernels, which is very important as it is the only step
that is required at runtime, in case of mesh deformation.

Finally, a separate kernel is launched independently over all
nodes, which calculates the transformation matrix required for
the root-to-node transformation, using the approach presented
in [SAVBCNRM21].

An important mechanism that we leverage throughout various
parts of our implementation is a fast bottom-up traversal of the hi-
erarchy using parent connections. We use the approach taken by
Karras [Kar12] that synchronises accesses to the parent node by
its children using a per-node atomic flag in global memory. Where
needed, the child that reaches the parent node first, marks the node
as visited and this ensures that only a single child operates on each
node. This mechanism can further be exploited in order to store
more meaningful information. We use it to store the child that did
not enter the node in order to quickly get access to the sibling.

Deferring the external point identification. For the standalone
OBB calculation process, the external points calculation step of the
original DiTO algorithm, keeps track of the external points along
with the update of the minimum and maximum axial projections. In
a GPU environment, this is not efficient to implement. We address
this by observing that the actual vertex corresponding to a min/max
projection is only required after the sorting. Therefore we defer the
identification of external points to a separate kernel launch, after the
min/max axial projection values are known. We launch the kernel
over the entire point set and atomically update the external point in-
dex, when a point has exactly the same projection as the calculated
min and max.

Degenerate OBBs. In our method, we allow for the calculation
of OBBs, at any level and with no restrictions on the number or
type of primitives in the case of leaf nodes. Therefore, we need to
handle special cases, such as single-primitive leaves, where OBBs
collapse (e.g. triangles), resulting in non-invertible transformations.
Such cases are easy to identify by their zero-length extents in at
least one of the OBB axes. We simply inflate the collapsed sides of
the OBB by a fraction of the smallest non-collapsed side.

Hierarchy collapse. Most GPU BVH optimisers perform an ad-
ditional step in which terminal subtrees are collapsed into multi-
primitive leaves, if the SAH cost becomes lower. Meister et
al. [MB18a] include a fairly thorough description of the implemen-
tation of such a routine in a bottom-up manner. This step is also
orthogonal to our optimisation pass. A key observation for this step
is that it does not perform any reorganization of the hierarchy and

therefore does not affect the bounds of any remaining node. This
effectively means that no OBBs need to be recalculated, allowing
the collapse to occur either before or after the OBB BVH trans-
formation. Please keep in mind that current collapse implementa-
tions create primitive clusters solely based on spatial proximity.
Though very helpful for AABB hierarchies, large collapses may
degrade OBB tree traversal performance, by increasing the volume
and overlap of node OBBs, as well as flattening clusters of thin,
long primitives.

3.5. Tree traversal

Our goal was to introduce as few modifications to the hierarchy
traversal method as possible so that it operates on OBBs instead
of AABBs. We use the persistent "while-while" kernels presented
by Aila et al. [AL09] as a baseline. These require that the intersec-
tion information for the children are stored directly in the parent
for efficient access. For AABBs these data correspond to the min
and max points of the child’s bounds. For OBBs, the inverse trans-
formation for each child is needed which we store as a 4x3 matrix.
We use a struct-of-arrays (SoA) internal node memory layout for
more efficient access. For leaf nodes, only the corresponding range
of the primitive data is required. At the code level, we only need to
add routines for the transformation of each ray’s origin and direc-
tion. Finally, to speed up ray-OBB intersections we also use a cus-
tom unit-AABB intersection routine that directly intersects with the
[−0.5,0.5]3 cube, following the ray transformation with the matrix
derived by Sabino et al. [SAVBCNRM21].

4. Evaluation

We evaluate our method using two distinct sets of experiments. The
first set is a performance evaluation of the standalone GPU imple-
mentation of DiTO that operates directly over a flat set of input
points and extracts a high-quality oriented bounding box. The sec-
ond set of experiments is used for the evaluation of the conversion
of an AABB hierarchy into an OBB one, specifically targeting ray
tracing performance. Throughout all experiments, we treat the input
as raw triangles, flattening any transformed instances of sub-parts.
From that, we either build a single OBB (first set of experiments)
or an AABB hierarchy, which we then convert to an OBB tree. We
use separate, optimised ray tracing kernels for the AABB and OBB
hierarchy traversal, respectively. As a test set, we use a collection
of 10 scenes. 6 of these are single object setups, typically found in
the bottom level of a two-level hierarchy. The other 4 represent flat,
non-hierarchical large environments.

All timings were recorded on an NVIDIA RTX 3080Ti with
12GB of VRAM and an Intel i7 12700K CPU with 32GB of RAM.
We use NVIDIA CUDA version 11.7 for the GPU implementation
of the method and the GPU hierarchy traversal kernels.

4.1. Parallel standalone DiTO

Timings for the standalone execution of DiTO on the 6 single-
object cases can be seen in Table 1. The results show a significant
performance improvement over the original CPU implementation,
favouring large inputs, while maintaining linear scaling. This in-
dicates that there is an interesting potential in applying this fast

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

249

N. Vitsas, I. Evangelou, G. Papaioannou, A. Gkaravelis / Parallel BVH Transformation into OBB Trees

OBB calculation as an automatic pre-alignment step for the bounds
of bottom-level acceleration structures in two-level BVH hierar-
chies. On average, the reference CPU implementation consumes
151K points/ms compared to the 2.4M points/ms of our GPU im-
plementation, which constitutes an average 15.7× speedup.

Scene Point Count
Timings (ms)

Reference Ours
Trees 270K 1.88 0.28 (6.71×)
Abstract 370K 2.38 0.3 (7.93×)
Dragon 420K 2.68 0.33 (8.12×)
Hairball 1.5M 9.21 0.55 (16.74×)
Crown 1.8M 11.66 0.67 (17.19×)
Sheep 23.3M 149.23 5.65 (26.41×)

Table 1: Extraction of a single OBB on the GPU using a par-
allel implementation of the DiTO algorithm. Timings on the
CPU were captured using the reference implementation of the
DiTO algorithm as provided by the authors at http://www.
gameenginegems.net/geg2.php.

4.2. BVH Conversion for Ray Tracing

Here we investigate the impact on build time and ray tracing per-
formance for the AABB-to-OBB hierarchy conversion, used as a
post-processing step to construct a complete OBB tree from the hi-
erarchical primitive clustering produced by three high-performance
builders. More specifically, we apply our OBB transformation ker-
nels to a) the LBVH builder, as presented in [Kar12] that has fast
build times but lacks in ray traversal speed and is typically used
for the top-level part in two-level hierarchies, b) ATRBVH that
trades build time for higher overall ray tracing performance and c)
SweepSAH-BVH [MB90] that has the slowest build performance,
due to its top-down exhaustive search, but the highest ray traversal
performance.

For the ATRBVH builder, we use the publicly available imple-
mentation with the default hyperparameters suggested by the au-
thors and for the case of SweepSAH-BVH we use the public im-
plementation from [SFD09]. For the latter, the build process takes
place on the CPU and the resulting hierarchy is transferred to the
GPU for further consumption by our framework. For both ATR-
BVH and SweepSAH-BVH, the Surface Area Heuristic [MB90] is
optimised using a traversal cost of 1.2 and an intersection cost of
1. Finally, all builders use the collapse operation we discussed in
Subsection 3.4, based on the same SAH metric to create leaves of
up to 8 primitives.

Our experimental setup consists of the 10 scenes flattened as sin-
gle meshes, as shown in Figure 4. For the 6 of them that represent
single objects, we trace paths from viewpoints outside their bounds.
For the rest (Powerplant, Bistro Interior, Bistro Exterior and Tem-
ple), primary rays start from within the respective modelled envi-
ronment. The size of the scenes ranges from 170K to 12.7M trian-
gles.

The results of our tests are summarised in Figure 4. We first
present the BVH conversion time in milliseconds for every test

scene. In the second block of the figure, we measure ray intersec-
tion times on the GPU for the collapsed AABB-based output hierar-
chy of the primary builder and the corresponding times for the hier-
archy as transformed by our method. We record timings for coher-
ent (primary) and incoherent (indirect) ray distributions, separately.
More specifically, for the primary rays all our scenes are rendered at
1920x1080 resolution and for each successful intersection with the
input geometry, we randomly spawn 32 uniformly distributed rays
around the triangle normal. Finally, we average our results over 2
distinct viewpoints and over 3 iterations. Since a BVH is commonly
used as a query acceleration structure for instanced geometry in
a two-level hierarchy, we also measure ray tracing performance,
when emitting 32M uniformly distributed rays from the object’s
bounding box, directed inwards. This is presented in the next block
of Figure 4 and effectively simulates how a leaf of the top-level
hierarchy routes a query through a bottom-level BVH for arbitrary
transformation of the object within a scene. Finally, the last block
of the experiments first records average ray-bounding volume in-
tersections for the case of SweepSAH-BVH. Average intersections
account only for the indirect bounces, since they represent an inco-
herent workload. Additionally, we provide time-to-render measure-
ments for LBVH and ATRBVH and for 1000 samples per pixel. We
observe that there is a correlation between the number of bounding
volume intersections and the expected ray tracing performance.

In Figure 5, we also present a visualisation of the number of
bounding volume intersections during the traversal of primary rays
on the same scenes, since primary rays are more easy to interpret,
visually.

Our experiments include some fairly standard scenes as well as
scenes that have traditionally benefited from orientation-aware hi-
erarchies. For example, both the Bistro Interior and Bistro Exterior
scenes where provided with no instance pre-alignment. The conver-
sion to an OBB hierarchy is able to optimise the overfitted AABBs
and create tight fitting bounds to the underlying geometry, resulting
in a substantial performance improvement. In a similar manner, the
Powerplant model has its own set of thin long geometry groups that
also benefit from the OBB hierarchy generation. On the other hand,
the temple scene is an example of a fairly well axis-aligned model
that as a flat, non-hierarchical scene, does not significantly bene-
fit from the OBB hierarchy although we did not measure serious
performance degradation.

Moving on to the single object experiments, the converted OBB
hierarchies on cases that are inherently expected to perform well,
such as the Hairball and Sheep models, significantly outperform
the initial AABB hierarchy in both primary and secondary ray
workloads. This is also consistent with other results from the lit-
erature [WMZ∗20, WBW∗14]. The remaining models like Trees,
Dragon, Human and Crown demonstrate the potential of OBBs to
exploit orientation similarity at various levels of the hierarchy de-
spite the purely spatial nature of the underlying builder.

For completeness, we also provide a breakdown of the conver-
sion process into separate times for each step in Table 2. This in-
cludes timings for the construction of the initial LBVH and ATR-
BVH hierarchy of AABBs. The refitting step (see Section 3.4),
which is the only step that needs to be executed in case of deforma-
tions, is the fastest.

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

250

http://www.gameenginegems.net/geg2.php
http://www.gameenginegems.net/geg2.php

N. Vitsas, I. Evangelou, G. Papaioannou, A. Gkaravelis / Parallel BVH Transformation into OBB Trees

2.56 / 1.91 (1.33x)

1.81 / 1.42 (1.27x)

1.88 / 1.35 (1.39x)

17.18 / 13.75 (1.24x)

13.39 / 10.69 (1.25x)

12.66 / 9.66 (1.31x)

Human - 1.2M Crown - 3.5M Sheep - 10.7M Hairball - 2.8M Dragon - 800KScene - # Triangles

Scene - # Triangles

AABB BVH / OBB BVH AABB BVH / OBB BVH AABB BVH / OBB BVH AABB BVH / OBB BVH AABB BVH / OBB BVH

BVH conversion time

LBVH

ATRBVH
Time (ms)
Primary
rays

LBVH

ATRBVH
Time (ms)
Secondary
rays

Avg. intersections swpBVH

Trees - 170K Temple - 400K Bistro exterior - 2.8M Bistro interior - 1M Powerplant - 12.7M

AABB BVH / OBB BVH AABB BVH / OBB BVH AABB BVH / OBB BVH AABB BVH / OBB BVH AABB BVH / OBB BVH

BVH conversion time

swpBVH

swpBVH

LBVH

ATRBVH
Time (ms)
Primary
rays

LBVH

ATRBVH
Time (ms)
Secondary
rays

swpBVH

swpBVH

7.91 / 5.13 (1.54x)

6.46 / 4.20 (1.53x)

6.30 / 4.01 (1.57x)

9.41 / 8.79 (1.07x)

10.90 / 7.80 (1.39x)

7.11 / 6.81 (1.04x)

1.07 / 0.96 (1.11x)

1.00 / 0.90 (1.10x)

0.94 / 0.75 (1.25x)

3.06 / 1.92 (1.59x)

2.76 / 1.78 (1.54x)

2.27 / 1.47 (1.54x)

147.82 / 15.25 (9.68x)

147.10 / 13.72 (10.71x)

134.43 / 11.63 (11.55x)

518.08 / 41.95 (12.34x)

519.10 / 37.43 (13.86x)

476.64 / 30.87 (15.44x)

1.23 / 0.91 (1.35x)

1.01 / 0.74 (1.36x)

1.01 / 0.69 (1.46x)

5.64 / 4.34 (1.3x)

4.47 / 3.58 (1.24x)

4.16 / 3.21 (1.29x)

LBVH

ATRBVH
Time (ms)

Time (sec.)
to render

Random
BV rays

swpBVH

LBVH

ATRBVH
Time (ms)
Random
BV rays

swpBVH

3.38 / 2.94 (1.14x)

2.90 / 2.42 (1.19x)

3.29 / 2.44 (1.34x)

15.22 / 12.89 (1.18x)

12.45 / 10.58 (1.17x)

12.12 / 10.08 (1.2x)

3.35 / 3.41 (0.98x)

2.14 / 2.19 (0.97x)

1.76 / 1.83 (0.96x)

60.48 / 58.57 (1.03x)

37.72 / 38.43 (0.98x)

31.13 / 29.52 (1.05x)

7.74 / 5.37 (1.43x)

5.12 / 4.05 (1.26x)

4.33 / 3.22 (1.34x)

148.09 / 131.96 (1.12x)

117.72 / 96.04 (1.22x)

91.13 / 72.57 (1.25x)

6.72 / 4.78 (1.40x)

4.62 / 3.48 (1.32x)

4.77 / 3.15 (1.51x)

137.61 / 70.83 (1.94x)

103.70 / 48.28 (2.14x)

89.69 / 83.15 (1.07x)

5.92 44.91 12.54 4.64

0.97 1.98 12.78 4.84

16.85

5.91 / 4.01 (1.47x)

3.26 / 2.58 (1.26x)

2.63 / 2.36 (1.11x)

29.03 / 26.67 (1.08x)

21.01 / 17.66 (1.18x)

18.63 / 13.98 (1.33x)

1.64 / 1.59 (1.03x)

1.54 / 1.48 (1.04x)

1.28 / 1.17 (1.09x)

5.26 / 4.57 (1.14x)

5.06 / 3.71 (1.36x)

4.17 / 3.41 (1.22x)

1.10 / 1.01 (1.09x)

0.94 / 0.84 (1.11x)

0.90 / 0.77 (1.17x)

127.82 / 19.77 (6.46x)

123.45 / 17.46 (7.06x)

107.10 / 13.74 (7.79x)

2.62 / 2.17 (1.20x)

2.15 / 1.77 (1.21x)

1.95 / 1.72 (1.13x)

- / -

- / -

- / -

- / -

- / -

- / -

- / -

- / -

- / -

- / -

- / -

- / -

1.64 / 1.46 (1.12x)

1.26 / 1.18 (1.06x)

1.18 / 1.07 (1.10x)

33.73 / 25.03 (1.34x)

15.15 / 12.01 (1.26x)1282.80 / 128.36 (9.91x) 48.83 / 41.33 (1.18x)

126.53 / 57.68 (2.19x)94.97 / 58.75 (1.61x)55.82 / 41.21 (1.35x)

5.99 / 4.38 (1.36x) 8.53 / 6.05 (1.40x)

2.56 / 268.81 / 10.53 / 2.11 / 1.75 (1.21x) 6.82 /

2.05 / 264.32 / 8.81 / 1.93 / 5.06 /

32.99 / 24.11 (1.36x)

6.79 / 28.91 / 33.69 / 16.83 / 14.15

5.59 / 21.22 / 26.88 / 10.48 / 9.20 /

52.63

LBVH

ATRBVH

Avg. intersections swpBVH

Time (sec.)
to render

LBVH

ATRBVH

 1.62 (1.19x)

 5.81 (1.17x)

 4.07 (1.24x)

 25.86 (10.39x)

 23.09 (11.45x)

 7.56 (1.39x)

 6.34 (1.39x)

 1.93 (1.33x)

 1.56 (1.32x)

 5.60 (1.21x)

 4.55 (1.23x)

 14.65 (1.15x)

 9.52 (1.10x)

 29.49 (1.14x)

 22.13 (1.21x)

 16.60 (1.74x)

 11.79 (1.80x)

 11.18 (1.27x)

 6.96 (1.32x)

/

Figure 4: Build and traversal measurements for our transformed BVH hierarchy over the original AABB-based BVH. In the first row, we
show the BVH conversion time (ms). Following rows present traversal performance (in ms) as measured for both coherent and incoherent
rays. The last rows show average bounding volume intersections for swpBVH and time-to-render for 1000 spp.

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

251

N. Vitsas, I. Evangelou, G. Papaioannou, A. Gkaravelis / Parallel BVH Transformation into OBB Trees

AABB BVH

Crown

Dragon

Powerplant

Temple

Trees Bistro interior

OBB BVH AABB BVH OBB BVH
>400

<29

>400

1

>200

1

242

<20

>5000

<10

250

1

>400

<30

>600

<6

>100

1

>500

1

Sheep

Human

Hairball

Bistro exterior

Figure 5: Comparison of AABB/OBB hierarchy bounding volume intersections for primary rays. The AABB BVH was constructed using the
SweepSAH-BVH builder.

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

252

N. Vitsas, I. Evangelou, G. Papaioannou, A. Gkaravelis / Parallel BVH Transformation into OBB Trees

Scene
Builder Conversion Total construction time (relative)

LBVH ATRBVH Project Select Refit Finalise LBVH ATRBVH
Human 5.56 10.96 3.28 0.84 1.15 0.66 11.48 (× 2.06) 16.89 (× 1.54)
Crown 12.94 25.36 8.97 1.92 4.18 1.78 29.80 (× 2.30) 42.22 (× 1.66)
Sheep 41.40 77.40 27.00 5.30 7.50 5.12 86.31 (× 2.08) 122.32 (× 1.58)
Hairball 12.01 22.62 7.36 1.59 2.14 1.45 24.55 (× 2.04) 35.15 (× 1.55)
Dragon 3.98 6.91 2.94 0.51 0.76 0.44 8.63 (× 2.17) 11.55 (× 1.67)
Trees 1.31 2.52 0.52 0.14 0.20 0.12 2.28 (× 1.74) 3.49 (× 1.38)
Temple 2.25 4.35 1.10 0.30 0.37 0.23 4.24 (× 1.88) 6.34 (× 1.46)
Bistro (exterior) 10.88 21.29 7.21 1.83 2.32 1.42 23.67 (× 2.18) 34.07 (× 1.60)
Bistro (interior) 4.50 8.56 2.72 0.70 0.88 0.54 9.35 (× 2.08) 13.41 (× 1.57)
Powerplant 41.44 79.56 29.20 8.91 8.69 5.83 94.07 (× 2.27) 132.19 (× 1.66)

Table 2: BVH transformation time measured separately for each step and scenes presented in Figure 4. Columns indicate the time in
milliseconds for each step execution.

4.3. Rotated Scenes

A thorough study by Aila et al. [AKL13] challenges the correla-
tion of theoretical quality metrics with actual ray tracing perfor-
mance. Among other findings, they raised their concerns about per-
formance degradation for ray traversal on non-axis-aligned geom-
etry, the worst being scenes rotated by 45◦ over the diagonal axis
{1,1,1}.

One advantage of OBBs is their inherit robustness to orientation
change. However, since the OBB tree in our case uses the structure
and primitive clustering optimised by an AABB-based builder, it
was interesting to see to what degree the generated OBB trees retain
this benefit, under the effect of rotation. To simulate this scenario,
we applied a 45◦ rotation over the {1,1,1} axis to our flat, non-
hierarchical scenes and measured performance for ray traversal on
the GPU, for the same experimental setup discussed in Section 4.2.

Our benchmarks on primary ray distributions, indicate an av-
erage relative improvement over the AABB-based BVH of 5.6×,
3.88× and 3.49× for the LBVH, ATRBVH and SweepSAH-BVH
builders respectively. Additionally, for secondary rays, there is a
similar performance improvement of 2.63×, 3.24× and 2.7×, re-
spectively. This highlights the potential of our approach to remove
a purely technical concern from the artists’ creative workflow, that
of axis alignment of scene geometry.

4.4. Memory Consumption

The additional storage in GPU memory required for our algorithm
during the hierarchy construction of an input BVH with N leaf
nodes, is a total of (2N − 1)× 28, 32-bit numerical precision val-
ues. This encompasses 14 floats for the min and max projection and
another 14 integers for the corresponding indices of the associated
vertices (see Section 3.3).

During traversal of the transformed hierarchy and considering
the node layout we discussed in Section 3.5, the 2 AABB entries
(12 floats) need to be replaced with two 4× 3 transformation ma-
trices (24 floats).

5. Conclusion and Future Work

We presented a method for the construction of an OBB hierar-
chy starting from any bounding volume hierarchy that requires
minimal changes to the standard traversal algorithm. It can act
as a post-processing step to existing binary BVH builders and is
generic enough to naturally work with wide BVHs [YKL17] as
well. Hierarchies based on OBBs have the potential to dispense
with concerns regarding asset orientation in scene design and spe-
cial handling of long, thin primitives or geometry groups. In a sim-
ilar manner to how efficient hardware instance transformations of
modern ray tracing APIs are already exploited in two-level hierar-
chies to optimise intersections with arbitrarily oriented long primi-
tives [WMZ∗20]. Both our fast OBB estimator and BVH converter
can generalise this by providing the bottom level OBBs for primi-
tive clusters and bottom-level acceleration data structures, respec-
tively.

To further help the general graphics community, we provide
full source code of our reference implementation at https://
github.com/cgaueb/obvh.

Limitations. In this work, we reuse the output node structure im-
posed by the initial builder. Presently, this has the side effect that
node linkage is decided using strictly spatial clustering criteria that
optimise and collapse AABBs but do not necessarily contribute to
efficient OBB generation for the clusters. In fact, in certain corner
cases, these have a negative impact.

Another drawback of our approach is the increased temporary
memory allocation for the intermediate storage of the min-max pro-
jections for each node of the hierarchy during construction. Addi-
tionally, the storage required for an OBB is larger than that for an
AABB, affecting the final memory footprint of the hierarchy and
potentially impacting the cache effectiveness, during tree traversal,
albeit not in a noticeable manner. OBB compression schemes have
been proposed [WBW∗14], but the benefits of such approaches in
the context of a full OBB hierarchy need further investigation.

Future work. In OBB hierarchies, ray transformations are per-
formed at every node traversal step and, therefore, constitute a fre-
quent computation. It would be worth investigating whether hard-
ware ray transformation units could be employed for this opera-

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

253

https://github.com/cgaueb/obvh
https://github.com/cgaueb/obvh

N. Vitsas, I. Evangelou, G. Papaioannou, A. Gkaravelis / Parallel BVH Transformation into OBB Trees

tion. Unfortunately, access to this feature is not directly exposed
in any of the current ray tracing APIs. Further investigation is also
required regarding the choice of K for DiTO. We chose K = 7, as
per authors advice, but different choices could show similar perfor-
mance benefits with lower memory pressure.

Acknowledgements

The Sheep model was extracted from the Blender Foundation’s
demo scene repository. The Hairball, Crown and Powerplant mod-
els are from Morgan McGuire’s resource archive. The Amazon
Lumberyard Bistro and Temple scenes are part of the Open Re-
search Content Archive. Finally, the Dragon model was taken from
Benedikt Bitterli’s Rendering Resources site. This research was
funded by the Hellenic Foundation for Research and Innovation
(H.F.R.I.) under the “3rd Call for H.F.R.I. Research Projects to sup-
port Post-Doctoral Researchers” (Project No: 7310).

References
[AKL13] AILA T., KARRAS T., LAINE S.: On quality metrics of bound-

ing volume hierarchies. In Proceedings of the 5th High-Performance
Graphics Conference (New York, NY, USA, 2013), HPG ’13, Associa-
tion for Computing Machinery, p. 101–107. 9

[AL09] AILA T., LAINE S.: Understanding the efficiency of ray traver-
sal on gpus. In Proceedings of the Conference on High Performance
Graphics 2009 (New York, NY, USA, 2009), HPG ’09, Association for
Computing Machinery, p. 145–149. 5

[AM00] ASSARSSON U., MOLLER T.: Optimized view frustum culling
algorithms for bounding boxes. Journal of Graphics Tools 5, 1 (2000),
9–22. 2

[Ape14] APETREI C.: Fast and Simple Agglomerative LBVH Construc-
tion. In Computer Graphics and Visual Computing (CGVC) (2014),
Borgo R., Tang W., (Eds.), The Eurographics Association. 2

[AW10] ABDI H., WILLIAMS L. J.: Principal component analysis.
WIREs Computational Statistics 2, 4 (2010), 433–459. 2

[BHP01] BAREQUET G., HAR-PELED S.: Efficiently approximating the
minimum-volume bounding box of a point set in three dimensions. J.
Algorithms 38, 1 (jan 2001), 91–109. 2

[CGM11] CHANG C.-T., GORISSEN B., MELCHIOR S.: Fast oriented
bounding box optimization on the rotation group SO(3,R). ACM Trans.
Graph. 30, 5 (oct 2011). 2

[CWK10] CHANG J.-W., WANG W., KIM M.-S.: Efficient collision de-
tection using a dual obb-sphere bounding volume hierarchy. Computer-
Aided Design 42, 1 (2010), 50–57. Advances in Geometric Modelling
and Processing. 1

[DKKR09] DIMITROV D., KNAUER C., KRIEGEL K., ROTE G.:
Bounds on the quality of the pca bounding boxes. Comput. Geom. The-
ory Appl. 42, 8 (oct 2009), 772–789. 3

[DP15] DOMINGUES L. R., PEDRINI H.: Bounding volume hierarchy
optimization through agglomerative treelet restructuring. In Proceedings
of the 7th Conference on High-Performance Graphics (New York, NY,
USA, 2015), HPG ’15, Association for Computing Machinery, p. 13–20.
2, 4

[GHFB13] GU Y., HE Y., FATAHALIAN K., BLELLOCH G.: Efficient
bvh construction via approximate agglomerative clustering. In Proceed-
ings of the 5th High-Performance Graphics Conference (New York, NY,
USA, 2013), HPG ’13, Association for Computing Machinery, p. 81–88.
2

[GLM96] GOTTSCHALK S., LIN M. C., MANOCHA D.: Obbtree: A
hierarchical structure for rapid interference detection. In Proceedings
of the 23rd Annual Conference on Computer Graphics and Interactive

Techniques (New York, NY, USA, 1996), SIGGRAPH ’96, Association
for Computing Machinery, p. 171–180. 2

[KA13] KARRAS T., AILA T.: Fast parallel construction of high-
quality bounding volume hierarchies. In Proceedings of the 5th High-
Performance Graphics Conference (New York, NY, USA, 2013), HPG
’13, Association for Computing Machinery, p. 89–99. 2

[Kar12] KARRAS T.: Maximizing parallelism in the construction of bvhs,
octrees, and k-d trees. In Proceedings of the Fourth ACM SIGGRAPH /
Eurographics Conference on High-Performance Graphics (Goslar, DEU,
2012), EGGH-HPG’12, Eurographics Association, p. 33–37. 2, 5, 6

[KHM∗98] KLOSOWSKI J., HELD M., MITCHELL J., SOWIZRAL H.,
ZIKAN K.: Efficient collision detection using bounding volume hier-
archies of k-dops. IEEE Transactions on Visualization and Computer
Graphics 4, 1 (1998), 21–36. 1

[LAM01] LEXT J., AKENINE-MÖLLER T.: Towards Rapid Reconstruc-
tion for Animated Ray Tracing. In Eurographics 2001 - Short Presenta-
tions (2001), Eurographics Association. 2

[LGS∗09] LAUTERBACH C., GARLAND M., SENGUPTA S., LUEBKE
D., MANOCHA D.: Fast BVH Construction on GPUs. Computer Graph-
ics Forum (2009). 2, 4

[LK11] LARSSON T., KÄLLBERG L.: Fast computation of tight-fitting
oriented bounding boxes. Game Engine Gems 2 (2011), 1. 2, 3

[MB90] MACDONALD D. J., BOOTH K. S.: Heuristics for ray tracing
using space subdivision. Vis. Comput. 6, 3 (may 1990), 153–166. 6

[MB18a] MEISTER D., BITTNER J.: Parallel locally-ordered clustering
for bounding volume hierarchy construction. IEEE Transactions on Vi-
sualization and Computer Graphics 24, 3 (2018), 1345–1353. 2, 5

[MB18b] MEISTER D., BITTNER J.: Parallel Reinsertion for Bounding
Volume Hierarchy Optimization. Computer Graphics Forum (2018). 2

[MOB∗21] MEISTER D., OGAKI S., BENTHIN C., DOYLE M. J.,
GUTHE M., BITTNER J.: A survey on bounding volume hierarchies
for ray tracing. Computer Graphics Forum 40, 2 (2021), 683–712. 2

[O’R85] O’ROURKE J.: Finding minimal enclosing boxes. International
Journal of Computer & Information Sciences 14 (1985), 183 – 199. 2, 3

[RW80] RUBIN S. M., WHITTED T.: A 3-dimensional representation for
fast rendering of complex scenes. SIGGRAPH Comput. Graph. 14, 3 (jul
1980), 110–116. 2

[SAVBCNRM21] SABINO R., AUGUSTO VIDAL C., BENTO
CAVALCANTE-NETO J., RODRIGUES MAIA J. G.: Fast and Ro-
bust Ray/OBB Intersection Using the Lorentz Transformation. Apress,
Berkeley, CA, 2021, pp. 519–528. 5

[SFD09] STICH M., FRIEDRICH H., DIETRICH A.: Spatial splits in
bounding volume hierarchies. In Proceedings of the Conference on High
Performance Graphics 2009 (New York, NY, USA, 2009), HPG ’09, As-
sociation for Computing Machinery, p. 7–13. 1, 4, 6

[TY09] TU C., YU L.: Research on collision detection algorithm based
on aabb-obb bounding volume. In 2009 First International Workshop
on Education Technology and Computer Science (2009), vol. 1, pp. 331–
333. 1

[WBW∗14] WOOP S., BENTHIN C., WALD I., JOHNSON G. S.,
TABELLION E.: Exploiting local orientation similarity for efficient ray
traversal of hair and fur. In Proceedings of High Performance Graphics
(Goslar, DEU, 2014), HPG ’14, Eurographics Association, p. 41–49. 2,
6, 9

[WMZ∗20] WALD I., MORRICAL N., ZELLMANN S., MA L., USHER
W., HUANG T., PASCUCCI V.: Using hardware ray transforms to ac-
celerate ray/primitive intersections for long, thin primitive types. Proc.
ACM Comput. Graph. Interact. Tech. 3, 2 (aug 2020). 3, 6, 9

[YKL17] YLITIE H., KARRAS T., LAINE S.: Efficient incoherent ray
traversal on gpus through compressed wide bvhs. In Proceedings of High
Performance Graphics (New York, NY, USA, 2017), HPG ’17, Associa-
tion for Computing Machinery. 9

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

254

