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Figure 1: We present a method to rectify deformed fluid flows using neural networks. Our neural corrector ensures the physical plausibility
of edited simulation footprints at test time, enabling interactive control of fluids without re-simulations.

Abstract
Controlling fluid simulations is notoriously difficult due to its high computational cost and the fact that user control inputs can
cause unphysical motion. We present an interactive method for deformation-based fluid control. Our method aims at balancing
the direct deformations of fluid fields and the preservation of physical characteristics. We train convolutional neural networks
with physics-inspired loss functions together with a differentiable fluid simulator, and provide an efficient workflow for flow
manipulations at test time. We demonstrate diverse test cases to analyze our carefully designed objectives and show that they
lead to physical and eventually visually appealing modifications on edited fluid data.

CCS Concepts
• Computing methodologies → Physical Simulation; Neural networks;

1. Introduction

Faithfully recreating natural phenomena in virtual environments is
one of the most significant topics in the field of computer graphics.
Recent developments in fluid simulations have allowed artists to
efficiently author realistic effects. However, when it comes to the
problem of art-directing, e.g., screen-space control of features or
re-timing the simulation, a compromise is assumed between main-
taining accessible artistic control and physical plausibility.

Artists often rely on force-based fluid control techniques that

have been introduced about two decades ago [FL04, MTPS04].
These artificial force fields can be either computed by optimiza-
tion [TMPS03, MTPS04, PM17b, TCACS21] or through heuris-
tics [FL04, SY05b, TKPR06]. Optimization methods can accu-
rately match specific objectives at a high computational cost, while
heuristics provide an efficient solution that does not exactly satisfy
target keyframes. Both approaches define objectives by computing
differences between a simulated density field and a target one at a
given frame. When simulated and objective density fields do not
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Figure 2: Overview of our method. Our deformation-based control is a two-step procedure that includes an artist-friendly deformation D,
and a neural corrector C that projects the deformation back onto the Navier-Stokes (NS) manifold. Our neural corrector is implemented by
convolutional neural networks and hence enables interactive operations at inference time. The neural corrector is coupled with a differen-
tiable fluid solver and a set of loss functions which provides a strong physics prior in the self-supervised training.

overlap — if the target smoke goes under extreme deformations —
these methods cannot provide meaningful gradients for the opti-
mization or heuristics computation, and artificially computed force
fields will not be able to properly guide fluid simulations.

Alternatively, fluids can be controlled by direct manipulation
of pre-simulated fluid data. For instance, the volumetric flow data
can be deformed with the underlying grid [SDY∗15, PM17a], var-
ious fluid scenes may be stitched [SDN18] or sculpted for re-
sizing [FHM∗21]. While these techniques offer an unprecedented
level of post-editing functionality, they rely on computationally ex-
pensive optimizations or re-simulations.

To enable efficient artistic control that is less constrained by
the type of the deformation, we propose a fluid post-processing
pipeline, but with the key difference of enabling target matching
in interactive environments while preserving physical constraints.
In our pipeline, we simulate a base smoke configuration, deform
it with accessible control tools for prototyping, and finally correct
the motion to increase physical realism. This is enabled by a self-
supervised neural corrector that projects the deformed simulations
back onto the manifold of the Navier-Stokes equations with the
help of differentiable physics simulation.

Our model is implemented by convolutional neural networks
and coupled with a differentiable fluid solver for training without
any reference correction samples. By considering various physi-
cal quantities explicitly, our method offers not only user-friendly
control of fluids but also conservation of the original physical char-
acteristics. Thanks to the high speed of feed forward models, there
is no necessity of expensive simulations or optimizations except
the computation of the baseline simulation for the following de-
formation. At inference time, our method is thus computationally
more efficient than previous target-driven simulation methods and

allows users to interactively art-direct fluids. Our contributions can
be summarized as follows:

• A neural corrector that projects an artistically deformed velocity
field back onto the physical manifold at interactive frame rates.
(Sec. 3.1)

• An objective function implemented through a differentiable fluid
solver for evaluating physics laws. (Sec. 3.2)

• A set of physics-based loss functions to train the neural corrector
in a self-supervised way (Sec. 3.2, Sec. 3.3) and corresponding
ablation studies. (Sec. 4)

2. Related Work

Online Control for Fluids. One set of fluid control methods aim at
matching given coarse guidance in space or time during simulation.
One category of this group is to compute control force fields by
evaluating heuristics for guidance. These methods derive control
forces based on the difference between current and desired density
field [FL04], signed distance functions [SY05a, SDE05, YCZ11],
geometric potentials [HK04, SY05b], control particles [REN∗04,
TKPR06,MM13] and low-resolution simulations [HMK11]. While
these techniques are computationally efficient, they often require
manual work for delicate control due to the sub-optimal results.

Another category is based on optimization to achieve higher
quality matches. Analytic gradients are computed to opti-
mize forces [TMPS03] and are enhanced by the adjoint
method [MTPS04], ADMM framework [GITH14, PM17b] and
primal-dual algorithm [IEGT17]. Nielsen et al. [NCZ∗09, NC10,
NDB11] formulated a variational problem to guide high-resolution
simulations with low-resolution counterparts. Alternative represen-
tations of guidance are utilized such as meshes [RTWT12], vortex
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Figure 3: Different types of deformations performed by manipulat-
ing the underlying regular grid. From left to right: bending, uniform
scaling and non-uniform scaling.

structure [WP10], spectral component [RLL∗13,FN20,TCACS21]
and stream function [SDK21].

Offline Control for Fluids. Unlike online control approaches, of-
fline methods control fluids by post-processing with low computa-
tional cost and enhanced controllability at test time.

Reduced order models [TLP06, WST09] build basis functions
from simulation snapshots by dimension reduction and span an
approximation of the original full model for computational effi-
ciency with a subspace integrator [KD13], Laplacian Eigenfunc-
tions [DWLF12, CSK18] and learning-based models [KAT∗19,
WKA∗20]. Those methods, however, do not provide additional
controllability that goes beyond physical parameters.

Turbulence synthesis approaches, another group in offline fluid
control, composite turbulent details dissipated during simulation
using subgrid [KTJG08], solid boundary [PTSG09] and convolu-
tional neural networks [CT17, XFCT18, UHT18].

On the other hand, Appearance transfer approaches [KEBK05,
NKL∗07] build on patch-based synthesis to change the appear-
ance of a target object with a source texture by finding corre-
spondences between local regions, and are enhanced to improve
temporal coherency [BBRF14, JFA∗15], extended to 3D veloc-
ity fields [SDKN18], and coupled with neural style transfer tech-
niques [KAGS19, KAGS20]. The main challenge of these methods
is to minimize the discontinuity between synthesized patches or
frames over time and hence work at the cost of expensive optimiza-
tion. Contrary to previous approaches, our neural corrector targets
physically-corrupted fluid deformations rather than subtle feature
re-injection or appearance matching on coarse simulations.

Other works in this direction aim at direct fluid author-
ing. Fluid simulations have been reconstructed from sparse 2D
inputs [EHT18, EUT19, FST21, QLWQ21, KHW∗22], interpo-
lated [RWTT14,Thu16] and resized [FEHM19,FHM∗21]. Pan and
Manocha [PM17a] proposed a method for editing smoke simula-
tions, where the underlying grid is deformed and applied in the fluid
solver by altering the semi-Lagrangian advection operator. How-
ever, the deformed advection operator typically changes the appear-
ance of original fluid details notably, and hence the deformation
results of the density fields can also fail to match user-input con-
trols. Sato et al. [SDY∗15] presented a divergence-aware method
for deforming velocity fields, but it only preserves incompressibil-
ity and requires the expensive solution of the Poisson equation to
obtain vector potentials. A follow-up work [SDN18] also requires
an energy minimization for stitching velocity fields smoothly. In
contrast, our method is inherently physics-informed by the cou-
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Figure 4: Direct deformation of a density field (b1), or of a velocity
field (b2) with subsequent density advection (c), lead to a severe vi-
sual degeneration and cause a breakdown of physical quantities
(d). The histogram shows deviations of each physical quantities
such as kinetic energy, vorticity, divergence and density gradient
considered in Sec. 3.2.

pling with a differentiable fluid solver, and thus can learn a vari-
ety of physical characteristics including incompressibility, kinetic
energy and vorticity in a self-supervised way and reflect them into
edited flows while still matching user control inputs in interactive
environments.

Differentiable Physics. Differentiable simulation frame-
works [HKT20, HLS∗19, HAL∗19] allow us to incorporate
gradient-based methods with the help of automatic differentia-
tion, and hence neural networks can be augmented for solving
inverse problems more robustly. Our work shares the concept of
incorporating differentiable features with [UBF∗20], so-called
“Solver-in-the-loop”, to naturally learn physics-informed correc-
tions via augmented neural networks. We would like to highlight
that, while previous work focused on reducing numerical errors
compared to given high-resolution reference samples, our method
focuses on learning the reference manifold directly with no sam-
ples for the rectification process of deformed fluid flows. Lastly,
physics informed neural networks [RPK19] employ automatic
differentiation to compute partial gradients in PDEs for training
neural networks to solve fluid simulations in a self-supervised
way.

3. Physics-Informed Neural Corrector

In this work, we focus on incompressible fluids simulated by solv-
ing the Navier–Stokes equations

∂u
∂t

+(u ·∇)u =− 1
ρ
∇p+µ∇2u+ f, (1)

∇·u = 0, (2)

where u, p and f denote the fluid velocity, pressure and exter-
nal forces, respectively. External force can be represented through
a force function f = f(ρ,u) that depends on the marker density
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(a) Original ρt (b) Deformed ρ̂t (c) Deformed A(ρ̂0 , Û
t−1
0 ) (d) [SDY∗15] (e) [PM17a]

(f) w/o LNS (g) w/o L∇· (h) w/o LKE ,Lω,L∇ρ (i) w/o Lρ (j) Ours

Figure 5: Ablation study on loss function terms, computed on simulations of resolution 256×256 (a). (b) and (c) show the naive approaches
using a deformed density and velocity, respectively. (d) and (e) show state-of-the-art methods that can be directly compared to ours (j).
(f)-(i) show our model trained with different subsets of loss terms, which results in various artifacts in overall shape and details, as well as
non-physical behaviors.

and velocity fields. Viscosity terms are omitted due to the inher-
ent dissipation of velocity-pressure fractional stepping methods
[ETK∗07, MCP∗09]. We further denote a fluid solver for multiple
time integrations of n from the time frame t as

ut+n = Sn(ρt ,ut) (3)

with a step size of ∆t. For simulating smoke, the density
field ρ is passively advected ρt = A(ρ0,Ut−1

0 ) where Ut−1
0 =

{u0, ...,ut−1}(t≥1) is the set of velocity fields computed from the
solver.

Our deformation-based control consists of two parts: deforma-
tion D and correction C. The deformation process takes user-
defined deformations over time as the input control and deforms
the density and velocity fields of the original fluid simulation.
The deformation is not restricted to any specific operations, it
is often performed by manipulating the underlying regular grid
G [SDY∗15,PM17a,SDN18,FEHM19,FHM∗21]. Some examples
of deformations can be seen in Fig. 3.

At time step t, the regular grid G is deformed into another grid
Ĝt through a displacement field Dt : Ĝt = G+Dt .

To deform the simulation fields defined on regular grids σt
(e.g., ρt ,ut ), we bilinearly/trilinearly sample the original fields at
the deformed grid Ĝt as the deformed fields σ̂t . This deformation
process is denoted as σ̂t =D(σt , Ĝt).

Directly deforming the density fields ρt can lead to visually un-
pleasant results since they can get overly stretched, compressed or
deviated from original appearance (Fig. 4, b1). Alternatively, one
could first deform the velocity fields ut over time and use them to
passively advect density fields (Fig. 4, c). However, such deforma-

tion of simulation velocity fields usually cause a breakdown of dif-
ferent physical characteristics as seen in the histogram of Fig. 4, d.
For instance, when scaling the original simulation in the x direction
by 1.5 times, physical quantities (divergence, velocity magnitude,
etc.) vary substantially from 1.2 to 13.6 times compared to their
original values. Moreover, naively deforming the velocity field can
cause the velocity sequence to deviate significantly from Navier–
Stokes Equations, as no specific constraints are applied on user in-
puts. Both factors eventually lead to visual artifacts in the density
fields advected by the deformed velocities.

To deal with the issues created by naively deforming fields,
Flynn et al. [FEHM19,FHM∗21] uses a seam-carving technique to
edit fluid data. To best determine which seam to add/remove, phys-
ical characteristics of the fluid such as kinetic energy u2, vorticity
magnitude |∇×u| and the gradient magnitude of density |∇ρ| are
considered and formulated into an energy function. Similarly, Sato
et al. [SDN18] proposes an interpolation function for “copying and
pasting” of fluids that is formulated by the spatial smoothness of
the Dirichlet energy |∇u|2, which aims to preserve the divergence
∇·u and vorticity magnitude |∇×u| of the original simulation.

Instead of directly constraining the deformer D with energy min-
imization, we use a corrector C to correct the unphysical motions
from the deformation. Formulated as a neural network, the correc-
tor can achieve faster inference at test time than energy minimiza-
tion. When designing the objectives, we first take the Navier-Stokes
equations (Eqns. (1) and (2)) into consideration through a differ-
entiable fluid solver at training time. Thus, applying our corrector
leads to deformed simulations that better satisfy temporal advec-
tion of quantities and the divergence conditions of the underlying
fluid motion.
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Moreover, we can also employ previous energy functions
[FEHM19,FHM∗21,SDN18] for better detail preservation. The de-
sign choices of the proposed physically inspired corrector will be
detailed in Sec. 3.1.

3.1. Neural Corrector

The corrector C takes a deformed velocity field ût and the defor-
mation grid Ĝt as input and outputs the velocity correction u′

t . To
differentiate between simulations with distinct properties, the cor-
rector can optionally be conditioned on simulation parameters α

(e.g., buoyancy, vorticity confinement scale). The velocity correc-
tion term is added to the deformed velocity as the corrected veloc-
ity:

ũt = ût +u′
t , u′

t = C(ût , Ĝt ,α). (4)

Here the underline indicates the optional input. The correction is
performed for all velocity fields in a deformed sequence. The final
corrected density fields ρ̃t are obtained by t-recursive advections
on the first deformed density frame with corrected velocity fields
as

ρ̃t =A(ρ̂0, Ũ
t−1
0 ). (5)

We implement our fluid corrector as a convolutional encoder-
decoder similar to Chu et al. [CTS∗21]. The encoder part down-
samples the input field 4x (2D) or 16x (3D) with residual blocks
[HZRS16] and strided convolutions. The deformation grid Ĝt is re-
stricted to a lower spatial resolution compared to the original veloc-
ities, since reducing the dimensionality of the deformations helps
with generalization. This deformation grid is added as an input
at the bottleneck of the network after a going through a convolu-
tional layer (Subnet 1). The optional simulation parameter α, when
available, goes through another set of convolution layers (Subnet 2)
before being concatenated with the feature map in the bottleneck.
Conditioning the architecture to varying simulation parameters al-
lows the artist to have additional control over the final simulation
appearance. The decoder part upsamples the bottleneck features
back to the original resolution with transposed convolutions. The
whole pipeline of our neural corrector can be seen in Fig. 2. We
detail the architecture of the neural network in Table (2).

3.2. Physics-informed Loss Functions

As user-input deformations can be arbitrary, it is very difficult to
obtain reference corrected velocity fields. We thus define all our
loss functions for training the neural corrector in a self-supervised
fashion.

Navier–Stokes (NS) Loss. The core of our objective functions is
implemented through a differentiable fluid solver for evaluating the
network corrections. Under the arbitrary user-input deformations,
the original fluid simulations usually go off course to the outside
of the NS manifold (Fig. 2). The NS loss aims at projecting the
velocity fields back onto the manifold. When advancing the cor-
rected velocity field ũt by k solver steps, the resulted velocity field
Sk(ρ̂t , ũt) should be similar to the corrected velocity field at frame

t + k:

LNS

(
Ũt+n

t

)
=

n

∑
k=1

∥∥∥Sk (ρ̂t , ũt)− ũt+k

∥∥∥2

2
. (6)

Here ρ̂t denotes the deformed density. By minimizing the NS loss,
we expect the corrected velocities in the time sequence to not only
connect themselves through self-advection and external force inte-
gration, but also satisfy boundary conditions through the pressure
projection. Note that no ground-truth corrected velocity field se-
quence is required in the NS loss. Only a set of snapshots of de-
formed velocity fields is present in training. More solver steps will
result in a better evaluation of the NS loss, but makes the loss com-
putations more expensive. We found in our experiments that n = 8
for 2D and n = 4 for 3D are good trade-offs between quality and
complexity. We use such settings in all our experiments.

In addition, we emphasize the incompressibility constraint in
Eqn. (2) by minimizing the divergence of the corrected velocity
fields for n rollout steps:

L∇·
(

Ũt+n
t

)
=

n

∑
k=0

∥∇· ũt+k∥2
2 . (7)

Physics Characteristic Losses. While the NS loss implicitly
takes the physical features of fluids into account, we additionally
consider three extra quantities — kinetic energy, magnitude of vor-
ticity and gradient magnitude of density — in our loss functions to
better preserve the detailed characteristics of the original flows. We
minimize the differences of the corrected physical fields compared
to the original simulation fields:

LKE

(
Ũt+n

t

)
=

n

∑
k=0

∥∥∥ũ2
t+k −D

(
u2

t+k, Ĝt+k

)∥∥∥
2
, (8)

Lω

(
Ũt+n

t

)
=

n

∑
k=0

∥∥|ω̃t+k|−D
(
|ωt+k| , Ĝt+k

)∥∥2
2 , (9)

L∇ρ

(
Ũt+n

t

)
=

n

∑
k=0

∥∥∥∣∣∣∇ρ̃
t+k
t

∣∣∣−D
(
|∇ρt+k| , Ĝt+k

)∥∥∥2

2
. (10)

Here ωt+k =∇×ut+k is the vorticity field. ρ̃
t+k
t =A(ρ̂t , Ũt+k−1

t )
is the corrected density, i.e. deformed density recursively advected
by corrected velocity sequence. When comparing the corrected and
original simulation fields, we deform each original field (e.g., ω in
Eqn. (9)) to the deformed space through D so that both fields can
be compared at a same grid location. Note that deforming a physi-
cal quantity does not necessarily imply physical accuracy and these
losses are used to preserve features of the original simulation. Al-
ternatively, one could compute features of the velocity and density
fields after their mapping to the deformed grid, but this would re-
quire evaluating derivatives on curvilinear grids [AO13]. Similar to
the NS loss, we evaluate our loss functions over n-rollouts.

Density Guidance Loss. The above losses push the corrected ve-
locity sequence into a physically-correct direction. However, only
incurring them can potentially undo the user-input deformations.
Therefore we additionally define a density guidance loss to instruct
the corrector to follow the general look of the given deformed den-
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Original Deformed ρ̂t Ours [SDY∗15] [PM17a]

Figure 6: Bending of rising plume simulations in resolution 192×256×128. The deformation grids for bending are shown as inset images.
Our model can correct the nonphysical motions resulted from the bending.

Curved Bending S-shaped Bending Uniform Scaling

Figure 7: Examples from the 3D plume dataset. The top row
shows the original simulations of different simulation parameters
at their last frames. The bottom row shows the deformed density
field of the corresponding original simulation, with the deforma-
tion grid shown in the inset images.

Original Deformed ρ̂t Ours

Figure 8: Non-uniform scaling of rising plume simulations in
192×256×128. The deformation grids are shown as inset images.
Our model can create plausible corrections for spatially varying
transformations that both stretch and twist the original simulation.
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Increased Buoyancy

Original Deformed �𝜌𝜌𝑡𝑡 Ours Original Deformed �𝜌𝜌𝑡𝑡 Ours

In
cr

ea
se

d 
Vo

rti
ci

ty
 C

on
fin

em
en

t

(a) (b)

(c) (d)

Figure 9: Different simulation sequences in resolution 288× 384× 192 are deformed by the same bending operation (inset image). From
(a) to (b) and (c) to (d), the buoyancy of the original simulation increases. From (a) to (c) and (b) to (d), stronger vorticity confinement is
used. The model trained on the lower resolution dataset can correct the deformation from all four simulation settings well.

sity fields:

Lρ(Ũt+n
t ) =

n

∑
k=1

||ρ̃t+k
t − ρ̂t+k||, (11)

Finally, the full objective for learning physics-induced rectifi-
cations on deformed fluid flows is defined as a weighted sum of
above-mentioned loss functions:

L=LNS +λ∇·L∇·+λKELKE +λωLω+λ∇ρL∇ρ+λρLρ (12)

where λ-s are the weights for each loss term. With all loss terms
combined together, the training helps the model find a better trade-
off where physical properties and user-input deformation signals
are both satisfied to a better extent. For all our experiments, we use
λ∇· = 10, λKE = 0.1, λω = 1, λ∇ρ = 10 and λρ = 10 resulting
from the ablation study on the effect of each loss term in Fig. 5.

3.3. Datasets and Training Summary

Our 2D plume dataset consists of buoyancy driven smoke simula-
tions. The simulation is initialized by a rectangular density source
on the bottom, an open boundary on the top, and closed boundaries
on both sides. Vorticity confinement [SU94] is used to reintroduce
small scale details lost due to advection. We vary the buoyancy
forces from 1.5× 10−4 to 3.0× 10−4 and vorticity confinement
scale from 0.10 to 0.19, generating 24 simulation sequences of 150
frames. Both buoyancy and vorticity confinement are used as inputs
to the network during training. In addition, we generate 30 defor-
mation sequences of bending and uniform scaling. The parameters
used to generate those deformations are randomized, in order to
create a diverse set of deformation patterns that will enhance the

network ability to generalize to unseen deformations. During train-
ing, each iteration randomly samples clips from both the simula-
tion and deformation sequences, and deforms the simulation fields
on-the-fly, effectively traversing all combinations of simulation pa-
rameters and deformation sequences in the dataset. The 3D plume
dataset is likewise computed with a resolution of 192×256×128
and examples of the 3D dataset can be seen in Fig. 7.

Besides plume simulations, we prepare a smoky character
dataset to test our model on more complicated deformations in 3D.
We first convert a static T-pose human body mesh from the AMASS
dataset [MGFT∗19] into a volume representing the smoke source
and simulate for 100 steps in resolution of 208 × 208 × 112. To
conform the smoke motion to the source character animation, the
density is dissipated with a rate of 0.9 in the region outside the char-
acter volume at each simulation step. Additionally, the velocity is
initialized to follow the animated character surface and small per-
turbations are added to create turbulence patterns. Since only one
simulation setting is used in this dataset, no simulation parameters
are used as input to the neural network. Nine motion sequences of
the same body mesh are extracted from AMASS dataset and used to
deform the original smoke simulation. The deformation is done by
tracking the differences of the corresponding mesh vertices using
Point Deform Node in Houdini [hou]. One example of the dataset
can be seen in Fig. 11.

4. Experiments and Results

In this section, we show our results on test dataset and explore
several smoke editing applications. We compare with the results
from [SDY∗15] and [PM17a]. These works are the most similar
to ours as they directly use deformation grids to edit smoke sim-
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Deformed �𝜌𝜌𝑡𝑡Original

User Input

Deformation Grid

(a)

[SDY∗15] [PM17a] Ours

Deformed �𝜌𝜌𝑡𝑡Original

User Input

Deformation Grid

(b)

[SDY∗15] [PM17a] Ours

Figure 10: Editing plume simulation in screen space. (a) The orig-
inal simulation is deformed with a 3D curve through the Houdini
Curve Deformation Node. (b) Point handles are dragged in space
(green to blue). The corresponding deformation grid is generated
by 3D Moving Least Square method [ZG07].

ulations. The vector potential computation in [SDY∗15] is imple-
mented with a PCG solver of low tolerance (10−6). The deforma-
tion transfer operator in [PM17a] is directly implemented in the
advection operator with MacCormack method as suggested by the
authors for reduced numerical dissipation, rather than formulated
as additional force field. Our accompanying video shows animated
sequences for the results presented in this section. The runtime of
each method is shown in Table (1).

Original Deformed ρ̂t Ours

Figure 11: Smoky character motion in 208× 208× 112 from the
training dataset. The original simulation is generated by using a
character standing still in T-pose as smoke source. The smoke vol-
ume is then deformed according to the character motions.

4.1. Implementation Details

We implement our fluid simulation solver and the neural networks
in Python with PyTorch [PGM∗19] for its embedded automatic dif-
ferentiation tool as well as easy GPU deployment. We run all our
2D experiments on an NVIDIA GeForce RTX 2080Ti GPU with 11
GB of dedicated memory, and our 3D experiments on two NVIDIA
GeForce RTX 3090 GPUs with 24 GB dedicated memory. The net-
work is trained with an Adam Optimizer [KB15], with the learning
rate fixed at 10−4. The training takes 24-48 hours for 2D models
and 72-96 hours for 3D models.

For the differentiable fluid simulator, we use the orthogonal and
equidistant staggered MAC grid [HW65] to discretize the density,
pressure and velocity fields. The MacCormack method is employed
to solve the advection step with an 3rd-order Runge-Kutta inte-
grator. For the incompressibility constraint of the fluid solver in
Eqn. (2), we implement pressure projection through a Precondi-
tioned Conjugate Gradient (PCG) solver with the Incomplete Pois-
son Preconditioner [SKF11]. In particular, the backpropagation of
the PCG solver is implemented by directly computing the adjoint
through another linear solve [MTPS04], rather than a naive auto-
matic differentiation, which can result in significant memory bot-
tleneck. We use our simulator for both the data generation process
and the Navier-Stokes loss in Eqn. (6).

4.2. 2D Test Cases for Ablation Studies

We first show 2D test results in Fig. 5 to illustrate the effect of each
loss term and compare our method with previous works. Some of
the sequences shown here are better represented on the accompa-
nying video, since the Navier–Stokes loss can improve physical re-
alism of transported quantities. The original density (a) is warped
into its deformed configuration (b). We also show the result of just
naively deforming velocities and advecting the original densities
in (c). Simply warping density or velocity fields clearly creates vi-
sual artifacts. Our model trained with a loss function including all
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Original Deformed ρ̂t Ours

Figure 12: Smoky character motion in 320× 320× 160 from the
test set. The model trained on the lower resolution dataset is used
for the correction.

terms (j) can better preserve the shape and physical properties of
the original smoke.

The method of Sato et al. [SDY∗15] (d) can preserve the incom-
pressibility of the velocity field, but deviates from the original ap-
pearance of the plume, while the method of Pan et al. [PM17a] (e)
does not match the user-input deformed density in (b). When our
model is trained without Navier-Stokes Loss (Eqn. (6)) (f), fluid
behaviours got lost, and visual artifacts appear. Divergence Loss
(Eqn. (7)) is necessary as a helper term as the Navier-Stokes Loss
usually does not get minimized to zero, and it enforces the incom-
pressibility of the corrected velocity (g). Leaving out the physical
characteristic losses (Eqns. (8), (9) and 10), less turbulent details
from the original simulation are reconstructed (h). When Density
Guidance Loss (Eqn. (11)) is removed (i), the final appearance of
the plume is further away from the user-input deformation (b).

4.3. 3D Applications

Plume Dataset. Fig. 6 shows the results on test examples similar
to the training dataset. More extreme deformation examples are
shown in Fig. 8. Our correction removes the unphysical motions

such smoke sinks in the top-right corner (a), overly stretched den-
sities (b), while also simultaneously matching the user-input defor-
mation. The method of Sato et al. [SDY∗15] can provide incom-
pressible velocity sequences, but fails to match the small structures
presented in the original simulation; lastly, the method of Pan et
al. [PM17a] fails to match the deformation, and creates visual arti-
facts on the upper region of the smoke.

We additionally test the same model on higher resolution test ex-
amples of 288× 384× 192. Fig. 9 shows our correction results on
the same bending deformation as in Fig. 6(b). The deformation is
used on simulations generated with different buoyancy and vortic-
ity confinement coefficients that are not present in the training set.
Our model can seamlessly handle all four simulation settings.

To test our model on fluid editing applications, we use the
screen-space editing tools to generate deformation grids in Fig. 10.
In (a), we use the Path Deform Node from Houdini to deform the
simulation fields with a 3D curve. A more extreme deformation
grid is generated from this method. In (b) Point handles are defined
in 3D (green points), and dragged by the user to the target positions
(blue points). A Moving Least Square method [SMW06, ZG07] is
used to generate the deformation grid. Our method can correct the
unphysical deformations in both cases while the methods of Sato et
al. [SDY∗15] and Pan et al. [PM17a] create visual artifacts or fail
to match user inputs.

Smoky Character Dataset. To test our method on simulations
other than plumes and more complicated deformations, we train
the model on the smoky character dataset. We show model correc-
tions on the training example in Fig. 11 and on higher resolution
(320×320×160) test examples in Fig. 12. Our model can remove
the clear visual artifacts from extreme deformations.

5. Conclusion and Discussion

We have presented a method for physics-informed correction on
deformed fluid data. The recovery of deteriorated physical char-
acteristics during deformation is promptly performed by learned
neural networks with physics-inspired losses implemented with a
differentiable simulation framework.

One limitation of our method is that once trained, it can only
generalize to similar simulation setups. For example, the model
trained on the 3D plume dataset cannot be used to predict correc-
tions on the smoky character dataset. Subdividing the input fields
into smaller patches during training can potentially help improve
generalization, as the required receptive fields effectively decrease.
Additionally, we empirically fix the magnitude of each loss term
through a hyper-parameter search. The same set of loss weights
might not be optimal for other datasets, but can serve as a good
starting point for the tuning.

Several other aspects can be improved in the future work: we
only tested our method on smoke simulations, but liquid simula-
tions could be similarly corrected as our method it is not restricted
to smoke by design. There are other types of corrections that
we have not tested, for instance, detail enhancement as presented
in [UBF∗20] or flow interpolations as shown in [SDN18]. Other
than our current version of linearly performing the correction on
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Table 1: Performance comparison between ours and previous work. All deformations and corrections are run on a NVIDIA GeForce RTX
2080Ti GPU. The runtime of our method is evaluated per frame and excludes the training time of the networks. The deformations in Fig. 11
and Fig. 12 are performed in Houdini on CPU beforehand, thus the runtime is not reported.

Scene Resolution Deformation [s] Ours [s] [SDY∗15] [s] [PM17a] [s]
2D Plume (Fig. 5) 256×256 1.00×10−3 1.10×10−2 0.38 0.32
3D Plume (Fig. 6, Fig. 10) 192×256×128 4.00×10−3 0.22 11.82 5.14
3D Plume (Fig. 9) 288×384×192 3.20×10−2 1.41 63.09 24.17
Smoky Character (Fig. 11) 208×208×112 – 0.12 9.04 5.35
Smoky Character (Fig. 12) 320×320×160 – 0.44 44.69 19.48

Table 2: Neural network architecture. Conv stands for convolution, IN stands for instance normalization, ConvT stands for transposed
convolution. We take a 256×256 input as example to state the sizes.

Layer Output Size Operations Kernel, Channels Input
Subnet 1 (Deformation Grid)

input_g 64×64 – –, 2 Ĝ
conv_g 64×64 Conv 3×3,32 input_g

Subnet 2 (Optional Simulation Parameters)
input_σ 64×64 – –, 2 σ

conv_σ1 1×1 Conv 1×1,8192 input_σ

up_σ1 64×64 Reshape-Upsample –, 16 conv_σ1
conv_σ2 64×64 Conv 7×7,16 up_σ1

Neural Corrector
input 256×256 – –, 2 û
conv0 256×256 Conv–IN–Relu 7×7,32 input
conv1 128×128 Conv–IN–Relu 3×3,64 conv0
conv2 64×64 Conv–IN–Relu 3×3,128 conv1

res3 – res5 64×64 Conv–IN–Relu
[

3×3,128
3×3,128

]
×3 [conv2, conv_g]

res6 – res8 64×64 Conv–IN–Relu
[

3×3,128(+16)
3×3,128(+16)

]
×3 [res5, (conv_σ2)]

conv9 128×128 ConvT–IN–Relu 4×4,64 res8
conv10 256×256 ConvT–IN–Relu 4×4,32 conv9
output 256×256 ConvT 7×7,32 conv10

the deformed velocity fields, we tested using advection operator for
non-linear corrections but didn’t get satisfying results. More non-
linear corrections could be tested for better corrections in extreme
deformations. In terms of architectural choices, there is also room
for improvement by using coordinate-based networks [SMB∗20].

Appendix A: Neural Network Architecture

We detail our neural network architectures in Table 2. The table
shows architectures in 2D, with a 256×256 input example to state
the sizes. When using the network in 3D, we change the 2D layers
to 3D counterparts. We also downsample the input 4× with strided
convolutions before conv0 layer, and upsample the output 4× with
transposed convolution after output layer.
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