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Figure 1: Our method can implicitly represent 3D shapes with unsupervised dense correspondences for objects with non-rigid transforma-
tions or structural variations. For each category, we improve the deformation warp with well-distributed unsupervised sparse keypoints (red
points), providing template consistency across the warped shapes and additional feature information. Dense correspondences are presented
with the same color and number implying the corresponding mesh. Our method achieves good reconstruction and correspondences with the

improvement of template warp consistency.

Abstract

Unsupervised template discovery via implicit representation in a category of shapes has recently shown strong performance. At
the core, such methods deform input shapes to a common template space which allows establishing correspondences as well
as implicit representation of the shapes. In this work we investigate the inherent assumption that the implicit neural field opti-
mization naturally leads to consistently warped shapes, thus providing both good shape reconstruction and correspondences.
Contrary to this convenient assumption, in practice we observe that such is not the case, consequently resulting in sub-optimal
point correspondences. In order to solve the problem, we re-visit the warp design and more importantly introduce explicit
constraints using unsupervised sparse point predictions, directly encouraging consistency of the warped shapes. We use the un-
supervised sparse keypoints in order to further condition the deformation warp and enforce the consistency of the deformation
warp. Experiments in dynamic non-rigid DFaust and ShapeNet categories show that our problem identification and solution
provide the new state-of-the-art in unsupervised dense correspondences.

CCS Concepts

* Modelling — Shape correspondences; * Modeling — Implicit surface reconstruction;

1. Introduction

Shape correspondences and representations are keystone problems
in computer graphics and vision, essential for applications in shape
analysis [LMR*15; SGST20], segmentation [KLF11; KAMC17],
animations [WSH*16; ASK*05; WSLGO07], and so on. Recent
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advancements in 3D deep learning, and in particular 3D im-
plicit representations [PFS*19; MON*19; CZ19; SHN*19] and
closely related radiance fields [MST*20; PCPM21], have further
opened new avenues in shape representation. Similarly, end-to-
end training methods have been proposed to obtain unsupervised
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sparse [STD*21; JTM*21; SSTN18; FCP*20] as well as dense cor-
respondences [GFK*18b; GFK*18a; ZYDL21; DSO20; JHTG20;
UKS*21; YAK*20; RSO19].

An approach that has been particularly useful for learning dense
registration of shapes in a category, uses a learned deformation
warp on input shape points in a category to a common unknown
template space [GFK*18a; DYT21; PSH*21; ZYDL21; LD22;
PSB*21]. The consistent common template space is obtained from
the deformation warp learned unsupervised, via the point-wise
loss [GFK*18a] or implicit function reconstruction loss [DYT21;
ZYDL21; LD22; PSB*21]. The latter class simultaneously solves
the problem of implicit shape representation and shape correspon-
dences. In particular, the methods of the latter class have shown
promising results in both dynamic shapes and rigid shapes of a cat-
egory. These results are remarkable when we consider the large
intra-class variation in shapes, and simple training procedures with
no correspondence labels. A key premise of the methods in this
class [DYT21; ZYDL21; LD22; PSB*21] is that all input shapes
are warped to a common template space discovered during the
training, via the minimization of the implicit field loss. The moti-
vation behind this assumption is that in order to predict the correct
Signed Distance Field (SDF), the deformation warp must warp all
input surface points to a common surface in the template space.
We henceforth name this assumption as that of template consis-
tency for convenience.The assumption is directly used but not ex-
plored in the original works [ZYDL21; DYT21; LD22] and its
derivatives [PSB*21]. Indirectly, this assumption is measured on
the quality of the correspondences, as they are obtained by warping
the input shape points to the template space and computing nearest
neighbors between the points of different warped shapes. Conse-
quently, if the warped shapes are inconsistent, the correspondence
estimates will lead to large errors, regardless of the reconstruction
performance.

In this paper, we investigate the premise of consistent template
discovery [ZYDL21; DYT21] with unsupervised learning for dense
correspondences. We observe that, despite reasonable assumptions,
the warp optimization often fails in discovering a consistent tem-
plate space in practice, often despite the good reconstruction ac-
curacy. This is thanks to the implicit function decoder, which can
accommodate for inaccuracies of the deformation warp. In order
to achieve warped shape consistency, we explore two different as-
pects. First, we directly address the template inconsistency by using
unsupervised sparse keypoints [CLC*20; FCP*20; JTM*21]. The
added loss encourages the deformation of the input sparse points
in a single batch to be the same on the template space. Second,
we modify the network architecture in order to improve the expres-
sive power and the inductive bias. A warp with higher expressive
power [ZYDL21; DYT21] can represent larger variations in shapes
but may provide less consistent warped shapes due to the weakly
constrained optimization loss. On the other hand, a strongly con-
ditioned warp [LD22; PKGF21] may be difficult to optimize for
strong deformations such as in a rigid category of shapes with miss-
ing parts. Therefore, we opt for a deformation warp that has a suit-
able balance of both expressive power and strong conditioning in-
spired from a related work [HTKS19]. We sacrifice the invertibility
constraint in [HTKS19] in favor of the expressive power. Finally,
we improve the conditional input to the warp by adding point-wise

features obtained from the sparse points, which is available for little
extra cost. We carefully ablate our network design and explicit con-
sistency constraints using the challenging ShapeNet [CFG*15] and
DFaust [BRPB17] datasets. Our comparison on the datasets shows
that the method outperforms the baselines and warp-based methods
in correspondences as well as reconstruction.

Contributions. We list the contributions of our work below.

e We show the observation that template consistency is not granted
from the reconstruction loss in most cases (see Table 4 and 5).

e We propose explicit constraints designed to encourage consistent
warped shapes. We choose to use unsupervised sparse points in-
stead of using all the dense points of the shapes, in favor of ro-
bustness.

e We choose a deformation network architecture inspired from a
recent work [HTKS19] but without the full invertibility con-
straint, in order to balance the expressive power and a strong
inductive bias. We improve the warping function’s conditional
input by using point-wise feature vectors extracted from the un-
supervised sparse keypoints.

e We show with experiments that our method improves correspon-
dences in both dynamic shapes and rigid shapes in a category,
along with ablation studies.

2. Related work

We briefly describe the related works on dense 3D shape correspon-
dences for a collection of shapes in a category.

Descriptor-based shape correspondences. Early methods on
shape correspondences relied on point-wise descriptors such as
[STD14; BK10] in order to establish and refine matches. Rather
than solving correspondences for a collection of shapes, meth-
ods of this class are optimized for solving correspondences be-
tween two shapes. Blended maps [KLF11; GFK*18b] and func-
tional maps [OBS*12; LRR*17; GR20; RSO19; DSO20] are key
examples of such methods. While learning has improved their per-
formance [DSO20], methods of this class struggle to generalize to
large deformations and across shape categories.

End-to-end learned shape correspondences. A large chunk
of recent literature computes dense correspondences over a
shape category [GFK*18a; NMOG19; CFB*21; ZYDL21; DYT21;
UKS#21; YAK*20; GCV*19]. Learning dense correspondences in
such a setting can be accomplished by using a learned deforma-
tion warp together with a shape template [GFK*18a; UKS*21].
In contrast to warps and templates selected for specific object
types [ZB15; LMR*15], learned warps and templates can gener-
alize to a large variety of deformations and shape categories. A re-
lated class of methods uses the learned deformation warps without
templates by optimizing shape evolution [NMOG19; CFB*21] in a
collection of shapes. However, such a framework requires the input
shapes to exhibit limited deformations. In contrast, template-based
methods provide correspondences under large deformations while
still having an O(n) training complexity with the number of shapes.
Recent developments in neural implicit representations [PFS*19;
CZ19; SHN*19; MON*19] have further pushed the envelope of
3D shape representation, making simultaneous reconstruction and
correspondence estimation possible [ZYDL21; CFB*21; DYT21;
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LD22]. Despite these developments, limitations exist due to the
assumption that a consistent template is granted through training
optimization.

Deformable neural warps for correspondences. Affine
warps [GFK*18a] provide the simplest way to train deformable
function going from the input shapes to the template. Recent works
such as [ZYDL21; DYT21; PSB*21; PKGF21] have favored spe-
cific architectures in favor of the expressive power, for example
by composing standard LSTM cells [HS97]. Other modifications
include [LD22; HTKS19; PKGF21] which use the hard bijective
inductive bias via normalizing flow [RM15; KSJ*16] inspired ar-
chitectures [YHH*19; KBV20; PLS*21; JHTG20]. These methods
have been shown to perform very well for continuous deformations
such as in human body or animals [LD22]. Although, the flow-
based warp provides the necessary inductive-bias of hard bijectiv-
ity, it comes at the cost of the warp’s expressive power. A recent
work [HTKS19] proposed to use a LSTM cell [HS97] on top of
each normalizing flow layer in order to encode temporal contexts
for modeling deformations. Inspired from the work, we choose a
similar network architecture for modeling input to warped shape
deformation.

3. Method
3.1. Method Overview

Our work aims to reconstruct the underlying 3D shapes while also
solving the correspondence maps between the shapes of a category.
Without the ground-truth correspondences, discovering a consistent
template via deep INRs is a challenging problem. Previous meth-
ods DIT [ZYDL21], CaDEX [LD22] learn the implicit template
field by deforming the input shape points to the template 3D space,
while DIF-Net [DYT21] achieves it by learning the offset between
input shape to the deformed shape; thus solving correspondences
in a shape category. We follow the same paradigm and specifically
consider the input-to-template deformation [GFK*18a; ZYDL21;
LD22] motivated by empirical evidence (see in Section 4.1).

Park et al. [PFS*19] defines an INR for each shape &j in a cat-
egory as a SDF function: ®(x;¢;) = s;, where x € R> is a point
around the surface A and s; € R is the respective scalar field value.
Finally ¢; € R’ is the latent code representing the shape instance
trained together with the weights of ®. The SDF function ® is typ-
ically parameterized by MLPs [PES*19; ZYDL21]. We follow the
same approach and use an auto-decoder model in order to learn the
latent code representing each shape in a category. Further, follow-
ing [ZYDL21; LD22; DYT21], we decompose & as the following
function composition:

D(x;¢;) =T oD; =, (1

where D is the warping function that transforms a point x around
the shape A to a consistent template space Q C R3. T is the tem-
plate INR defined on the warped space Q. An important note re-
garding the framework is that the template INR is defined on the
domain of the deformed space, and directly outputs the SDF of the
shape instance X;. Thus 7 (D;) = s; is an SDF field in a strict sense.
However, the so-called template space [ZYDL21] defined as 7 (x)
is strictly speaking not an SDF. Nonetheless, the smooth mapping
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D; or rather its inverse, can result in a meaningful interpretation
of T (x) as an SDF, particularly at the zero-crossings. We consider
such interpretations only for visualization and analysis purposes.

We are interested in the study of the deformation warp D (Sec-
tion 3.2) so that better correspondences can be established between
shapes, possibly also improving the overall INR ®. We achieve this
without using any ground-truth supervision from part or semantic
labels. Moreover, we improve the method by introducing explicit
constraints, described in Section 3.3.1.

3.2. Deformation Warp

Eq. (1) elegantly advocates that a single template SDF is enough to
learn all shapes in the category through the conditional deformation
function D. However, we should also note the assumption inherent
in the approach. Here we assume that & is correct only if D,7 can
be optimized correctly. Specifically, in order to reach a reasonably
correct accuracy for @, D must also be correct. However, counter-
intuitively, our experiments show otherwise. Thus, we can obtain a
good accuracy in the INR @ even when D is largely just an identity
map. Thus the template INR 7 can “cover” for the deficient warp
D during the optimization.

We tackle the deficient D in three different ways — by adding
warp inputs, improving deformation warp architecture and adding
template consistency loss.

Local-global shape context. Recent works [ZYDL21; DYT21;
LD22] consider D as the function of the local point position x and
the global shape auto-decoder or auto-encoder feature c;. However,
point coordinate x contains little knowledge of the whole shape,
while c; is a global feature learned with reconstruction loss. We
argue that local features learned with global shape contexts may
significantly help the warp. Intuitively speaking, if the deformation
function D knows that a given point is on a specific leg of the chair,
it may learn to warp that point better. With the addition of such
features as input, we define the deformation warp as:

D(x,f;c;)=peQCR’. )

Here, p is the deformed point in the template space Q. f € R' is a
pointwise feature with local-global shape context for a shape Aj.
In our work, we compute f for each point x, with the help of a
structural points network:

NEX)=[f{a}]. j=1....m, q;eR. (3

We denote the point cloud of the shape X; as X; € R™*3. More
precisely, we train an encoder-decoder network A in an unsu-
pervised manner to obtain n X m heatmap representations provid-
ing sparse ordered keypoints {q;}" for each shape X; [FCP*20;
CLC*20]. We vectorize the final heatmap representation and use
nearest-neighbors between the original points X; and sparse points
{q;} to extract the n x 1 probability or heatmap features. Note that,
in practice \V is evaluated once for the whole shape. However, for
mathematical convenience, we also use a single input point x to
denote f as its corresponding feature vector in Eq. (3). We use the
implementation of [CLC*20] for the network N, due to its simple
loss design.

Deformation warp architecture. The network architectures of
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Figure 2: Network architecture. The network consists of three sub-modules, a Deform-Net D deforms different shapes into the canonical
template space, a Template-Net T learns to reconstruct the shape by predicting SDF values, and a SP-Net N predicts sparse keypoints and
learn local features for each point. An additional Explicit-Constraint is applied to warped sparse keypoints to force the warped keypoints
points to be consistent. The below two pink boxes are the detailed design of one coupling layer in D. We present a basic "rnvp only" framework
and a "rnvp + Istm" setup. The latent code c is optimized during training, and local feature £ is learned from N. They are later concatenated

to provide the condition on the warp.

the deformation warp are designed with specific inductive biases
and thus affect the supported space of deformations. We consider
bijectivity as well as the flexibility of disregarding the prior when
learning a generic deformation warp for correspondences. This is
helpful, especially when dealing with shapes in a category consist-
ing of topological changes, missing parts and discontinuities that
cannot be explained with hard bijectivity.

We do so by using a warp architecture with a base layer com-
posed of flow-based deformation and simply adding an LSTM
cell [HS97] on top of it. Unlike [HTKS19; LD22], we do not con-
strain our warp with hard bijectivity. See Figure 2 for the illus-
trated network architecture. The red rectangular box represents the
warp D. We first describe the invertible flow-based deformation
layer [PKGF21; LD22], henceforth referred to as R-NVP (Real-
valued Non-Volume Preserving) [DSB17]. We use generic input
and condition variables to formally define the network. Given a
point p € R%9=3) and a conditional variable ¢ € R, a coupling
layer first splits p into p; € R and )2 XS R% where d 1 +dy=d,
and operate only on p, while keeping p; unchanged,

pi=p1, ph=pr©P)18(p),0), )

where A and  are independent scaling and translation functions.
® and + are element-wise product and addition respectively. The
architecture allows an exact inverse from the output p’ to input p,

pr=ri, pa=(ph—d(p},c) @e M. ®)
We implement the R-NVP blocks in D with a stack of coupling

layers. Scaling and translation functions are composed of simple
MLPs, see in Figure 2 for the description of a single layer. R-NVP
models strictly bijective deformation warps, which are ideal for
deformations such as those of single objects, e.g., human body,
animal, clothes, etc.. However, it is inadequate in modeling de-
formations between rigid objects of different 3D structures as in
shapes of a category. Shapes of a category such as chairs, and so-
fas, have missing parts, large scaling, etc. Some of them naturally
induce a many-to-one relationship in correspondences. We, there-
fore, propose to add a recurrent layer [HS97] to learn the relation-
ships which are not bijective and improve warp non-linearity. The
recurrent layer R allows the network to learn and pass a hidden
state 2"~ from the last layer (r — 1) to the current layer ¢ before
the scaling and translation function.

hr :R([Cvpl])7 p/Z :p2®exp(7"(hr))+6(hr)v (6)

R denotes the recurrent layer, e.g., an LSTM cell [HS97], and
h € R% denotes the hidden state. Compared to MLPs, a recurrent
module helps learn from the previous layer potentially increasing
the expressiveness of the warping function. Noticeably, adding a
recurrent module in the network directly affects the explicit in-
verse parameterization since it requires the hidden state from the
last layer to be known in order to invert the warp, see in equation
(7). Although p; is unchanged, the computation of p; requires the
hidden state 4" which is obtained from layer (r —1).

Pt =pl P = -8 Cexp(-A(). (D)
Let each shape point cloud X; is deformed by D resulting in
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P; € R™*3 conditioned on its latent representation c¢;. Previous
methods [ZYDL21; DYT21; PSB*21] assume that each P; con-
verges to the same template point set P due to the reconstruction
loss. Note that Q as defined in Eq. (2), is an abstraction of P. In
Section 4, we show counter-examples of such assumptions and in
Section 3.3.1, we show how template consistency can be achieved
with explicit constraints.

3.3. Loss Functions

Our model is trained fully end to end. Following Eq. (1), we build
the main reconstruction loss using a mean square Ly to measure
the reconstruction loss as follows.

Lar=Y, Y IIT(D

X;eCxeX;

(x,f;ci)) — SDF|], ®)

where SDF; represents the corresponding ground-truth SDF values
around the shape Aj. C indicates the set of shapes in the category.
By predicting the correct SDF values in the template field, the net-
work gradually learns a template space.

Geometric regularizations. In order to train the deformation
warp and limit its space of solutions during optimization, we en-
courage the warp to preserve local geometric properties. Without
such constraints, D may settle for solutions that do not conform to
real shapes, due to the inherent ambiguity of the correspondence
problem. Local geometric constraints in shape deformations have
been well-studied in the literature. A non-exhaustive list includes
isometry [EP09; BGC*15; BPG*20], as-rigid-as-possible [IMHO5;
SAO07] conformality [WWIJ*07; SBBG11], Laplacian parametriza-
tions [SCL*04; ZHS*05; AGK*22], point neighborhood and iden-
tity priors [YAK*20; ZYDL21], etc. Considering their good per-
formance, we follow those of DIT [ZYDL21]. In particular, we
minimize distance and location changes induced by D using the
point-wise regularization £p, which minimizes the position shift
after deformation, and the point-pair regularization L, to mini-
mize space distortions.

Lpw="Y h(|[D(xf;ci) = x[l,),
XEX;

Ax— A ©®)
Lop=Y Y max(M —¢€,0),
oy Xy Ix=vll>
where A(-) is the Huber function and Ax = D(x,f;c;) —x is the
position shift of a point x € X;. Additionally, y is a neighbor of x.

3.3.1. Explicit-Constraints on the Deformation Warp

The goal of template space consistency is to ensure that all the de-
formed or warped shapes in a category are in the same shape space.
In order to improve the robustness of the approach, we choose to
apply the consistency loss on pre-selected keypoints rather than
all points. Unsupervised keypoint selection in a category of shapes
is a well-studied problem [CLC*20; FCP*20; JTM*21; JTM*21].
Such sparse keypoints or structural points [CLC*20] describe iden-
tifiable and shape-descriptive sparse points in shapes. We train a
simple network SP-Net [CLC*20] to extract structural points for
the input shapes, see in Figure 2. Given the input point cloud X;, the
sub-network first uses a PointNet++ [QYSG17] encoder to extract
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sample points along with the probability maps. Following post-
processing we obtain the confident sparse points: {q;}". We refer
the reader to [CLC*20] for more details. Nevertheless, the training
loss used for the sparse points is a simple one, as follows:

Lsp :CD(xi»{qj})' (10)

The bidirectional Chamfer loss in Eq. (10) enforces that the sparse
points are well-distributed and on the original shape.

Once we have discovered the sparse points and they are accu-
rate enough, we proceed with the consistency loss. We use the SP-
Net to predict sparse structural points on the input shapes and then
warp the predicted structural points to the template space. We then
use the distance of warped sparse points for different shapes in the
batch as the explicit consistency loss. Note that the sparse points are
ordered and therefore already have pre-defined correspondences.
Consequently, the Chamfer loss is not needed.

‘CeC*ZZH q17 (qj7f ))H i#k' (11)
ik j

By a slight abuse of notation, we use the subscript j to denote the
index of the sparse point and the corresponding feature, which have
a well-defined order. We use i and & to denote the shape indices in
the batch. One important requirement for Eq. (11) is that the batch
size of the shapes must be larger than 1. For any batch-size of b,
we only keep a fixed b number of comparisons instead of having
all possible C(b,2) number of combinations. In Eq. (11), we select
all b shapes on one side for the variable i and randomly sample the
other b number of shapes for the variable k on the other side, while
ensuring i # k.

Thus, the total loss is defined as below:
L=woLsgr+wi1Le+waLlpp+w3Lpw+waLlsp+wsLec, (12)

where L is the regularization term for latent code in an auto-
decoder model, that is: Lc = ¥;||ci|[3. wo...ws are the loss
weights. Note that, we don’t use Lec during the training in 500
epochs when the SP-Net module is not stable and the predicted
structural points are not accurate. Later, ws is set to 0.001 after 500
epochs to apply the explicit constraints. We further provide more
detailed parameters in the Appendix.

4. Experiments

In this section, we detail our experiments including the compar-
isons and analysis against the state-of-the-art methods and the
ablation studies. Finally, we provide some applications that are
achieved with template-based dense correspondences. Additional
results are also provided in the Appendix. Code is available at
https://github.com/lmy1001/template_warp_consistency.

Datasets & preprocessing. We train and evaluate our proposed
approach as well as baselines on both Shapenet [CFG*15] and
DFaust [BRPB17] datasets. Following DeepSDF [PFS*19], we
prepare SDF samples and use the same train/test split. For a fair
comparison with DIF-Net [DYT21] which uses a different train/test
split, we conduct another DIF-Net test set based evaluation. More-
over, inspired by DIF-Net [DYT21], we use semantic labels from
ShapeNet-Part [MZC*19] to conduct label transfer experiments.
As for DFaust dataset, after preparing SDF values in the same
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Method CD Mean | CD Median | mloU 1
Airplanes Sofas Cars Chairs Airplanes Sofas Cars Chairs Airplanes Cars Chairs

NN points - - - - - - - - 71.3 65.9 73.1
AtlasNet [GFK*18b] 0.22 0.41 - 0.37 0.065 0.31 - 0.28 - - -
SIF [GCV*19] 0.44 0.80 1.08 1.54 - - - - - - -
DeepSDF [PFS*19] 0.14 0.12 0.11 0.24 0.061 0.08 - 0.10 - - -
DSIF [HASB20] 0.22 - - 0.45 0.140 - - 0.21 - - -
C-DeepSDF [DZW*#20] 0.07 0.11 0.06 0.16 0.033 0.07 0.06 - - -
DIT [ZYDL21] 0.053 0.102  0.052 0.20 0.027 0.066  0.042 0.07 71.4 65.7 79.6
Ours 0.050 0.098  0.050 0.19 0.021 0.063  0.041 0.06 73.8 66.7 80.7

Table 1: Reconstruction performance on ShapeNet on DeepSDF [PFS*19] test set. CD Mean and CD Median are multiplied by 103. mloU

is represented with %.

Method CD Mean | CD Median | mloU 1
Airplanes Chairs Airplanes Chairs Airplanes Chairs
NN points - - - - 69.6 75.8
DIF-Net [DYT21] 0.082 0.210 0.032 0.127 60.7 65.5
DIT [ZYDL21] 0.057 0.115 0.021 0.065 72.8 81.6
Ours 0.056 0.109 0.020 0.071 76.2 82.5

Table 2: Reconstruction performance on ShapeNet on DIF-Net [DYT21] based test set. CD Mean and CD Median are multiplied by 10°.

mloU is represented with %.

way as ShapeNet, we follow the practice of OFlow [NMOG19]
to split the data. In contrast to OFlow, we do not require continu-
ous deformations between shapes, so we prepare the training set by
sub-sampling the complete training sequences to 2040 shapes only.
DFaust provides high-quality ground-truth correspondences in each
sequence, which are not available in ShapeNet. More details about
data pre-processing are in the Appendix.

Baselines. We compare against state-of-the-art works on the
task of 3D reconstruction on Shapenet: AtlasNet [GFK*18b] (us-
ing explicit mesh parameterization), DeepSDF [PES*19] (deep im-
plicit field), DIT [ZYDL21] (building template space with deep
implicit function) and DIF-Net [DYT21] (generating deformed im-
plicit filed with deep implicit function). We use the per-category
pre-trained models provided by DIT and DIF-Net for the evalua-
tion on ShapeNet, while other results are from their paper. We also
compare to PSGN [FSG17], ONetfMON*19], OFlow [NMOG19]
(uses a Neural-ODE [CRBD18] to learn correspondences between
frames) and CaDex [LD22] which learns an invertible deformation
and achieved good performance on DFaust. We train the model for
DIT on DFaust, other results follow OFlow.

Metrics. We use the Chamfer distance ("CD Mean" and "CD
Median") for the evaluation of shape reconstructions in ShapeNet,
and we evaluate the intersection over union (IoU) according to the
ground truth semantic labels and predicted semantic labels for the
evaluation of label transfer. The evaluation on DFaust inherits the
metrics on OFlow using "CD ¢1" and ¢2 distance error ("Corr") for
reconstruction and correspondences respectively.

Moreover, we measure the template consistency "CD Temp
£2/¢1" by computing the Chamfer distance (for Shapenet it is
Chamfer ¢2 and for DFaust it is Chamfer /1) between the template

to all the warped shapes. In order to obtain the template, we use the
SDF decoder without the Deform-Net.

Training details. We implement the network D as an auto-
decoder containing 6 layers each consisting of R-NVP with an
LSTM cell, together with an SDF decoder, and the SP-Net /. We
train the whole network with 4 NVIDIA 2080Ti GPUs for 2000
epochs with batch size 40, with the Adam optimizer. We refer to
the Appendix for additional training details.

4.1. Results on Shapenet

Shape Reconstruction. We report results on ShapeNet in Table 1
(tested on DIT test set) and Table 2 (tested on DIF-Net based test
set). ShapeNet [CFG*15] contains several object categories, which
often have missing parts or often topological changes. Therefore
it is natural that normalizing flow-based methods such as [LD22]
often fail and we do not report their results. Among the rest of the
methods, our method yields the best reconstruction performance
in the categories of planes, cars, and sofas. We are slightly worse
than C-DeepSDF [DZW#20] on chairs reconstruction but still bet-
ter than DIT and DIF-Net, given that the chairs category is quite
challenging with topological changes thus, discovering a consistent
template is difficult. Qualitatively, we observe similar reconstruc-
tion quality to the state-of-the-art on chairs. Visualizations are pre-
sented in Figure 1 where we show the reconstructed shapes, warped
shapes, and shape correspondences for various categories. Equal
colors indicate corresponding points. In terms of warped shapes,
our method is able to deform different shapes with structural points
into the template space, thus our method reconstructs shapes well
and yields dense correspondences via the template space.

Dense Correspondences. Due to the lack of ground-truth corre-
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(a) DIT

(b) OFlow

(c) Ours

Figure 3: Qualitative results of reconstruction, correspondence and error color maps on DFaust [BRPBI17]. The I“,Z"d,Sth,@h ,9”’7 107"
columns display reconstructed shapes with dense correspondences. The same color implies corresponding points, with some parts circled
out for clear comparison. The 3" d, 4 h,7l h, 8th, 11th, 12" columns represent correspondence error in a color map. A darker color denotes a

larger error. Parts with large errors are circled out.
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Figure 4: Label transfer performance in airplanes, chairs and cars
categories. The left-most column shows the transfer of source labels
from the input shapes to the template space, and the rest columns
represent the label transfer results. We show noticeable differences

or wrong predictions using the red-boxed area in DIT and DIF-Net.

spondences in ShapeNet, we resort to semantic label transfer exper-
iment for quantitative evaluation on dense correspondences. Fol-
lowing DIF-Net, we manually select 5 labeled shapes as the source
shapes deforming onto the template space, other unlabeled shapes
are then deformed onto the template field. We then search for 10
nearest labeled points for each and conduct label voting to predict
labels [DYT21]. We compare our method against the nearest neigh-
boring points (NN), DIF-Net and DIT, and report the results in Ta-
ble 1 and Table 2. Our method yields the best performance in label

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

transfer for all three categories. DIT [ZYDL21] performs similarly
to NN on airplanes and cars in Table 1, indicating that the deforma-
tion warp is largely identical. Furthermore, as the shapes in these
two categories follow similar structures, direct NN also provides
decent correspondences. Figure 4 displays the qualitative results.
The left-most column shows the generation of source labels from
5 input samples to the template space. The rest columns represent
label transfer results. The boxed areas in the figure show noticeable
differences with respect to other methods.

4.2. Results on DFaust

Shape Reconstruction and Dense Correspondences. We con-
duct further experiments to demonstrate the power of modeling
non-rigid dynamic shape deformations on DFaust [BRPB17]. The
DFaust dataset [BRPB17] contains natural deformation of a human
body, different from deformations required to represent a category.
Moreover, it consists of high quality ground-truth that is impor-
tant for our ablation studies. Results are presented in Table 3. "NN
points" provides the baseline correspondence between shapes. Sur-
prisingly, even with a smaller training set, we outperform the state-
of-the-art methods by a significant margin in reconstruction. The
correspondence error follows the "CD Temp ¢1" error, implying
the importance of template or warped shape consistency. Although
we do not surpass CaDex in correspondence quality, we are able to
achieve comparable results with a much smaller training size, while
having a more general deformation warp.

We show quantitative results in Figure 3. The figure shows the
performance of 3 different sequences (each displays 2 shapes in
dense correspondences renders and error color maps) conducted by
DIT, OFlow and our method respectively. Equal colors here indi-
cate correspondence. Detailed reconstructions are circled. We ob-
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serve that OFlow fails to reconstruct some parts, and DIT some-
times reconstructs with noise. Error color maps are presented to
show in which region our method fails. The darker color denotes
the larger error. Some parts with large errors in DIT and OFlow are
also circled out, where our method predicts good correspondences.

Methods CD/1| Corr | CD Temp /1 |
NN points - 0.279 -
PSGN-4D [FSG17] 0.127 3.041 -
ONet-4D [MON*19] 0.140 - -
O-Flow [NMOG19] 0.095 0.149 -
CaDex [LD22] 0.074 0.126 -

DIT [ZYDL21] 0.028 0.237 0.080
Ours 0.024 0.137 0.045

Table 3: Results on DFAUST [BRPB17] dataset. CD and CD Temp
01 are multiplied by 10, Corr represents correspondence {2 error.

4.3. Ablation Study

We ablate the individual contributions/components of our proposed
method. For a clear comparison, we separate the parts of our trans-
formation module into "rnvp + Istm + feature + EC", here "fea-
ture" indicates the feature we learned from SP-Net, "EC" denotes
the explicit constraint we apply on the deformed shapes. Later
we investigate the power of each part by gradually adding differ-
ent parts including "rnvp only", "rnvp+lstm", "rnvp+lstm+feature”,
"rnvp+Istm+feature+EC". In order to prove our hypothesis of tem-
plate or warped shape consistency, we use the consistency measure
as described in Metrics. We conduct experiments on airplanes and
DFaust one sequence, containing large deformations. Quantitative
results are presented in Table 4 and Table 5 respectively.

Results on Shapenet. From the numeric results in Table 4, we
see "rvp only" performs worst on reconstruction and template
consistency, but its label transfer result ranks second. The restric-
tive nature of "rnvp only" network is detrimental to the implicit
field defined on the template space. The bad reconstruction im-
plies many outliers in deformed shapes leading to a non-optimal
template space and consistency. However, the label transfer ex-
periment is less impacted by outlier transformations. We can see
a dramatic improvement on reconstruction when adding the recur-
rent layer. Moreover, the applied feature is beneficial in both recon-
struction and template consistency. Further, the explicit constraints
applied on the warp help improve the template consistency result-
ing in improvement in both reconstruction and label transfer, as
well as the template Chamfer distance (last column of the table).
"rnvp+Istm+feature+EC" architecture yields the best performance
in all metrics. We show the visualization results of deformed shapes
regarding the same ground-truth shapes in Figure 5. From left to
right are (a) ground-truth shapes, (b) deformed shapes from DIT,
(c) from "rnvp + Istm", (d) from "rnvp + Istm +feature" and (e) from
"rnvp + Istm + feature + EC". We do not show the warped shapes
from "rnvp only" as it always generates large outliers leading to bad
visualization. The last column is able to get good template consis-
tency even for shapes with larger structure variations, while (b) DIT
label transfer results are similar to "NN points", indicating that the
deformation warp is under-performing.

CD Mean], mloUtT CD Temp ¢2 ]

NN points - 71.3 -
DIT [ZYDL21] 0.053 71.4 2.551
rnvp only 0.303 73.6 23.824
rnvp+lstm 0.057 72.4 4.149
rnvp+lstm-+feature 0.052 73.2 2.171
rnvp+lstm+feature+EC 0.050 73.8 1.403

Table 4: Ablation study on network design, on airplanes category.
"CD Mean" and "CD Temp (2" are multiplied by 103, mloU is
given in %.
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(d) Rnvp +Istm  (e) Rnvp + Istm
+ feature + feature + ec

(a) Ground truth (b) DIT

(c) Rnvp + Istm

Figure 5: Qualitative results of deformed shapes on airplanes un-
der different network setups. From left to right are (a)ground truth
shapes, and their warped shapes from (b) DIT [ZYDL21], (c) "rnvp
+ Istm", (d) "rnvp + Istm + feature" and (e) "rnvp + Istm + feature
+ ec". Equal colors represent correspondences.

Results on DFaust. In DFaust we use the sequence
"50009_chicken_wings" for training/testing due to its higher range
of deformation. From Table 5, we see that "rnvp + Istm + feature +
EC" yields the best performance in reconstruction and correspon-
dences, worse than "rnvp only" in template consistency. Due to the
difficulty of the deformation, both DIT and our base network "rnvp
only" fails to reconstruct properly. Adding a recurrent layer is bene-
ficial in reconstruction though it worsens the correspondences. The
added feature helps shapes to warp locally and consistently, and
the explicit constraint "EC" later alleviates the influence by forc-
ing the template space to be consistent. The template consistency
error "CD Temp /1" also indicates the correspondence behavior. A
surprising result here is that the correspondence error for (b) "rnvp
only" is not the lowest despite having the lowest template consis-
tency error. Consequently, while the shape Chamfer distance is low,
different parts may be warped to different areas of the shape result-
ing in sub-optimal correspondences. Furthermore, the high recon-
struction error hints that the deformation warp is far from perfect.
More visualization results on the deformed shapes on DFaust are
presented in Figure 6. From left to right are (a)ground-truth shapes,
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deformed shapes from (b) DIT, (c) "rnvp only", (d) "rnvp + Istm",
(e) "mvp + Istm + feature" and (f) "rnvp + Istm + feature + EC". We
can observe that the warped shapes in DIT are not consistent, the
same happens to the setup in (c) "rnvp + Istm". On the other hand,
adding features and "EC" all improve the template consistency.

CD/¢1]) Corr] CDTemp/l]|
NN points - 0.207 -
DIT [ZYDL21] 0.039 0.188 0.039
rnvp only 0.035 0.138 0.022
rmvp+lstm 0.019 0.165 0.036
rnvp+lstm-+feature 0.017 0.113 0.030
rnvp+lstm+feature+EC 0.016 0.099 0.028

Table 5: Ablation study on DFAUST [BRPB17] one sequence. CD
{1 and CD Temp (1 are multiplied by 10, Corr represents corre-
spondence (2 error.

(a)Ground truth (b) DIT (c)Rnvponly  (d) Rnvp + Istm (¢) Rnvp +Istm () Rnvp + Istm

+ feature + feature + ec
Figure 6: Qualitative results of warped shapes in DFaust
[BRPBI17] under different network setups. From left to right are
(a) ground truth shapes and their warped shapes from (b) DIT
[ZYDL21], (c) "rnvp only", (d) "rnvp + Istm", (e) "rnvp + Istm +
feature" and (f) "rnvp + Istm + feature + EC". Equal colors repre-
sent correspondences.

4.4. Applications through Dense Correspondences

To show the flexibility of our method, we explore the applica-
tion of shape interpolation. The results are presented in Figure 7.
By linearly interpolating in the latent space, we obtain the global
code of the interpolated shape. We keep the local features, i.e., the
sparse point features the same as its closest input shape. With this
we are able to interpolate shapes while keeping the dense corre-
spondences. We provide further details and more examples in the
Appendix. In Figure 7, the interpolated shapes are visualized with
texture. Although the local context can only be approximated, the
interpolated latent code can produce a meaningful shape with good
correspondences.

Furthermore, with the dense correspondences between input

shapes, our method can easily transfer textures between different

© 2023 The Authors.
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Figure 7: Shape interpolation between "shape 1" and "shape 2".
The same colored checkboard with the same number represents
correspondences.

shapes. We present qualitative results on texture transfer in Fig-
ure 8. The texture image is first applied on an input shape using
[CWNN20] to generate the textured shape, then the texture is trans-
ferred to other shapes through shape correspondences.

Textured shapes

Transferred shapes

Figure 8: Texture transfer. The left-most images show the texture
image, followed by the textured shapes as input, and the rest are the
transferred renders. Our method is able to perform texture transfer
with good visual quality using the learned dense correspondences.

5. Conclusion

We analyzed a key problem in template discovery based unsuper-
vised dense correspondence methods. We discovered that the im-
plicit field reconstruction loss does not always result in consistent
warped shapes, thus impacting mainly the correspondences. We
tackled the problem in two ways, first by choosing an appropri-
ate deformation warp architecture with additional point-wise fea-
ture and second by imposing explicit template consistency con-
straints. Our experiments showed that the proposed changes sig-
nificantly improve template consistency and also dense correspon-
dences. Furthermore, the method achieves good performance on
both natural quasi-isometric deformations of a human body as well
as on ad-hoc deformations between shapes of a category using the
exact same warp design.
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