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I. Overview

We present further experimental results and details regarding un-
supervised template warp consistency for implicit surface corre-
spondences. In Section II, we introduce the architecture of the net-
work and its hyperparameters, followed by the evaluation details
and dataset pre-processing. In Section III, more experimental re-
sults on ShapeNet [CFG*15] are provided.

II. Experimental Details

II.1. Network Architecture

Deform-Net D. The Deform-Net D is composed of 6 coupling lay-
ers and an LSTM cell [HS97]. In each layer, the split dimension
first goes through a projection layer to 128 dimensions and then
concatenates with the latent code. The result is then mapped to 256
dimensions by an LSTM cell and fed into the scaling and transla-
tion layers. The scaling λ and translation δ layers consist of 2 MLPs
with 256, 3 neurons respectively. We use ReLU as the activation
function. An additional Hardtanh activation is applied to the scal-
ing function to limit the scaling be in [-10, 10]. The latent code is
initialized as a 256 dimensions random vector and optimized along
with the network.

Implicit Template T . For comparison, we use the same im-
plicit template T as DIT [ZYDL21]. The module is inherited from
DeepSDF [PFS*19], consisting of 6 MLPs with 3, 256, 256, 256,
256, 256 and 1 neurons. We use weight normalization, 0.05 dropout
probability and also ReLU activation except for the last layer. In the
last layer, a hyperbolic tanh function is used as an activation func-
tion.

Explicit Constraints. We use a small SP-Net [CLC*20] to ex-
tract structural points on the deformed shapes. The network con-
sists of a PointNet++ [QYSG17] encoder with two set abstraction
levels of 128 and 64 grouping centers. Multi-scale grouping (MSG)
layers contain (0.1, 0.2, 0.4) and (0.2, 0.4, 0.8) scales in two layers
respectively. The output of the encoder is 128 sampled points with
the local features of 224 dimensions. Later the sampled points to-
gether with the local features are trained through a point integration
module combined of 3 MLP layers with the neuron numbers (128,
64, 16) and output 16 structural points. The dropout ratio is 0.2.

Parameter Name Value

Nr. of Coupling Layers 6
w0 1
w1 0.0001
w2 0.0001
w3 0.0001
w4 0.001

w5 (Epoch > 500) 0.001
Batch Size 40

Number of Points per Shape 4000
Number of Points on the Surface per Shape 2000

Number of Structural Points picked 16
Epochs 2000

Marching Cube [LC87] Resolution 256

Table A: Hyperparameters. w4 is 0 when epoch < 500, and 0.01
when epoch > 500.

Training details. We provide further hyperparameters in Table
A. For ShapeNet [CFG*15], we train a separate model for each
category, and for DFaust [BRPB17], we train one model for the
whole dataset. In the ablation studies, we train one model per se-
quence. We use Adam optimizer with an initial learning rate of
0.0005 for the Deform-Net and the implicit template respectively.
For Shapenet, the initial learning rate for the latent embedding is
0.001, while for DFaust, it is set to 0.0001. The decay factor is 0.5
for every 500 epochs. The total loss is defined as below:

L= w0Lsd f +w1Lc +w2Lpp +w3Lpw +w4Lsp +w5Lec, (1)

where Lsd f denotes SDF prediction loss, Lc is the regularization
term for latent code in an auto-decoder model, Lpp,Lpw are point-
pair and pointwise losses respectively, Lsp is the structural points
prediction loss, Lec is the explicit constraints loss. w0 . . .w5 are the
loss weight hyperparameters. The explicit constraints are applied
using 16 structural points on each warped shape after 500 epochs
when the trained SP-Net is stable to generate accurate structural
points. Detailed hyperparameters are shown in Table A.
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II.2. Dataset Pre-processing

DIF-Net based test set. We follow DeepSDF [PFS*19] to prepare
the SDF samples and split the train/test set in ShapeNet [CFG*15],
and results are provided in Table 1 in the main paper. When com-
pared to DIF-Net [DYT21], which also extracted SDF samples, and
provides pre-trained models for planes, chairs and cars categories,
we can directly evaluate the performance with the provided model
and test set which contains 100 shapes in each category providing
the points near/on the surface as well as their normals, results are
presented in Table 2 in the main paper.

DFaust dataset preparation. DFaust [BRPB17] is a dynamic
human shape dataset containing 129 sequences with various mo-
tions "shake shoulders", "one leg jump", etc. We pre-process the
data in the same way as ShapeNet to obtain the SDF values and split
the dataset into 105 training, 6 validation, and 9 test sequences fol-
lowing the practice of OFlow [NMOG19]. In contrast to OFlow, we
do not require small deformations between shapes, we prepare the
training set by randomly sampling the complete training sequences
to 2040 shapes only. As for the test set, we extract SDF samples
for all the shapes in the sequence, and evaluate the reconstruction
and correspondences following the protocol in OFlow. Noticeably,
OFlow provides the ground-truth shapes and correspondences with
its data-processing procedure on the original DFaust dataset. For a
fair comparison, we evaluate the reconstructed shapes of all meth-
ods with OFlow provided ground-truth shapes. In order to keep the
scale consistency as in OFlow, we first transform the reconstructed
shapes to the original DFaust objects scale, then rescale to OFlow
provided ground-truth shapes scale.

II.3. Evaluation Details

Reconstruction. At inference time, a shape code cS for test shape
S is initialized randomly from N (0,0.012), and then refined by
minimizing the following objective:

ĉ= argminLSDF +w1Lc, (2)

where LSDF is formulated in Eq. (9) in the main paper. For each test
shape we first optimize the latent code using Adam with a learn-
ing rate of 1× 10−3 for 800 iterations. Then we apply Marching
Cube [LC87] based on the predicted SDF values to obtain the re-
constructed shape. We refer to Marching Cube [LC87] for detailed
implementation. For training and testing DIT, we follow their orig-
inal setup. Thus, a learning rate of 5×10−4 and 800 iterations are
used.

Label Transfer. The source shapes we use for label transfer are
selected from the test set in order (the first 5 shapes in the intersec-
tion of the test set and ShapeNetPart [MZC*19] dataset), displayed
in Figure A.

III. Additional Experimental Results on ShapeNet

III.1. Template Consistency Results

We provide additional results on ShapeNet [CFG*15]. we evalu-
ated template consistency in DIF-Net [DYT21], DIT [ZYDL21]
and our methods by computing CD Temp ℓ2, results are displayed
in Table B. We can observe that in all categories, our method can

DIF-Net DIT Ours

DIF-Net DIT Ours

Figure A: Source shapes for label transfer. The figure shows the
input source shapes and their deformed labels in template space
from different methods. The first row and the third row are 5 source
shapes in airplanes and chairs categories. The second row and the
last row are deformed labels in DIF-Net [DYT21], DIT [ZYDL21]
and our methods respectively.

generate a more consistent template shape. Furthermore, We show
some qualitative results of deformed shapes in chairs and sofas in
Figure C where shapes have large variations. Our method is able
to keep warp consistency when sofas shapes contain some struc-
tural variations, like the 2rd −4th columns, while DIT fails in these
shapes. However, chairs consisting of many large structural varia-
tions are quite challenging, we show the failure cases of both our
method and DIT in the last two columns.

Method Airplanes Cars Chairs Sofas

DIF-Net [DYT21] 2.465 1.123 2.823 -
DIT [ZYDL21] 2.551 0.026 3.293 0.677
Ours 1.400 0.024 1.806 0.609

Table B: Template consistency in airplanes, cars, chairs and sofas
categories, evaluated with CD Temp ℓ2, multiplied by 103.

III.2. Shape Interpolation

To explore the ability to interpolate two shapes, we present the ex-
periment of interpolating m shapes between two random shapes
X1,X2, each with their optimized global code c1,c2, and their local
code f1, f2. We linearly interpolate in the latent space to generate m
shapes. Thus, for shape Xi, i ∈ [0,m+ 1], its global latent code ci
can be computed

ci = c1 +
(c2 − c1)

(m+1)
× i. (3)
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While for local code, we extracted the local context f from its closer
input shape. That is,

fi =

{
N (x,X1), i f i ≤ (m+1)//2
N (x,X2).

(4)

Here, x represents each point, N is the SP-Net [CLC*20]. We
present further visualization results on shape interpolation (m = 6)
in Figure B. The interpolated shapes are textured with their UV
map based texture images. The same colored checkerboard with
the same number on it denotes correspondences. However, given
the fact that the local context is not accurately extracted from the
interpolated shape, it will influence the correspondence accuracy.
From Figure B, we see our method is still able to keep dense corre-
spondences.

III.3. Runtime and Computation Complexity

We compare the model size and the runtime for training/inference
in Table C. We set up our network parameters (1.89M) similar to the
one used in DIT [ZYDL21](1.85M). When using only one single
RTX 1080ti GPU, the time costs for training one shape in each
epoch is 0.068s and 0.188s for DIT and ours respectively. Although
We are slower in training time, we are faster at inference with fewer
LSTM cells when reconstructing one shape.

Method Model size (M) Train time(s) Inf time (s)

DIT [ZYDL21] 1.85 0.0675 48.39
Ours 1.89 0.188 34.18

Table C: Model size and runtime comparison. The table shows the
model size of DIT [ZYDL21] and ours. Moreover, the time costs for
training and inference are presented.
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Shape 1 Shape 2

Figure B: More examples of shape interpolation between "shape 1" to "shape 2" in ShapeNet airplanes, cars, chairs categories. The same
colored checkerboard with the same number on it represents the corresponding mesh.

Input

DIT

Ours

Figure C: Qualitative results of warped shapes in sofas and chairs from different methods. The first row shows the input shapes, followed
by the deformed shapes from DIT [ZYDL21] and our method. Our method can generate the consistent deformed shapes on sofas with large
variations. However, both our method or DIT fails in generating a consistent template space in chairs due to its challenging structural
changes.
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