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Figure 1: Directly vectorizing anti-aliased low resolution (64x64px) clip-art images (a) using state of the art methods [Vec17] (c) produces
inadequate results (note the missing arm). Our subpixel deblurring method produces blur-free double resolution outputs (e) which are well
aligned with viewer expectations both as-is and after vectorization (f). We first predict a low-blur subpixel approximate image (d) and then
use perception driven discrete optimization to obtain the final blur-free output (e). Our outputs are significantly more aligned with viewer
expectation than those produced by state of the art superresolution [WXDS21] (b) and vectorization (c) methods. Sub-pixel deblurring
benefits applications such as vectorization (f) and recoloring (g). Please zoom-in to see details.

Abstract
Artist generated clip-art images typically consist of a small number of distinct, uniformly colored regions with clear boundaries.
Legacy artist created images are often stored in low-resolution (100x100px or less) anti-aliased raster form. Compared to
anti-aliasing free rasterization, anti-aliasing blurs inter-region boundaries and obscures the artist’s intended region topology
and color palette; at the same time, it better preserves subpixel details. Recovering the underlying artist-intended images
from their low-resolution anti-aliased rasterizations can facilitate resolution independent rendering, lossless vectorization, and
other image processing applications. Unfortunately, while human observers can mentally deblur these low-resolution images
and reconstruct region topology, color and subpixel details, existing algorithms applicable to this task fail to produce outputs
consistent with human expectations when presented with such images. We recover these viewer perceived blur-free images at
subpixel resolution, producing outputs where each input pixel is replaced by four corresponding (sub)pixels. Performing this
task requires computing the size of the output image color palette, generating the palette itself, and associating each pixel in
the output with one of the colors in the palette. We obtain these desired output components by leveraging a combination of
perceptual and domain priors, and real world data. We use readily available data to train a network that predicts, for each anti-
aliased image, a low-blur approximation of the blur-free double-resolution outputs we seek. The images obtained at this stage
are perceptually closer to the desired outputs but typically still have hundreds of redundant differently colored regions with fuzzy
boundaries. We convert these low-blur intermediate images into blur-free outputs consistent with viewer expectations using a
discrete partitioning procedure guided by the characteristic properties of clip-art images, observations about the antialiasing
process, and human perception of anti-aliased clip-art. This step dramatically reduces the size of the output color palettes, and
the region counts bringing them in line with viewer expectations and enabling the image processing applications we target. We
demonstrate the utility of our method by using our outputs for a number of image processing tasks, and validate it via extensive
comparisons to prior art. In our comparative study, participants preferred our deblurred outputs over those produced by the
best-performing alternative by a ratio of 75 to 8.5.
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(d) 32x32 Anti-aliased Raster (e) Our Output (64x64)(b) 32x32 Aliased Raster (c) 64x64 Aliased Raster(a) Vector clip art

Figure 2: Aliased rasterizations (b,c) of vector clip art (a) have a
self-evident color palette and region topology. Anti-aliased renders
of the same input (d) blur the color palette and make the single-
color region topology harder to discern. Compared to the aliased
renders at the same (here 32 × 32) resolution (b), however, they
often better preserve sub-pixel features, such as the eyes in this ex-
ample (d). Our subpixel deblurring method (e) uses such blurry im-
ages (d) as input, and produces double-resolution blur-free outputs
consistent with viewer expectations.

1. Introduction

Artist-generated clip-art images, consisting of small sets of dis-
tinct, uniformly-colored regions, are ubiquitous in digital media
applications [DSG∗20]. While designed to convey blur-free con-
tent, for a range of historic reasons legacy clip-art images, including
sprites, are frequently stored in low-resolution (100x100px or less),
anti-aliased, raster form (Fig. 1a). Antialiasing blurs inter-region
boundaries, and at low resolutions obscures the artist-intended re-
gion topology and color palette (Fig. 2d). At the same time,
antialiasing enables better preservation of subpixel details when
compared to aliased, or blur-free, outputs at the same resolu-
tion (Fig. 2b). Recovering the underlying artist-intended images
from these low-resolution anti-aliased rasterizations can facilitate
a range of image processing applications including vectorization
(Fig. 1f) and recoloring (Fig. 1g, Sec 6). Our work aims to recover
these underlying images given the anti-aliased inputs.

When presented with low-resolution anti-aliased inputs, human
observers can mentally approximate the underlying artist-intended
blur-free visuals [TFCRS11].. However, prior research [HDS∗18,
DSG∗20] suggests that observers do not hallucinate details that are
not strongly hinted at by the inputs (e.g. the puffy sleeves or the
elaborate mustache in Fig. 2a). Our observations (Sec. 3) suggest
that the original details that humans discern in anti-aliased images
are typically visible in aliased double-resolution renders of the orig-
inal vector images (Fig. 2c). Furthermore, humans do not halluci-
nate details that aliased double-resolution images do not capture.
To obtain results consistent with viewer expectations, while captur-
ing subpixel details and avoiding hallucination of unexpected de-
tails, we therefore focus our efforts on recovering double-resolution
blur-free raster clip-art images well aligned with viewer perception
(Figs. 1, 2e). The outputs produced by our method can be used
for a range of image processing applications which benefit from
subpixel deblurring (Sec 6, Fig. 1fg), and are significantly better
aligned with viewer expectations than those produced via existing
methods that can be applied to this task (Secs 2, 6, Figs. 1bc).

One core difference between our input anti-aliased images and
the desired deblurred outputs is the size of the color palettes, or the

number of distinct colors present in the image. While typical anti-
aliased images have palettes with 100 to 200 distinct colors (Tab.
1), the source vector content they are rasterized from, and blur-free
rasterizations of that vector content, have on average about a dozen
colors. To enable robust processing by downstream applications,
and to produce outputs consistent with viewer expectations and
artist intent, our output color palettes must be similarly compact. At
the same time, the actual size of the intended or viewer perceived
palettes of our input images varies and is unknown - the originating
vector images of the inputs we tested had palettes with as few as
3 colors and as many as 172. Thus while, the consistency obser-
vation above suggests that subpixel deblurring can potentially be
learned from pairs of anti-aliased and blur-free rasterizations of the
same clip-art vector images, where the blur-free image has double
the resolution of the anti-aliased one (Fig. 2dc), satisfying the com-
pactness requirement without knowing the viewer expected palette,
or even its size, in advance makes subpixel deblurring a much
more challenging problem than those addressed by traditional up-
sampling or superresolution methods (Sec 2, Fig. 1c). While some
state-of-the-art research seeks to learn palettes or alphabets to use
during translation tasks, most machine learning methods operate
continuously and produce outputs with thousands of colors (e.g.
[IZZE17, WXDS21]). The alternative approach of training mod-
els using a small and fixed palette size [RGLM21] had been only
demonstrated to work on very small palette sizes (3 for [RGLM21])
and is not applicable in our setting where size can vary arbitrarily
and the average palette size is about 10.

We algorithmically obtain a compact color palette and a cor-
responding blur-free colorized output using a two stage process
motivated by the observations above (Fig. 1de). We leverage pairs
of anti-aliased and blur-free double-resolution renders of the same
vector inputs to train a deep learning method for subpixel deblur-
ring (Fig. 1d, Sec 4). The outputs of this method are closer to the
ground truth in color space than those produced by state-of-the-art
superresolution methods, retrained on our data (e.g. [WXDS21],
Figs. 1c, 5). They clearly reveal fine details captured by the anti-
aliasing such as the snowman’s mouth and eyes, and contain ob-
servable subpixel refined inter-region boundaries. At the same time,
as expected, these images have thousands of colors, and close in-
spection reveals them to contain residual blur, color variation and
speckles.

We generate our final outputs from this data by leveraging the
global characteristics of typical clip-art images and perceptual pri-
ors. We utilize the following observations: (1) typical clip art im-
ages consist of a small set of regions with a compact color palette:
(2) human ability to distinguish between adjacent region colors is
correlated with region size [Sto03, SASS14] , and (3) when pre-
sented with ambiguous inputs, humans opt for simpler explana-
tions [WEK∗12, Kof55]. We consequently cast the computation of
the output regions and their colors as a discrete optimization prob-
lem of assigning color values to pixels. We first use observations
about anti-aliasing mechanisms to obtain a candidate color palette
for our output clip-art images, and then assign each pixel in the out-
put image one of these candidate palette colors by solving a con-
strained graph labeling problem whose formulation is motivated by
domain and perceptual priors (Fig. 7c, Sec 5).
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(a) Input

(b) [KHEK76] (c) Bilinear+[KHEK76] (d) Our Output(a) Input

Figure 3: Given the input image (a), traditional deblurring and
sharpening methods such as [KHEK76] (b) reduce but do not elim-
inate anti-aliasing blur, and operate in-place producing outputs at
the same resolution as the input. Generating sub-pixel outputs by
first applying bilinear magnification followed by deblurring (c) en-
hances rather than reduces the blur. Our method computes blur-
free outputs, recovering sub-pixel details (d).

We evaluate our method on 112 diverse inputs across multiple
resolutions (Sec 6), demonstrate the utility of our outputs for a
number of applications (Fig. 1fg, Sec 6), and validate the superi-
ority of our method via quantitative and qualitative comparisons
to prior art and ground truth data. Our measurements confirm that
the color space distance from our outputs to ground truth data is
approximately half that of the closest competitor. Participants in a
perceptual study comparing our results to those produced by prior
methods preferred our outputs by a ratio of 75% to 8.5% over the
best algorithmic alternative at resolutions below 100px.

2. Related Work

While few, if any, methods address the exact problem we tackle,
our work has connections to methods for image segmentation, de-
blurring, magnification, and vectorization.

Semantics-free Image Segmentation. Our problem can be
thought as one of obtaining a color palette and then assigning one
of these colors to each quarter-pixel in our input image. As such
it has connections to semantics-free image segmentation meth-
ods. These methods aim to approximate high-resolution detailed
inputs with a compact set of color-coherent regions by grouping
together similarly colored pixels into regions of roughly balanced
size, and assigning a representative color to each region [FH04,
OBW∗08, LL06, SLWS07, XLY09, WZGW17, XSTN14, KKT20,
XK17]. These methods can, in theory, be applied either directly
to our inputs or to upsampled versions of these inputs. However,
color similarity is not a reliable grouping cue in our context since
pixels on the blurred boundary between highly distinct regions can
have a shade that significantly differs from that of these regions.

Furthermore, size balancing is not a desirable
property in our context - we often want output
regions to dramatically differ in size (e.g. the
eyes in Fig. 2). As a result, the outputs of these
methods are very far from the viewer expected

ones on the typical inputs we process (for example, see the inset on
the left produced by applying the method of [FH04] to the input in
Fig. 2d).

Traditional Deblurring and Sharpening. Traditional blind de-

(a) 32x32 Input 
#Colors: 136

(b) [MG21]
#Colors: 136

(c) [Hyl11]
#Colors: 136

(d) Our output
#Colors: 11

Figure 4: Magnification methods such as (b) MMPX [MG21] and
(c) XBR [Hyl11]) aim to preserve the input’s look while doubling its
resolution, and thus produce blurry outputs on anti-aliased inputs
(a). When presented with the same output our method (d) produces
blur-free outputs with compact color palettes.

blurring approaches (e.g. [FSH∗06,LWDF09]) operate on input im-
ages that are assumed to be a convolution of a sharp image and an
unknown blur kernel, plus noise, and seek to recover both the kernel
and the unblurred image upon which the convolution was applied.
These approaches target high-resolution natural imagery, and as-
sume the existence of a blur kernel that models the effects of cam-
era shake or lens defocus. Our input images are not consistent with
this model: rather than being “blurred” by convolution, the anti-
aliasing blur is caused by downsampling vector or high-resolution
images to a lower-resolution target. Furthermore, our images are
noise-free and contain subpixel information baked in by the anti-
aliasing that we seek to exploit while deblurring and upscaling
the input. Sharpening filters such as [TM98, KHEK76, KKD09]
mimic deblurring by enhancing edge contrast and smoothing low
contrast regions. When applied to our data, these filters visu-
ally sharpen the images, with [KHEK76] producing the sharpest
results, but still retain much of the anti-aliasing blur (Fig. 3b).
Sparsity-based image smoothing methods (e.g. [XLXJ11]) can
produce piecewise constant color patches, but retain anti-aliasing
blur while also removing important color differences (inset).

Moreover, these methods operate in place,
and thus are not applicable as-is for subpixel
deblurring. Upsampling the inputs first (via,
for instance, bilinear magnification) and then
applying the filter results in blurry outputs

(Fig. 3c). Our method (Fig. 3d) produces outputs with much more
compact palettes and that are significantly closer to our ground
truth data.

Magnification of Clip-Art Imagery. Magnification methods
for clip- and pixel-art data [Hyl11, Ste03, MG21] aim to double
the resolution of the input while preserving its look. The method
of [Ste03] intentionally anti-aliases the magnified images, the ex-
act opposite of our goal. [Hyl11, MG21] target anti-aliasing free
inputs and aim to preserve the input characteristics and thus uti-
lize the original color palette. Consequently when presented with
our inputs they preserve, rather than remove, the anti-aliasing blur
(Fig. 4). Our method successfully addresses a different problem,
that of subpixel deblurring. Our outputs can be subsequently fur-
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(a) Input (b) Lightroom 

zoom (d)

zoom (f)

(c) Real-ESRGAN (d) Retrained Real-ESRGAN (e) Our output
Dist.: 0.002731      #Colors: 6Dist.: 0.055373      #Colors: 1723 Dist.: 0.006483      #Colors: 1006

Dist.: 0.019750      #Colors: 2359#Colors: 75

Figure 5: Comparison to superresolution methods: (a) input; (b)
Photoshop Lightroom [Ado21]; (c) Real-ESRGAN [WXDS21] (d
Real-ESRGAN trained on our data; (e) our output.

ther magnified using the approaches of [Hyl11, MG21] facilitating
resolution-independent rendering (Sec 6).

Superresolution. Superresolution methods target high-
resolution natural images, and use convolutional net-
works trained on pairs of input and ground truth im-
ages to create high resolution versions of the input
[DLHT15, WXDS21, ZLVGT21, LSZ∗21, LCS∗21]. While they
can be applied to generate sub-pixel magnifications of the inputs
we process, they are not trained to deblur the inputs in the process.
Consequently, applying state-of-the-art commercial tools [Ado21]
or state-of-the-art methods such as Real-ESRGAN [WXDS21]
(using their double resolution model) as-is to our data retains,
and sometimes even exaggerates, the anti-aliasing blur (Fig. 5bc).
Retraining Real-ESRGAN [WXDS21] on our dataset (pairs
of anti-aliased and double-resolution, non-anti-aliased, images)
produces outputs (Fig. 5d) which are more consistent with viewer
expectation and are up to an order of magnitude closer to the
ground truth data in color space than those produced without
retraining (Fig. 5c) . Unfortunately this approach produces output
palettes with thousands of colors (Sec 6). Our outputs are on
average 45% closer to ground truth than than those of retrained
Real-ESRGAN and have only about a dozen colors on average
(Fig. 5e).

Image Vectorization. The vast majority of image vector-
ization methods for both natural [HEK21, FLB16, XSTN14,
LL06, OBW∗08, SLWS07, WZGW17, XLY09, Ado17] and clip-
art [YCZ∗16, ZCZ∗09, Ink20, HDS∗18, DSG∗20, KL11, SBv05]
images first segment the inputs into color coherent regions using
semantics-free methods similar to the ones described above, and
then fit the boundary of each such region using piece-wise smooth
vector curves. As discussed above, semantics-free segmentation
methods fail to produce viewer expected regions on anti-aliased
clip-art images; in turn, this inadequate segmentation leads to poor
vectorization outcomes (Fig. 6bc). This limitation motivates most
research on vectorization of clip-art imagery to consider only anti-
aliasing free inputs [HDS∗18, DSG∗20, KL11], and to list process-
ing of anti-aliased data as future work. These methods can therefore

(a) Input (32x32) (b) MeshColors

(d) VectorMagic (f) Our Output (vectorized)

(c) Inkscape

(e) Our Output (64x64)

Figure 6: Given an input 32px anti-aliased image (a), state of the
art vectorization methods [HEK21] (b), Inkscape [Ink20] (c), and
VectorMagic [Vec17] (d) produce inadequate results. Our output is
well aligned with viewer expectations. Vectorizing our outputs us-
ing VectorMagic (f) produces vector outputs similarly well aligned
with viewer expectations.

directly benefit from using our method as the first step in their vec-
torization pipeline when processing anti-aliased clip-art (Fig. 6f).

Dominici et al. [DSG∗20] extend their vectorization method de-
signed for anti-aliasing free inputs to binary anti-aliased images
consisting of a background and a foreground region; we process
inputs with arbitrary color count. Reddy et al. [RGLM21] vector-
ize clip art images using end-to-end neural networks trained with a
fixed two or three color palette size, and operate on a narrow class
of input images (e.g. face emojis or digits) with four regions or
less. Our method addresses blur-free magnification of general anti-
aliased clip-art inputs, and does not require the number of regions
or colors to be capped or known a priori. On the inputs we handle,
viewer-expected outputs have on average a dozen colors, with the
number ranging from three to over a hundred.

The VectorMagic [Vec17, Die08] clip-art vectorization software
vectorizes both aliased and anti-aliased inputs, and performs well
at resolutions above 100× 100px; however, when presented with
anti-aliased inputs at lower resolutions their outputs tend to lack
many viewer perceived features (e.g. arm and hatband in Fig. 1,
cheeks in Fig. 6).

3. Problem Statement and Overview

Perception of Anti-Aliased Clip-Art. Visual perception research
[TFCRS11] suggests that human observers are adept at recovering
intended content from rasterized inputs, overcoming both down-
sampling and anti-aliasing artifacts. In their research on vectoriz-
ing aliased clip-art images, Hoshyari et al. [HDS∗18] point to three
key factors that likely impact the mental process humans employ
when recovering content from raster inputs: accuracy, simplicity,
and continuity. Accuracy predicts that the images humans envision
are ones that, when rasterized using the same process as the one
used to create the inputs, reproduce (or nearly reproduce) these
inputs. The simplicity principle of Gestalt psychology indicates
that human observers opt for the simplest interpretations possible
that are consistent with the observed inputs [WEK∗12]. In particu-
lar, recent computer graphics research [DSG∗20,HDS∗18] strongly
suggests that, when presented with raster imagery, humans do not
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hallucinate details not present in the inputs. Lastly, continuity sug-
gests that the inter-region boundaries viewers envision are piece-
wise smooth, and are not restricted to follow the edges of the pixel
grid.

While Hoshyari et al. [HDS∗18] then proceed to analyze the
impact of these factors on viewer perception of blur-free raster
clip-art, we are interested in understanding how they apply to anti-
aliased data. Since little is known about the exact cues viewers em-
ploy when presented with anti-aliased low-resolution clip-art im-
agery, we use observations about human perception, properties of
typical clip-art imagery, and characteristics of the anti-aliasing pro-
cess to identify these cues.

We observe that, in our context, accuracy and simplicity taken
together strongly suggest that the mental images viewers assemble
closely resemble the originating vector images, and are at most as
complex as these originating images. In other words, these mental
images are likely to have at most as many colors as the originat-
ing images, have region topology and details which are similar to,
or simpler than, those of the originating vector art, and not contain
content inconsistent with the raster input. Applying these observa-
tions in a practical setting suggests analyzing the color palettes and
other properties of the originating images, and the impact of the
antialiasing process on the degree to which these remain visible in
the raster images that viewers are presented with.

Color Palette: Our analysis of representative vector clip-art im-
ages (App. A), consistent with studies of effective visualization
techniques [Sto03, SASS14], suggests that artists typically em-
ploy compact color palettes, consisting of a small number of vi-
sually distinct colors, when creating vector clip art. Furthermore,
artists typically colorize immediately adjacent regions using col-
ors which are a notable distance apart in color space. We speculate
that the mental images viewers assemble satisfy these properties.
This assumption is validated by our small-scale study (App. C):
when presented with anti-aliased clip art images and asked to men-
tally deblur them and count the number of colors in these mentally
deblurred images, participants uniformly reported numbers which
were either identical or slightly smaller than the color count in the
originating vector images (see App. C for details).

Implications of the Anti-Aliasing Process: When rasterizing vec-
tor clip-art inputs, both aliased and anti-aliased rasterization meth-
ods keep the color of pixels that are entirely inside one of the input
regions as-is. Given a pixel that intersects multiple regions, anti-
aliased rasterization methods assign the pixel a color that is some
weighted average of the colors of the intersected regions. Since the
weights used when blurring adjacent pixels are typically different,
the areas around region borders typically exhibit variation in color
between adjacent pixels; hence patches of adjacent same-color pix-
els in anti-aliased clip art renders are likely to originate from region
interiors, and thus belong to an original region of this same color.
We speculate that such uniformly-colored patches are key to human
ability to parse anti-aliased clip-art (see e.g. the uniformly colored
patches in the zoomed in inputs of Figs. 3, 4). We note that only
originating regions which are large enough to fully cover multi-
ple adjacent pixels have corresponding uniformly-colored patches
in antialiased raster images; the shade of pixels overlapping more
narrow regions or region features is defined via a weighted average

of their color with the colors of their surrounding regions. This sug-
gests that originating regions become less discernible the smaller
they are and the more similar their color is to that of their neigh-
bouring regions. Conversely outliers, or pixels spanning small re-
gions whose color is far away from their neighboring region colors
in color space, continue to be visibly distinct even after color aver-
aging (e.g. the eyes or cheeks of the koala in Fig. 6a). We specu-
late that observers mentally form regions around uniformly-colored
patches and outliers, and their ability to discern outliers is depen-
dent on the degree to which they stand out.

These observations are confirmed by our second study (App. C),
in which participants were presented with anti-aliased clip-art im-
ages and were asked to trace the outlines of the regions they envi-
sion in these inputs. Participants were consistent when tracing the
outlines of regions surrounding large uniformly colored patches, or
when tracing the outlines of strong outliers; however, consistency
diminished for renders of smaller and visually less distinct original
regions. See App. C for details.

Problem Statement. Our work seeks to recover the mental im-
ages humans envision when presented with anti-aliased clip art im-
ages. We note that the above observations suggest that this task
becomes increasingly harder as image resolution decreases, since
the number and size of the uniformly colored patches that help an-
chor these images decrease. This observation motivates our focus
on lower-resolution inputs, where algorithmically performing this
task is likely to be most challenging. Rather than recover vector
outputs from these inputs, we reconstruct raster imagery; once de-
blurred, our outputs can be converted into vector form using ex-
isting methods well suited for medium to high resolution aliased
raster data (Figs. 1, 6). In particular, we formulate our problem as
computing blur-free double resolution raster images best aligned
with viewer perception; i.e for a given n × n input, we compute
2n× 2n outputs. This choice allows us to capture the subpixel de-
tails viewers perceive, while explicitly avoiding generation of mi-
nuscule details that viewers are unlikely to hallucinate. Based on
our observation about viewer expected color palettes, we require
our outputs to have compact color palettes and aim for adjacent
regions to be colorized with distinctly different colors. Following
the accuracy cue, we want our outputs to be cross resolution con-
sistent; that is, our outputs should be visually similar to 2n× 2n
aliased renders of the same original vector images, and should re-
liably include regions anchored by uniformly-colored patches and
outliers present in the inputs. Finally, following the simplicity and
smoothness cues, we look for regions with compact and visually
smooth boundaries, avoiding unnecessary jaggies.

Overview. Our approach for sub-pixel deblurring is guided by
the properties identified above (Fig. 7). Cross-resolution consis-
tency suggests that we can leverage a data-driven approach in com-
puting the outputs we seek. However, state of the art learning meth-
ods still struggle with tasks that require using a compact, but a pri-
ori unknown alphabet and resort to training different models for
different alphabet sizes [VPB∗22] or different palette sizes and im-
age categories [RGLM21]. This approach is not suitable for our
needs as we operate on inputs with very different viewer perceived
palette sizes, where predicting the palette size is a major compo-
nent of the problem we seek to solve. We sidestep this challenge by
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Figure 7: Method Overview: (a) input; (b) low-blur intermediate solution; (c) candidate color palette; (d) output.

using a two step process. We first relax the color palette constraint
and focus entirely on cross-resolution consistency, obtaining out-
puts which are visually quite close to our desired ones but which
have arbitrarily large color palettes with typically hundreds of col-
ors (Fig. 7b). We compute our final outputs from these low-blur
intermediate subpixel images by reintroducing the palette compact-
ness constraints, and directly accounting for the other priors listed
above. Specifically, our first step learns the intermediate low-blur
images from pairs of anti-aliased and anti-aliasing free rasteriza-
tions of the same clip-art vector image, where the aliased input has
double the resolution of the anti-aliased one (Sec. 4,Fig. 7b). Our
second step first detects uniformly-colored patches and potential
outliers in the input image by analyzing both the inputs and the
intermediate solutions, and uses those to form a candidate color
palette (Fig. 7c); it then uses discrete optimization to segment the
intermediate images into regions corresponding to a subset of the
candidate palette’s colors. Our discrete optimization balances prox-
imity to the intermediate solutions against compactness and other
priors to generate the desired outputs (Sec. 5, Fig. 7d).

4. Learned Low-Blur Subpixel Approximation

Our first step learns to produce as-blur-free-as-possible subpixel
approximations of the blur-free outputs we seek (Fig. 7b). We do
so using a learned image-to-image translation network. We exper-
imented with several different options when selecting our network
architecture, including Real-ESRGAN [WXDS21], and SRGAN
[LTH∗17]. In our experiments we obtained the best results using the
algorithm described below that leverages the pix2pix [IZZE17] ar-
chitecture as its backbone; in particular, in the experiments reported
in Sec 6, the average error (measured as color space distance) be-
tween our approximation step outputs and ground truth was 33%
lower compared to the error of the retrained Real-ESRGAN, and
the color palette size was 38% smaller. Our motivation for using
pix2pix as our method’s backbone is twofold. First, it uses the U-
Net [RFB15] architecture as a generator, which leverages connec-
tions between down- and up-sampling in the network to achieve
structural consistency in predictions. Second, it relies on a combi-
nation of per-pixel dissimilarity and patch-level discrimination to
learn parameters, which are shown in [IZZE17] to simultaneously
reduce both blurring and ringing artifacts, as compared to only re-
ducing either blurring or ringing.

As pix2pix only accepts same-resolution inputs and outputs, we
first upsample our n× n anti-aliased input images to a resolution
of 2n× 2n using nearest-neighbor upsampling (replacing each in-
put pixel by four pixels of the same color). Our overall framework

departs from the baseline formulation of [IZZE17] in a number of
ways.

Color Space. To minimize perceivable color artifacts, we con-
vert both input and output images to LAB space [FVVD∗96], al-
lowing our loss function to be computed in a space which is better
aligned with human perception than standard RGB.

Gradient Prediction. In the superresolution approach of
[MRC∗20], it was observed that directly predicting high-resolution
images using GAN-based formulations leads to structural artifacts
and spatial inconsistencies. Motivated by their method, which pro-
poses superresolving the gradient image instead and using it as
guidance, we similarly predict the image gradients rather than the
output pixels themselves. The differences of the three channels are
computed and stored in positive and negative difference images.
The training data then becomes the upsized 2n × 2n anti-aliased
LAB raster images and the corresponding 2n×2n positive/negative
LAB difference images; we then train separate pix2pix network for
each.

With this data and metric space, our pix2pix network is trained to
optimize a joint objective consisting of an L1 term that forces low-
frequency correctness by penalizing per-pixel discrepancies be-
tween the predicted difference image and the ground truth one, and
a conditional discriminator (cGAN) that models high-frequency
structure by ensuring that patches from the predicted image are
statistically indistinguishable from those sampled from the ground
truth image:

L= LcGAN +λLL1. (1)

where the weight λ = 100 balances their relative contributions.

Denoising. Image generative models including ours, do not ex-
plicitly minimize the color palette size and thus tend to intro-
duce high-frequency noise and local variation in output pixel color
(Sec. 2). We reduce these artifacts by introducing a denoising pro-
cedure on top of our network outputs. In addition to directly ap-
plying the procedure above to the input low-resolution anti-aliased
raster image at test time, we also apply it to the augmented versions
of this image produced by rotations (at 90, 180, and 270 degrees)
and flips (mimicking our training data augmentation procedure).
The results are then aligned by applying corresponding inverse data
transformations on each output image, and a per-pixel median value
operator is applied to produce a final single output image. Given
that noise artifacts do not tend to obey equivariant properties, this
substantially reduces them in the final output.

Training We train separate models for each possible n×n input
resolution using a dataset comprised of pairs of n× n anti-aliased
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and 2n × 2n aliased rasterizations of the same originating vector
images. For details on rasterization, size, and composition of the
dataset, see App. A

5. Sub-Pixel Segmentation

The outputs of our learning step have higher resolution details
than the inputs and are dramatically less blurry (Fig. 7b); however,
these images still contain blur and local color variations incon-
sistent with human expectations of magnified outputs. We deblur
these low-blur intermediate images by leveraging clip-art domain
priors, and formulate deblurring as a constrained labeling problem
which associates each pixel in the output image Io with one of the
colors present in the input I, or low-blur Ia, images. We first nar-
row down the set of potential output colors by building a candidate
color palette Cv containing a subset of the colors in these two im-
ages, Fig. 8e; we then assign one of these colors to each output
pixel, Fig. 8f. When performing these computations we measure
distance D(.) between two colors using a modified Oklab [Ott21]
color space (see App. A)

5.1. Candidate Color Palette

We build our candidate palette by using the observation that view-
ers use a combination of patch and outlier seed pixels to visually
anchor the single-color regions in their perceived blur-free images
(Sec. 3). Following this observation, we initialize our candidate
color palette by detecting potential patch and outlier seeds in the
input and low-blur magnified images and including their colors as
candidates.

We define a patch of edge-adjacent same-color pixels in the input
or low-blur images as a potential patch seed, Si or Sa respectively, if
this patch is at least two pixels wide in any direction. (Fig. 8c). We
define a pixel in the low-blur magnified image as a potential outlier
seed So if its color cannot be represented as a convex combination
of its neighbor’s colors (Fig. 8d). We define the sets of colors that
correspond to these three seed types Si,Sa,So as Cv

i , Cv
a, and Cv

o
respectively.

Following observations about color distinctiveness, we require
our color palettes to satisfy a baseline lower bound on color dis-
tance between pairs of colors:

D(ci,c j)> cd , ci,c j ∈Co. (2)

We set the threshold cd = 0.005 such that 99.99% of differences
between pairs of colors in image palettes across our training set
satisfy it. For each pair of colors in Cv

i ∪Cv
a ∪Cv

o which do not sat-
isfy this requirement, we merge their respective seeds and remove
the color with the smaller seed size from the palette. We set our
candidate palette Cv to be this thinned out palette (Figs. 7c, 8e).

5.2. Colorization

We cast colorization as a discrete optimization problem of assign-
ing each output image pixel p a color c(p) ∈Cv.

Blur Characteristics. We express our expectation that output re-
gions are anchored at one of our detected seeds by introducing the
following energy term into our optimized function:

(a)  Input (16x16) (b) Intermediate Solution 

(d) Outlier seeds (e) Potential color palette (f ) Output (32x32)

(c) Patch seeds (on input and intermediate images) 

Figure 8: Candidate Color Palette: (a) input image, (b) low-blur
intermediate solution.;(c) candidate patch seeds identified in input
and itermediate images, respectively; (d) candidate outlier seeds,
framed in red (for clarity both sets of seeds are rendered over
a greyscale version of the relevant images; (e) resulting palette.
(f) Final output.

Es = ∑
p∈Io

[(1−n(c(p)))+L(c(p))] (3)

L(c(p)) =


0 p ∈ S(c), c(p) ∈Cv

i

0.1 p ∈ S(c), c(p) ∈Cv
a ∪Cv

o

1 otherwise

(4)

where S(c) are the seeds corresponding to the color c; for a color
c ∈ Cv

i originating from the input image, we define n(c) as the
number of pixels in its corresponding seeds divided by the input
image size; for a color c ∈ Cv

a ∪Cv
o originating from the low-blur

intermediate image, we define n(c) as the number of pixels in its
corresponding seeds divided by the intermediate image size. The
weights assigned to each color reflect the confidence in its corre-
sponding seeds. Larger seeds, and those originating from the input
rather than the intermediate image, are assigned a higher degree of
trust and thus a lower cost.

Distinctiveness. We promote distinctiveness between the colors
of adjacent pixels by penalizing assigning them similar, but not
identical, colors:

Ed(Io) = ∑
(p1,p2)∈E,

co(p1 )̸=co(p2)

(
e
−
(

Do(p1 ,p2)
σd

)
+

(
0.5− T (Do(p1, p2))

2

))
(5)

where T (u) is the shifted and scaled tanh
function shown in the inset on the left,
and Do(p1, p2) is the color space distance
D(co(p1),co(p2)). The first term promotes dis-
tinctiveness between side-by-side pixels that do
not have identical colors. We set σd = 0.15, cho-
sen so that the first term drops to 0 when the

the color difference nears the 90th percentile difference between
all color pairs in the palettes of our training data images. The sec-
ond term further penalizes assigning extremely similar colors to
side-by-side pixels; it is defined so as to drop to near 0 when the
difference in color is above that of 0.5% of adjacent colors in the
training set images, and to increase to 1 when only 0.1% of such
differences are below it. In setting these numbers we aim to be con-
servative and err on the side of preserving input details.
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Cross-Resolution Consistency. We formulate the expectation that
our output images should, in general, be close to the network pre-
dicted intermediate images as

Ea(Io, Ia) = ∑
p∈Io

D(co(p),ca(p)). (6)

Simplicity. We promote simplicity, and penalize the formation of
regions that viewers are unlikely to expect, via a combination of a
corresponding penalty term and hard constraints:

Ec(Io, Ia) = ∑
(p1,p2)∈E,co(p1 )̸=co(p2)

e

(
−D(ca(p1),ca(p2))

2

σ2
d

)
. (7)

This term penalizes the assignment of different output colors to
adjacent pixels, where the penalty reflects the difference in color
between the pixels in the intermediate image. This formulation as-
signs lower penalties to assignments which are more consistent
with the network predicted approximate solution. Note that this
sum excludes same-color pairs.

Simplicity Constraints We explicitly suppress hallucination by
imposing a combination of size and color difference constraints on
the outputs. First, on the assumption that viewers do not hallucinate
regions that are more narrow than a single pixel in the input image,
we disallow subpixel, or 1-pixel wide, output regions. Second, our
simplicity and color distinction properties suggest that viewers are
unlikely to mentally form small regions whose color is very similar
to one or more of their neighbors. We therefore require all small re-
gions in our outputs to satisfy a lower bound on the color difference
between them and each of their neighboring regions

D(c(p1),c(p2))> ca, p1 ∈ rs,(p1, p2) ∈ E. (8)

Here rs ∈ R are all regions in the output whose size is less than n/3.
Less than 10% of regions in our ground truth data fall below this
threshold; we refer to such regions as indistinct.

Combined Energy Function. Our energy function combines all
terms outlined above:

E(Io) = Es(Io)+wb(Ed(Io)+Ec(Io, Ia))+waEa(Io, Ia). (9)

We set wa = 10 and wb = 0.5, prioritizing pixel-level consistency
with the approximate magnification output over all other consider-
ations and weakly promoting seed anchoring.

5.2.1. Optimization

Minimizing the assignment energy E(Io) while enforcing the sim-
plicity constraints requires solving an NP-hard problem with no
standard solution mechanisms. We obtain a suitable approximate
solution that satisfies all constraints above by first minimizing the
assignment energy without enforcing the constraints, and then en-
forcing simplicity by modifying the output colorization.

Unconstrained Optimization. We obtain the color-to-pixel as-
signment that minimizes E(Io) using a classical graph-cut frame-
work [BK04]. By promoting simplicity (Eq. 7) we preferentiate
outputs with compact region boundaries, and implicitly minimize
the number of colors used in the output colorization (Tab. 1). Our
output palettes are typically about half the size of the candidate
ones.

Satisfying Simplicity. We identify and remove all regions in our
unconstrained optimization output that violate our simplicity con-
straints, using a bottom-up approach that merges such regions with
their neighbors while keeping the overall energy E(Io) as small
as possible. We remove sub-pixel regions first, and then indistinct
ones. For each pair of regions we consider merging, we compute
E(Io) before and after the merging step; we then perform the merg-
ing operation which increases E(Io) the least. We shorten unneces-
sarily long region boundaries sometimes introduced by this step as
discussed in App. A.

6. Results and Validation

We tested our method on 112 diverse, previously unseen anti-
aliased raster inputs generated from 77 different vector images: 12
inputs at 16× 16, 43 inputs at 32× 32, 37 inputs at 64× 64, and
17 inputs at 128× 128. These include depictions of organic (e.g.
Fig. 6) and synthetic (e.g. Fig. 4) content, including both simple
inputs (e.g. Fig. 5) and ones with intricate details (e.g. Fig. 1); see
App. B.1 for details. Visual inspection, and qualitative and quan-
titative assessments described below, confirm that our results are
consistently well aligned with viewer expectations. Our evaluation
focuses on inputs with resolutions of up to 100× 100px since at
higher resolutions anti-aliasing is highly localized which in turn
makes color palette and region topology extraction much easier.
We include 128×128px inputs to verify that our method continues
to be viable at larger resolutions; at this resolution our method con-
tinues to achieve state of the art performance (Fig. 15). To enable
quantitative evaluation, all the inputs tested were generated by ras-
terizing vector images (using the default rasterization framework
in Adobe Illustrator, see App. A for details)). The color palettes
of the vector inputs we used range in size from 2 to 172 colors,
with the median palette size being 8 colors. Throughout the pa-
per we show our results on 30 inputs whose originating vector art
color palettes range in size from 5 colors (Fig. 5) to 114 (Fig. 1),
additional results are included in the supplementary. In addition to
visual inspection, we evaluate our method by comparing our results
to those generated using algorithmic alternatives, and demonstrate
the usability of our outputs for a range of applications.

Visual Comparison to Prior Work. We compare our results to
those produced by a range of prior methods in Figs. 1, 4-6. Figs. 9,
10 and 11 include additional comparisons between our method
and the most competitive prior work, including Adobe Lightroom
[Ado21], the recent neural superresolution method Real-ESRGAN
[WXDS21] retrained and fine-tuned on our data, and the commer-
cial VectorMagic software [Vec17]. For the latter, to provide an
apples-to-apples comparison, we either vectorize our outputs us-
ing VectorMagic enabling vector-to-vector comparison (Fig. 1,11)
or show both their vector outputs and the blur-free rasterizations of
these outputs at our output resolution enabling raster-space compar-
ison to our outputs (Figs. 9, 10). Results are illustrated on inputs of
resolutions of n = 16,32 and 64 (inputs whose sizes are not pow-
ers of two are padded using their background color to bring them
to the nearest power of two). Additional comparisons are shown in
the supplementary material.

As these comparisons show, the vast majority of prior methods
potentially applicable to the problem we address fail to remove
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(a) Input (16x16)

(a) Input (32x32)

(a) Input (64x64)

(c) Real-ESRGAN (retrained, 16x16)

(c) Real-ESRGAN (retrained, 32x32)

(c) Real-ESRGAN (retrained, 64x64)

(e) VectorMagic (32x32 Rasterized)

(e) VectorMagic (64x64 Rasterized)

(e) VectorMagic (128x128 Rasterized)

(f) Our Output (32x32)

(f) Our Output (64x64)

(f) Our Output (128x128)

(d) VectorMagic (Vector)

(d) VectorMagic (Vector)

(d) VectorMagic (Vector)

Dist.: 0.071478      #Colors: 543 - - - #Colors: 110 Dist.: 0.127834      #Colors: 10 Dist.: 0.037671      #Colors: 28

Dist.: 0.097339      #Colors: 2245 - - -

- - -

#Colors: 53 Dist.: 0.108253      #Colors: 4 Dist.: 0.042452     #Colors: 15

Dist.: 0.077181     #Colors: 6415#Colors: 341 Dist.: 0.068027      #Colors: 51 Dist.: 0.064392      #Colors: 58

Dist.: 0.096280      #Colors: 678
(b) Lightroom (32x32)

Dist.: 0.089244      #Colors: 2750
(b) Lightroom (64x64)

Dist.: 0.082805     #Colors: 7277
(b) Lightroom (128x128)

Figure 9: Our results (f) and those created by Adobe Photoshop Lightroom [Ado21] (b), retrained Real-ESRGAN [WXDS21] (c), and
VectorMagic [Vec17] (vector and rasterized) (d and e), on inputs of varying resolutions (a). Captions report the color counts in each image
and the distance in RGB space between them and the corresponding GT images.

Input (16x16)

Input (64x64)

Input (32x32)

Our Output (32x32)

Our Output (128x128)

Our Output (64x64)

VectorMagic (32x32 Rasterized)

VectorMagic (128x128 Rasterized)

VectorMagic (64x64 Rasterized)

VectorMagic (Vector)

VectorMagic (Vector)

VectorMagic (Vector)

10
0
0
0

Ours:
Both:
Vector Magic:
Neither:

10Ours:
0Both:
0Vector Magic:
0Neither:

9
1
0
0

Ours:
Both:
Vector Magic:
Neither:

Figure 10: Raster space comparisons with VectorMagic [Vec17]
across varying resolutions. Left to right: input, VectorMagic output,
VectorMagic output rasterized, our output. Column on left reports
comparative study preference summary for each input ((c) vs (d)).

anti-aliasing blur and often generate outputs which are even blurrier
than the inputs. Our subpixel deblurring approach produces much
crisper blur-free outputs, with drastically smaller color palettes.
VectorMagic successfully reduces blur, but often loses fine grained
details that our method successfully retains (e.g. the smile of the
girl in Fig. 10, or the right arm of the snowman in Fig. 1)

Quantitative Comparison. Cross-resolution consistency sug-
gests that our desired outputs should be similar, if not identical, to
double resolution aliased rasterizations of our inputs’ originating
clip-art images (GT). We measure the degree of similarity between
these GT images, and our and alternative results, using both RGB

Input (64x64) VectorMagic (Vector) Our Output (128x128) Our output vectorized
by VectorMagic (128x128)

Input (64x64) VectorMagic (Vector) Our Output (128x128) Our output vectorized
by VectorMagic (128x128)

Input (32x32) VectorMagic (Vector) Our Output (64x64) Our output vectorized
by VectorMagic (64x64)

Input (32x32) VectorMagic (Vector) Our Output (64x64) Our output vectorized
by VectorMagic (64x64)

Figure 11: Vector space comparisons with VectorMagic [Vec17].
Left to right: input, VectorMagic output, our output, our output vec-
torized with VectorMagic.

and Oklab color space distance (Figs. 5, 9). Tab. 1 reports these
numbers for our method as well as the results of the three closest
best methods: [Ado21], [Vec17] and [WXDS21] (retrained on our
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16px 32px 64px all inputs
RGB & Oklab dist. ♯color RGB & Oklab dist. ♯color RGB & Oklab dist. ♯color RGB & Oklab dist. ♯color

Antialiased input 0.1026 / 0.0449 67.5 0.0639 / 0.0248 102.4 0.0407 / 0.0159 167.2 0.0606 / 0.0244 122.8
Lightroom [Ado21] 0.0951 / 0.0520 640.5 0.0583 / 0.0274 1715 0.0419 / 0.0196 3888 0.0575 / 0.0281 2413

Real-ESRGAN [WXDS21] 0.0635 / 0.0283 525.3 0.0466 / 0.0191 1249 0.0272 / 0.0114 2552 0.0415 / 0.0174 1655
VectorMagic [Vec17] 0.0934 / 0.0378 8.5 0.0536 / 0.0203 9.3 0.0296 / 0.0111 13.7 0.0502 / 0.0193 11

Ours (intermediate solution) 0.0393 / 0.0208 329.3 0.0302 / 0.0128 751.1 0.0200 / 0.0088 1608 0.0275 / 0.0124 1027
Ours (final output) 0.0334 / 0.0137 18.2 0.0250 / 0.0091 11.9 0.0158 / 0.0059 17.1 0.0226 / 0.0085 14.9

Originating vector ♯colors 7.9 8.1 14.1 10.4

Table 1: Quantitative comparisons of our outputs against the three closest competitors. Measurements include color space difference (L1

norm) in RGB and Oklab between the results of each method and the corresponding GT image (aliased, double-resolution rasterization
of the input’s originating vector image) and color palette sizes. Our outputs are closer to GT in color space than those produced by the
alternatives and have comparable palette sizes to the originating vector images. (Numbers computed across all 78 low-resolution inputs in
comparison_ESRGAN_Lightroom_VectorMagic_ours.pdf in the supplementary material.)
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0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

VectorMagic [Vec17]

Real_ESRGAN [WXDS21]

Lightroom [Ado21]

Bilinear+[KHEK76]

XBR [Hyl11]

MMPX [MG21]

Vote Percentage ours both other neither

Figure 12: Summary of user preferences in our comparative study
on low resolution (100px or less) data. Our method is preferred by
a significant margin over all alternatives.
data). Numbers for other methods that we compare against are re-
ported in the supplementary. As the numbers show, the color space
distance we obtain is roughly half of that measured for other meth-
ods, with the difference most pronounced at lower resolutions. We
also compare the sizes of the different color palettes. While our
final palette size is very similar to that of GT data, the palettes
produced by Real-ESRGAN are two orders of magnitude larger,
making their results unsuitable for any of the downstream appli-
cations we target. Consistent with visual inspection, VectorMagic
palettes are more similar size wise to the GT ones; however, Vector-
Magic outputs are a lot less faithful in terms of color space distance
(0.0226 us vs 0.0502 VectorMegic).

For ablation purposes we report the same measurements for our
intermediate low-blur solutions. We note that the distance from
these intermediate solutions to GT is lower than that of [Ado21],
[WXDS21] and [Vec17] by a significant margin (52% lower than
AdobeLightroom, 34% lower than Real-ESRGAN and 45% lower
than VectorMagic in RGB color space). At the same time, the num-
ber of colors in these intermediate solutions is two orders of mag-
nitude higher than the corresponding GT color counts. Our final
outputs have both 18% smaller color space distances to GT and
two orders of magnitude smaller color counts.

Qualitative Comparison As stated above, our goal is to produce
outputs consistent with viewer expectations. To evaluate how view-
ers perceive our outputs compared to those produced by alternative
methods, we performed a comparative perceptual study (App. C).
Study participants were shown input anti-aliased images (on top),
together with our result and an alternative result (below) and were
asked to “Mentally deblur and magnify the anti-aliased raster im-
age on the top (A). Which of the images on the bottom (B or C)

comes closest to the blur-free image you mentally assembled?” The
answer options were “B”, “C”, “Both”, and “Neither”.

In our study, we compared our results to those produced
by representative methods for vectorization [Vec17], superres-
olution [WXDS21], upsampling [Ado21], magnificationXBR,
McGuire2021PixelArt, and deblurring [KHEK76]. We included 40
queries for VectorMagic, which showed the closest performance to
ours: 10 queries at 16×16px, 15 at 32×32px, and 15 at 64×64px .
For all other methods we included 15 queries each: 10 at 32×32px,
and 5 at 64×64px. Our choice of split between resolutions was mo-
tivated by our focus on lower image resolutions, where we expect
our method to be most impactful. We collected answers for each
query from ten different participants; each participant answered 20-
25 questions, organized so that no participant saw the same input
twice.

Our study results are summarized in Fig. 12. Our method outper-
forms all baseline methods by a factor of 9 to 1 or more; compared
to the closest best performing alternative [Vec17], participants pre-
ferred our results 75% of the time, judged them as on par 14% of
the time, and preferred the alternative only 8.5% of the time. A
plurality of participants preferred our outputs in all comparisons
against the methods of [Ado21, Hyl11, MG21] and [KHEK76]. In
comparisons against [WXDS21] a plurality preferred our outputs
on 14 inputs, and judged them on par on one input. In a compari-
son against [Vec17] a plurality of participants preferred our results
on 35 inputs, judged the results as on par on 4, and preferred the
alternative on 1 input (Fig. 13). See supplementary for complete
results.

Input (64x64) Our Output (128x128)VectorMagic (128x128 Rasterized)VectorMagic (Vector)

0Ours:
1Both:
9Vector Magic:
0Neither:

Figure 13: The only under 100px study input for which a plurality
of participants preferred the output of VectorMagic over our output.

Applications. While our subpixel deblurred outputs are ex-
tremely useful on their own for applications where double-
resolution deblurred versions of legacy images are needed (for in-
stance, image retargeting for mobile devices [ABA∗16], or remas-
tering legacy content for video games), our outputs can also be used
as input to a number of downstream applications. As Figs 1 and
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(a) Input (64x64) (b) Our Output (128x128) (c) 2x Magnified (256x256) 

(d) Input (64x64) (e) Our Output (128x128) (f) Recolored Output (128x128) (g) Recoloring result at input resolution
                (anti-aliased. 64x64)

Figure 14: Examples of subpixel deblurring applications. Top: our
outputs (b) can be further magnified to user desired resolution (c,
here done using [Hyl11]). Bottom: our deblurred outputs (e) can
be recolored with just a few mouse clicks (f) and can then be down-
sized to input size using anti-aliased rasterization, obtaining recol-
ored versions of the inputs (g).

Our Output (256x256)

Input (128x128)

Our Output (256x256)

Input (128x128)

Our Output (256x256)

Input (128x128)

Figure 15: Our results on 128x128px inputs.

11 show, our method can be used as a stepping stone towards bet-
ter quality vectorization of the inputs. Users can similarly use our
outputs as an intermediate step for generating even higher resolu-
tion deblured outputs by magnifying them using one of the mag-
nification methods discussed above, such as [Hyl11] (Fig. 14,top).
Finally, as demonstrated in Figs. 1 and 14,bottom, our outputs fa-
cilitate easy in-place recoloring of the input images. In particular,
while recoloring anti-aliased images requires manually adjusting
the color of individual blurred pixels along region borders, a nearly
impossible task, recoloring our outputs is a matter of a few flood-
fill clicks (Fig. 14f). Once recolored, the image can be resized back
to the input resolution using anti-aliased downsampling to obtain
the desired results (Fig. 14g).

Higher-Resolution Image Deblurring. Our method targets
lower resolution inputs (100px or less), since these are known to be
the most challenging ones to process [HDS∗18, DSG∗20, KL11].
For completeness, we qualitatively and quantitatively evaluate it
on larger (128x128px) inputs. To this end, in the perceptual study
above we included 30 comparisons of our results generated from
14 input vector clip-art images at 128x128px: 5 against each of
[Vec17, WXDS21, Ado21, Hyl11, MG21] and [KHEK76]. The re-
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Real_ESRGAN [WXDS21]

Lightroom [Ado21]

Bilinear+[KHEK76]

XBR [Hyl11]

MMPX [MG21]

Vote Percentage ours both other neither

Figure 16: Summary of user preferences on high resolution (128px)
data. Our method significantly outperforms five of the alternatives,
and performs on par with the best performing one.
sults of the study are summarized in Fig. 16. At an input resolu-
tion of 128px our method was judged as significantly better than
five out of the six alternatives; against VectorMagic participants
judged our results as better or on par 52% of the time and pre-
ferred VectorMagic 44% of the time; participants selected “neither”
4% of the time. In terms of quantitative similarity to GT, our ap-
proach is closer in color space to GT than all alternatives, producing
RGB distance of 0.0109 compared to 0.0159 for VectorMagic, and
0.0197 for Real-ESRGAN. Similar trends hold for measurements
in Oklab space. In terms of the palette size, our results (42 colors
on average) are also close to the GT (21.5 colors on average), but
higher than the 22 obtained by VectorMagic. This difference likely
explains the increase in viewer preference for VectorMagic at this
resolution.

7. Conclusion

We presented a novel method for subpixel deblurring of low-
resolution anti-aliased raster clip art images and demonstrated it
to significantly outperform prior art. Key to our method is a two
step approach that combines data driven learning of approximate
subpixel deblurring with a discrete optimization process guided by
perceptual and domain priors that further improves debluring qual-
ity and drastically compacts the output color palette.

Our work suggests a few avenues for future research. First, we
employ only minimal regularization (App. A) to produce our out-
puts. As highlighted by prior work [DSG∗20] human observers
mentally regularize input images using cues such as symmetry or
parallelism. One can easily apply these principles to further reg-
ularize our outputs, and our work might benefit from enforcing
additional cues identified by clip- and pixel-art vectorization re-
search [HDS∗18,DSG∗20,KL11] such as connectedness and sym-
metry. (We hypothesize that a lack of regularization is why viewers
prefer the output of VectorMagic over our result in Fig. 13.) Our
method is heavily reliant on color space metrics that aim to as-
sess how visually distinct pairs of adjacent output regions are, and
improving upon existing metrics is also an interesting and impor-
tant topic for future research. Lastly performing end-to-end sub-
pixel debluring within a learning framework is an intriguing future
problem.
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Appendix A: Implementation Details

Dataset.

We assemble a dataset of 145 vector images by collecting vector
clip-art from online repositories. These consist of a variety of com-
plex shapes comprising single or multiple objects; different color

Input: anti-aliased
low-res image

skip connections

Output: high-res 
difference image

+ =

High-res image

U-Net

Figure 17: Our U-Net architecture adopted from [IZZE17].

flatten

real

fake

Figure 18: Our patch discriminator adopted from [LW16].

palette sizes and different complexity (some with as few as 4 re-
gions, others with over a hundred). We split this dataset into dis-
joint train/test subsets, with training composed of 68 and testing of
77 images.

We rasterize vector images at different n × n resolutions in
[Ado17] using the supersampling anti-aliasing setting designed for
artwork (we explore the font hinted setting in Appendix B as an ab-
lation). Additionally, we rasterize each input at double resolution
2n× 2n with no anti-aliasing. Following the cross-resolution con-
sistency principle, on training data we use these double-resolution
inputs as ground truth, and use them for quantitative evaluation for
test data.

Data Augmentation. In order to augment the training data, we
transform each image pair by rotations, reflections and switching of
RGB color channels. As a result, each distinct image in our training
dataset has 72 variations in training data. Each distinct test image
also has 72 variations, which we use for denoising pix2pix outputs
(as described in more detail in Section 4 of our paper).

Preprocessing. We add two rows of background colored pixels
around each input prior to processing; we define the background
color as the most common color along the image perimeter. This
process makes the background a single region. We remove this
padding from the final inputs. In our experiments adding padding
improved the performance of both steps of our method.

Architecture Details.

We inherit architectural design and corresponding inductive biases
from pix2pix. This includes U-Net architecture for the generator
(see Fig. 17), that preserves pixel correspondence and locality, and
a default patch discriminator (see Fig. 18) with an additional L1
loss. Our own inductive biases for architecture design focused on
perceptual color space (LAB) for the loss function computation and
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(a) Input (b) Before regularization (c) After regularization (d) Output 

Figure 19: Our regularization step removes redundant pixel-wide
protrusions along region boundaries (b,c).

gradient prediction (as opposed to direct prediction) of high reso-
lution content (illustrated in both Figs. 17 and 18).

Training Details.

We train separate models for different resolutions setting n equal
to 16px, 32px, 64px and 128px. In order to upsample n× n anti-
aliased images to the pix2pix input resolution of 2n× 2n we use
nearest-neighbour upsampling, copying one pixel in the n× n in-
put image to four pixels in the 2n × 2n counterpart. This simple
upsampling is motivated by our desire to keep the original anti-
aliasing and not to introduce additional interpolations into the in-
put. If needed, such interpolations can be learned by the pix2pix
network itself.

We use a ResNet backbone, with 6 residual blocks, for pix2pix
itself (the predictor) and leverage PatchGAN [LW16] as a discrim-
inator. We optimize networks for 300 epochs with batch size of 16
using the Adam optimizer [KB14]. We tune the learning rate for
each resolution, as it is resolution dependent, and employ a learn-
ing schedule where this rate is fixed for the first 150 epochs and
then linearly reduced to 0 over the remaining 150.

Color Space Distances

Measuring color-space distances in a manner consistent with hu-
man perception remains an open problem [SASS14]. In our col-
orization step we use a combination of established space metrics
and heuristics based on observations of our training data. Specifi-
cally, unless stated otherwise, we use OkLab [Ott21] distance for
all measurements. We overcome minute variations in pixel color
by defining two colors as the same if the distance between them
in RGB space is less than or equal to ∥(2,2,2)∥. While in our ex-
periments OkLab distances are generally well aligned with viewer
perception for colors which are farther apart, we found them too
sensitive for dark colors. Accordingly, if two colors both have RGB
space values between (0,0,0) and (20,20,20) and the RGB space
norm of their difference is below ∥(20,20,20∥, we set the distance
between them to zero.

We define pixels as outliers if their color is at least ε = ∥(5,5,5)∥
apart from the closest affine combination of its neighbor colors in
RGB space.

Boundary Regularization

As noted in Sec. 5.2, our simplicity enforcement step removes
non-simple regions but can undesirably elongate region boundaries,
and can in particular introduce single-pixel-wide protrusions. Since

viewers are unlikely to hallucinate such protrusions, we seek to re-
move them by merging them with a neighboring region. We iden-
tify protrusions which are one pixel wide and two or more pix-
els long, ignoring ones which are part of constant slope lines. We
merge the protrusion with the neighboring region of the most simi-
lar color if doing so does not introduce longer protrusions.

16×16 Inputs

Extremely low resolutions pose unique challenges, both for learn-
ing low-blur magnifications and for detecting patch seeds. The first
challenge arises since the pix2pix network uses a kernel size of 3x3
and a fixed number of kernels per residual block. As an artifact the
receptive field is fairly large and with extremely low resolution in-
puts the convolutional nature of the operations is effectively lost.
We address this challenge when training our network on 16px data
by first magnifying our inputs using nearest neighbor sampling to
32px and our outputs to 64px accordingly. At run-time, after run-
ning our approach we then sub-sample the 64px outputs back to
32px to produce the final result by using the median of each block
of 4 neighboring pixels. Aside from this input/output magnifica-
tion, we used the same data augmentation process, and train the
network with the same hyperparameters as for other resolutions.

Using our default patch seed detection on 16px inputs is sim-
ilarly problematic, as the number of pixels occupied by original
regions drops dramatically (Fig. 10, top); keeping our default crite-
rion leads to a loss of information encoded in long one-pixel wide
regions (e.g. the princess’s eyes in Fig. 10). Accordingly, for 16px
inputs we redefine the patch seeds to include all pairs of adjacent
same-color pixels. The rest of the processing remains the same.

Runtimes

Our training times are resolution dependent. Training the 16px and
32px networks took around 2.5 hours; training the 64px network
took around 6 hours, and training the 128px network took around
24 hours. Our models were trained on a GeForce RTX 2080.

Our method’s run-time is dominated by the coloring step (Sec.
5.2). Our median run-times are 0.6 seconds for 16px inputs, 3.5
seconds for 32px inputs, 33 seconds for 64px inputs, and 6.8 min-
utes for 128px inputs. Timings were measured on a Intel Core I7-
8700k running at 3.70GHz with 32GB of system memory.

Appendix B: Ablations

Invariance to Rasterization For the experiments in the paper so
far, we used inputs rasterized using standard supersampling based
anti-aliasing; supersampling is the default method used for rasteriz-
ing clip-art images [FVVD∗96]. Our blur-free magnification tech-
nique does not, however, assume any specific rasterization scheme
and can adapt to differences in rasterization within pix2pix learn-
ing. To illustrate this, we also conduct experiments with font hint-
ing as the rasterization mode. The results can be seen in Figure 20
and were produced with no pix2pix retraining. Despite the clear
differences in the inputs induced by the two different rasterization
techniques, our approach successfully produces anti-aliasing free
outputs that are sharp and structurally consistent in both cases.
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(c) Supersampling 
Input

(d) Supersampling 
Output

(a) Font Hinting 
Input

(b) Font Hinting 
Output

Figure 20: Results on inputs rasterized using different schemes: (a)
input produced using supersampling based anti-aliasing (b) input
produced using font hinting based anti-aliasing (c) output for (a);
(d) output for (b).

(a) Input (c) wa =1, wb=0.5 (e) wa =100, wb=0.5

(d) wa =10, wb=0.05 (f) wa =10, wb=5 (g) Our Method(b) low-blur magnification

Figure 21: Results of increasing and decreasing the weights wa,wb
by a factor 10.

Colorization Energy Our colorization energy E(Io) combines
four terms measuring color distinction Ed , compactness EC, cross-
resolution consistency Ea, and seed anchoring Es; we use the
weights wa = 10 and wb = 0.5 to balance these terms. In our ex-
periment (Fig. 21) we increased or decreased each of these weights
by a factor of 10. Decreasing wa or increasing wc increases the im-
portance of the compactness term, decreasing the number of out-
put regions, while the inverse changes results in the preservation
of redundant details. Our output balances the conflicting cues in a
manner consistent with viewer expectations.

Impact of Color Space Our pix2pix network is trained using the
LAB color space [FVVD∗96]. Fig. 22 compares our results to those
produced using a network trained in RGB space. The differences,
while minor overall, can impact the recovery of fine details when
the color difference between fine details and adjacent regions is not
very large.

Comparison vs Real-ESRGAN. Fig. 23 shows the impact of re-
placing our first step, based on pix2pix, with nearest-neighbour up-
sampling and then deblurring based on the Real-ESRGAN model,
retrained on our inputs. As the image shows, the blur and large
color variation in their outputs means that we are no longer to reli-
ably detect outliers and patches in the outputs of the learning step.
Consequently, our palette computation is unable to extract a mean-
ingful palette from this data.

(a) Input (b) learned low-blur 
magnification in RGB space

(c) Output using (b) (d) learned low-blur 
magnification in LAB space

(e) Our Output

Figure 22: Color space impact: (left) RGB space magnification;
(right) OkLab pace magnification; while our method recovers the
top part of the vertical line on ladybug’s back, it gets removed by
the RGB space method.

(a) Input (16x16) (b) Retrained Real-ESRGAN
 (32x32)

(c) Output from Retrained Real-ESRGAN
 (32x32)

(d) Our Intermediate Solution
 (32x32)

(e) Our Output
 (32x32)

Figure 23: Replacing our pix2pix network with Real-ESRGAN re-
trained on our inputs.

Appendix C: Study Setup

We detail below the protocols used for the three studies reported on
in the paper. All study data is provided in the supplementary.

Perception of Anti-Aliased Images

Color Palette Study

Our first informal study aimed to understand how human observers
perceive the size of the artist-intended color palettes in anti-aliased
clip-art. Participants in this study were presented with 10 anti-
aliased, low resolution images and were asked the question "Men-
tally remove the anti-aliasing blur. How many distinct colors does
the deblurred image have?" They were presented with two basic
examples (two diagonally placed rectangles, with three colors to-
tal in the image; and one single color "O" shape with two colors
total in the image); no other instructions were provided. The study
included six participants, 3 male and 3 female.

In all cases, participants perceived input images as having small
palette sizes, with answers that were largely consistent across all
inputs and closely matching the number of colors in the originat-
ing vector images. When participants did not correctly identify the
number of colors in the originating vector image, they tended to
slightly underestimate, rather than overestimate, the number of col-
ors used. This study confirms our focus on compact color palettes
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as a key property of the mental images viewers conjure when pre-
sented with anti-aliased clip-art. The survey and participant an-
swers are included in the supplementary material.

Segmentation Study

Our second informal study aimed to understand how human ob-
servers mentally segment anti-aliased clip-art images. (Fig. 2, in
paper.) Participants in this study were presented with 6 images and
were asked to ”Mentally deblur and magnify this image. Trace the
outlines of the single color regions in the blur-free output you envi-
sioned. Please pay attention to details.” They were presented with
two basic tracing examples (single color ”O” shapes and two diag-
onally placed rectangles); no other instructions were provided. The
study included five participants, four male and one female.

Participants’ traced outputs were largely consistent, with some
variation in details, and were largely closely aligned with the re-
gion boundaries in the blur-free double resolution rasterizations of
the underlying inputs. Participants did not hallucinate regions that
were not evident in the input. The outputs were therefore consistent
with our hypothesis of cross-resolution consistency and simplicity
as major factors in perception of anti-aliased clip art imagery. Our
outputs on the inputs traced by the participants are included in the
supplementary, and are well aligned with the manual tracing out-
puts.

Comparative Study

In our comparative study, participants were shown input images,
together with our result and an alternative result using the follow-
ing layout. The input was shown at the top and marked as ‘A’, and
the two magnified outputs were placed at the bottom and marked
as ‘B’ and ‘C’. The order of the magnified outputs on the bottom
was randomized. Participants were then asked to “Mentally deblur
and magnify the anti-aliased raster image on the top (A). Which of
the images on the bottom (B or C) comes closest to the blur-free
image you mentally assembled? Please zoom in to see the differ-
ences.” The possible answer options were “B”, “C”, “Both”, and
“Neither”. They were shown two ground truth examples: in one op-
tion, participants were shown the ground truth output and an anti-
aliased double resolution rasterization of the originating image; in
the other they were shown the ground truth image and a nearest
neighbor magnification of the input. Participants were shown the
answers to those. For VectorMagic we used the setting of “artwork
with blended edges”, “high quality” and “unlimited color’ which
is recommended for anti-aliased clip art and which produced the
best results. We used default parameters for all other methods. The
study included 70 participants, 53 male and 17 female. The com-
plete list of questions and answer breakdowns are included in the
supplementary.
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