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Abstract
In-hand object manipulation is challenging to simulate due to complex contact dynamics, non-repetitive finger gaits, and the
need to indirectly control unactuated objects. Further adapting a successful manipulation skill to new objects with different
shapes and physical properties is a similarly challenging problem. In this work, we show that natural and robust in-hand
manipulation of simple objects in a dynamic simulation can be learned from a high quality motion capture example via deep
reinforcement learning with careful designs of the imitation learning problem. We apply our approach on both single-handed
and two-handed dexterous manipulations of diverse object shapes and motions. We then demonstrate further adaptation of the
example motion to a more complex shape through curriculum learning on intermediate shapes morphed between the source and
target object. While a naive curriculum of progressive morphs often falls short, we propose a simple greedy curriculum search
algorithm that can successfully apply to a range of objects such as a teapot, bunny, bottle, train, and elephant.

CCS Concepts
• Computing methodologies → Physical simulation; Motion capture; Reinforcement learning; Learning from demonstrations;

1. Introduction

Why do cartoon characters have four digits instead of five
[BBC17]? It is because the hand is notoriously time-consuming to
animate, whether in drawing or digitally, owing to its high degree
of articulation. While finger motions can now be tracked by con-
sumer devices as reference [Med, HLC∗20], hand-object manipu-
lation remains challenging to capture accurately and conveniently.
Moreover, once captured, fixing and editing the result can often be
as difficult and tedious as animating from scratch, because both the
hand and the object need to move in coordination and convey the
physical realism of the interaction. Among all hand-object interac-
tions, in-hand manipulation is the hardest to animate and edit (when
compared to other motions such as grasping and pick-n-place), due
to frequent contact changes and the dynamic nature of the interac-
tion.

In this work, we apply an imitation learning framework based on
deep reinforcement learning (DRL) to physically simulate a refer-
ence motion of in-hand object manipulation. We further extend this
learning framework to adapt the reference motion to target objects
of different shapes and sizes than the source object. As a result,
we can capture manipulations of simple primitive objects with the
desired styles and actions, and then adapt the hand motion to ma-
nipulate more complex objects with various physical properties in
a physically realistic way.

Our choice of DRL is inspired by its explosive success in simu-
lating full body motions, including walking, running, jumping, ball

Figure 1: Example of motion transfer from a cube to three different
objects (left) and a two-hand manipulation (right).

bouncing and catching [WGH20, YTL18, LH18, MTA∗20]. How-
ever, it has not been applied as widely to animations of object ma-
nipulation. The robotics community is successful in applying DRL
to functional manipulation tasks with manipulators, such as ob-
ject re-orientation or peg-in-hole [RKG∗18, AAC∗19, CHM∗19],
but with less emphasis on naturalness or realism of the hand mo-
tion. To achieve natural manipulations, the computer vision com-
munity instead captures the kinematic motions of hands interact-

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

DOI: 10.1111/cgf.14741

https://diglib.eg.orghttps://www.eg.org

https://doi.org/10.1111/cgf.14741


Yunbo Zhang & Alexander Clegg & Sehoon Ha & Greg Turk & Yuting Ye / Greedy Shape Curriculum

ing with objects from human performance [TGBT20, CYX∗21,
BTT∗20, BHKH19, HLW∗18]. The resulting datasets enable the
synthesis of convincing grasping poses of a rich set of objects
[TCBT22, WWZ∗22, CKA∗22, GTT∗21], as well as dexterous and
skillful finger maneuvers [ZYSK21]. However, these results are fo-
cusing on the kinematic motion and do not enforce proper physical
constraints of the interaction. Our work benefits from high-quality
and realistic motions of object manipulation, and we further enable
physical simulation of the interactions such that our results are re-
sponsive to dynamic situations and are physically consistent.

An important challenge of object manipulation stems from the
limitless possibility of object shapes. While human hands can ef-
fortlessly adapt to geometry variations, control policies have a
harder time adjusting. Naive fine-tuning of an existing policy to
new shapes is rarely successful. A sensible strategy is then to design
a curriculum of increasingly difficult tasks to progressively guide
the learning towards solving the target shape. A natural choice is
then to use a series of shape morphs between the source and the tar-
get objects. Unfortunately, the task difficulty and training progress
do not correlate with shape progression, which makes a naive linear
curriculum ineffective. Instead, we take inspiration from the work
of Wang et al. [WLCS19] that generates an open-ended curriculum
with increasing complexity by co-evolving the policies and train-
ing environments. To this end, we propose a Greedy Shape Cur-
riculum across the morph geometry variations. During training, we
keep track of the most successful policy for each shape, and pick
the most promising shape-policy pair for further training. After a
few training epochs, we update the shape-policy pairs by testing
the new policy on all shape morphs, then repeat the process. This
strategy can effectively adapt an example manipulation of a simple
primitive object to a diverse set of everyday objects automatically.

The success of a curriculum hinges on a capable learning
framework. Ours is based on the popular DeepMimic formula-
tion [PALvdP18] on locomotion tasks. When applying it to dexter-
ous manipulations, however, we encountered several unique chal-
lenges. For instance, parameters of the contact model can greatly
affect both the difficulty and realism of a learned policy. In our
case, we carefully chose a set of stiff parameters so the resulting
motions do not suffer from sinking or sliding contacts between the
hand and the objects, and they work across all our examples without
adjustments. We also found it more effective to let the policy output
deltas from the reference motion as used in [BCHF19], instead of
the common choice of direct PD targets [PALvdP18, WGH20]. In
addition, defining an early termination criterion is more challenging
for the control of an unactuated object, because small deviations in
the object state could still become unrecoverable. With some delib-
erate design choices, we arrive at a robust imitation learning frame-
work that can simulate natural and dexterous manipulation of a va-
riety of objects. This framework serves as a solid foundation for the
greedy shape curriculum.

Our three main contributions are:

• We create a framework with well designed simulation and learn-
ing configurations for robust dexterous hand manipulation.

• We propose a novel Greedy Shape Curriculum to automatically
transfer an example manipulation of simple shapes to more chal-
lenging objects.

• We showcase that the proposed framework can learn robust poli-
cies on various manipulation tasks, even with dynamics varia-
tions.

2. Related Work

2.1. Hand Manipulation in Animation

Generating animation of realistic hand manipulation skills has
been a long-studied topic in animation.Wheatland and colleagues
[WWS∗15] summarizes the state of the art in modeling and ani-
mation in hand manipulation problems. Early work exploited tradi-
tional optimal control theory to generate hand manipulation skills
for rigid objects [Liu09, MPT12, BL14] or soft bodies [BYL16] by
planning contact forces. Instead of solving an optimal control prob-
lem, Ye and colleagues [YL12] proposed a randomized sampling
algorithm to find a set of diverse strategies. Zhang et al. [ZYSK21]
developed a data-driven approach for synthesizing a variety of ob-
ject manipulation motions via deep learning, but the generated mo-
tions are purely kinematic instead of simulated with physics. Re-
inforcement learning has also been used in generate manipulation
animations. Andrews et al. [AK13] trains goal directed policies
for one-handed manipulation without guidance from motion cap-
ture data. Another line of work has focused on synthesizing grasp-
ing motions for simulated hands [LFP07,CKA∗22,HPSK21,PZ05]
or whole-body characters [WWZ∗22]. Inspired by prior work, we
tackle the problem of hand manipulation by leveraging recent ad-
vances in DRL and physics-based simulation.

Our approach of adapting an existing manipulation motion to
different objects can also be cast as a motion retargeting prob-
lem. Retargeting of complex interactions often considers the spa-
tial relationship of two people [HKT10, JKL18], or between the
person and the environment [AAKC13], or through analysis of
the object geometry and affordance in the case of manipulations
[SDT∗22, TGBT20], without enforcing physical correctness in the
results. Recent work starts to utilize geometry representation to im-
prove the learning of manipulation control [SHX∗22]. More re-
cently, Yang et al. [YYL22] trains policies to control hands to
manipulate chopsticks through reconstructing hand motions then
then retarget to finish the manipulation tasks. We instead show that
direct imitation learning can be successful in retargeting to different
objects with a well designed curriculum.

2.2. Robotic Hand Manipulation

Dexterous hand manipulation has also been an essential topic in
robotics. Early work [HM00, SI91, HGL∗97, SH18] typically casts
manipulation into motion planning problems, which allow robots to
achieve various motions, such as tapping, tumbling, or rolling ma-
nipulations. However, these motion planning approaches often gen-
erate open-loop trajectories which cannot handle dynamic pertur-
bations. This limitation has been overcome by incorporating tactile
sensor feedbacks during manipulation [TAY10, LMH∗13]. These
methods can allow certain amounts of deviation from the planned
trajectory, but they often require accurate dynamic models for both
hands and objects.

Because of hand manipulation’s complex and discontinuous
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nature, researchers have investigated deep reinforcement learn-
ing (DRL) algorithms that can solve challenging motor con-
trol problems. A common approach [ZGR∗19, NKLK20, CM21,
ABC∗20, AAC∗19] is to cast manipulation into an MDP directly
to learn skills without human demonstrations. Andrychowicz et al.
[ABC∗20] demonstrated the successful learning of dexterous cube
manipulation on a real robot hand by combining pose estimation
and deep reinforcement learning. The work is extended to solve a
Rubik’s cube with a humanoid robot hand by applying proper ran-
domization to system dynamics and designing a curriculum with
increasing difficulty. Note that training times for these policies are
high, with the Rubik’s cube policy requiring several months of
training on 64 V100 GPUs and 920 worker machines.

While focusing on a single type of object, other work [CXA22,
HMAP21] trained a control policy in simulation to reorient
a wide variation of geometries in hand, including the YCB
dataset [CSB∗17] and various toys. However, this approach of find-
ing a manipulation policy without human demonstrations often
leads to unnatural and jerky motion. Many researchers [GELA16,
RKG∗18, RWPM21, JSK∗20, KGTL16] also have utilized human
demonstration to complete dexterous manipulation tasks. For in-
stance, Garcia et al. [GHJK20] developed a learning framework by
estimating the needed contacts to accomplish the tasks on a physics
simulator from human motions. Our approach also uses deep rein-
forcement learning to solve a dexterous hand manipulation problem
from the captured hand and object movements.

2.3. Learning to Imitate Reference Motions

Since the pioneering work of Liu et al. [LYVdP∗10, LYG15] and
Peng et al. [PALvdP18], learning to imitate a given reference mo-
tion has been a promising approach for developing natural and ef-
fective physics-based motion controllers. Starting from a short mo-
tion clip of walking, running, or kicking, researchers [PKM∗18,
LPLL19,PCZ∗20,PRL∗19,CMM∗18,MHG∗19] have extended the
motion imitation framework from various perspectives, including
interactivity, data diversity, and character complexity. For instance,
researchers trained an interactive controller to complete locomotion
tasks from a wide range of walking motions. Won et al. [WGH20]
invented a scalable motion imitation framework by employing an
ensemble of expert networks. Lee et al. [LPLL19] trained a full-
body muscular skeleton character to track the motion capture data
by introducing a hierarchical controller. Researchers [WGH21]
also developed a technique to solve control of multiple characters in
competitive games with a manually designed multi-stage learning.
Some prior work [LLLL21, WL19] have discussed how to adapt
policies to variants of the training mocap sequences, rather than
simply following the given reference motion. Our work also em-
ploys the motion imitation framework while applying it to dexter-
ous hand manipulation, which has not yet been fully investigated
with motion imitation.

2.4. Curriculum learning

Curriculum learning [BLCW09] is one of the common techniques
for solving challenging problems. It generates tasks with increasing
difficulties until it finds solutions for the most difficult scenarios.

Many prior works [KP12, HTS∗17, YCBVdP08, TKH21] design
a curriculum manually using prior knowledge to train locomotion
controllers for complex tasks. Instead of a naive curriculum, recent
works [WL19, XLKvdP20] propose adaptive curriculum methods
based on the value function of the trained policy. In another closely
related line of work, researchers [WLCS19, WLR∗20] propose al-
gorithms to design an open-ended curriculum for policies and envi-
ronments without specifying any target task. In our work, we take
inspiration from these ideas and propose a new curriculum learning
framework, Greedy Shape Curriculum, to generate complex manip-
ulation trajectories with various objects.

3. Simulation Setup

We perform physics simulation using Mujoco [TET12] inspired by
successful prior work in hand manipulation [GHJK20, ABC∗20].

3.1. Motion Capture Sequences

Figure 2: A still frame
from an input motion cap-
ture sequence.

We use the object manipula-
tion motion capture dataset from
Zhang et al. [ZYSK21]. The
data was captured at 120 frames
per second with the Optitrack
[Opt22] system using reflective
markers. A total of 19 markers
are placed on each hand: four on
the thumb, three on each finger,
and three more on the back of the
hand. The Optitrack system out-
puts object motions as rigid bod-
ies, and the finger motions are
reconstructed using DeepLabels
[HLW∗18].

3.2. Hand and Object Models

Figure 3: Hand model
with 20 rotational axes.

The dataset comes with a hand
model and object models. The
hand model consists of 20 de-
grees of freedom, and we model
each finger segment as capsules
(see Figure 3). For efficient col-
lision detection in the simula-
tion, objects are modeled either
as convex primitive shapes such
as a cube or a cylinder, or approx-
imated as a combination of con-
vex primitives if they are noncon-
vex (e.g. torus and wine glass). For simplicity purpose, we only en-
able the collision between the hand and the object. Self collision
within the hand are disabled during the manipulation training.

3.3. Contact Parameters

We find that the contact-rich nature of in-hand manipulation tasks
demands greater care when choosing simulation parameters related
to collision resolution. Mujoco formulates contacts as a constrained
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optimization problem rather than a linear complementary problem
to control the compliance of contact surfaces. In all of our exper-
iments, we choose Mujoco built-in contact parameters that corre-
spond to highly stiff surfaces. Specifically, we set the fixed con-
straint impedance to 0.95. We also reduce the solver’s time constant
from 0.02 to 0.005, which is the inverse of the natural frequency
times the damping ratio. Unfortunately, such stiff contacts increase
the instability of the simulator. As a mitigation, we choose ellip-
tic friction cones and the RK4 integrator, and run the simulation at
600Hz. We additionally found slipping could be a common failure.
To increase friction, we set the ratio of friction-to-normal contact
impedance to 5, and strengthen the friction forces with higher nor-
mal forces. For more details of the contact model, please refer to
the official documentation [TET12]. We found the above settings
empirically works over all the motion sequences we tried, allowing
us to achieve effective dexterous manipulation without the fingers
“sinking” into the object’s surface or sliding over sharp edges.

4. Motion Imitation

The foundation of our algorithm is an imitation learning frame-
work. In the following sections, we describe the observations, ac-
tions, reward functions, and the training procedure. We explain
these for a single hand, but our method can trivially incorporate
both hands by increasing the state and observation dimensions.

4.1. Problem Formulation

Given motion capture trajectories for a hand (or both hands) and an
object, we aim to learn an effective policy that can manipulate the
object by following a reference trajectory.

We formulate the control problem as a partially ob-
servable Markov Decision Process (PoMDP) with tuple
(S,O,o,A,T ,r,o,γ), where S is the state space, O is the
observation space for the hand and the object, A is the action
space for actuating the hand, T is the transition dynamics (physics
simulation), r is the reward function, o is the observation emission
function, and γ is the discount factor. At a high level, we want to
find a parameterized control policy πθ so that it will maximize the
expected sum of rewards over a distribution of trajectories

πθ∗ = argmax
θ

E(s0,s1,...,sT )

[
T

∑
t=0

γ
tr(st ,πθ(st))

]
. (1)

4.2. Observation representation

The observation space can be divided into four components: the
states of the simulated hand and the object {xhand ,xob j}, refer-
ence states of hand and object from mocap {x̄hand , x̄ob j}, their dif-
ferences from simulation {x̄hand ⊖ xhand , x̄ob j ⊖ xob j}, and contact
information {C}. As studied in Bergamin et al. [BCHF19], using
the difference between simulation and reference as observation im-
proves both training speed and quality.

Simulated states: The positional state of the hand xhand =
(xh_root ,Rh_root ,cos(q),sin(q)) is a 46D vector containing the pose
of the root and all joint angles of the hand, where xh_root ∈ R3 is
the 3D position of the wrist, Rh_root ∈ R3 orientation of the wrist

represented as axis-angle, and q ∈ R20 are all the joint angles in a
hand. xob j = (xo_root ,Ro_root) is a 6D vector containing the posi-
tion and axis-angle orientation of the simulated object. vhand and
vob j are 26D and 6D vectors containing the velocities of the hand
and the object. Note that we actuate the hand’s orientation directly,
and we found the use of axis-angle for hand orientation to be espe-
cially important for success.

Reference states: x̄hand and x̄ob j are the reference poses of the
hand and object at the current frame expressed in the same format
as the pose of simulated hand and object.

State differences: x̄hand ⊖ xhand and x̄ob j ⊖ xob j are the differ-
ences between the simulated pose and the reference pose of both
the hand and object. For all the rotational information, we evalu-
ate the rotation differences in SO(3) and express the difference into
the corresponding format of axis angle or sine and cosine of Euler
angles used in the observation.

Contact information: We include an additional 19D vector C to
capture the contact forces between the hand and the object. We sur-
round each finger capsule with a contact sensor that is a slightly
larger capsule with a 10% larger radius. These contact sensors reg-
ister contact forces from the object at each control step, and we
record the sum of all contact forces exerted by the object on each
rigid segments of the hand through the contact sensors. Because the
sensors correspond to finger segments, their readings indicate how
much contact forces are being exerted, and implicitly inform where
the contacts are.

Combining all the described observation components, we have
a 207D vector that describes the state of the simulation when we
are considering a manipulating task involving a single hand. When
we train the policy to track a two-hand manipulation sequence, we
double the observations for the hand and end up with a 390D vector.

4.3. Action Representation

Similar to the approach in [BCHF19], at each time step t, the policy
outputs an action at = {∆x,∆R,∆q}, a 26D vector specifying the
spatial displacement to the hand’s reference pose, where ∆x ∈ R3

is the hand root linear displacement, ∆R ∈ R3 is the root orien-
tation displacement expressed in axis-angle, and ∆q ∈ R20 is the
joint angle displacement for each joint. We apply an exponential
action filter with α = 0.3 to generate smoother motions. Once the
PD target is computed, we compute joint torques using the stable-
PD controller [TLT11]. The full control loop is shown in Figure 4

4.4. Reward Function

Our goal is to track the reference motions of both the hands and the
object as closely as possible. Inspired by the original DeepMimic
paper [PALvdP18], we design our reward function as follows:

r = wodrod +worror +whdrhd +whrrhr +wh jrh j (2)

which consists of the object position term rod , the object rotation
term ror, the hand position term rhd , the hand orientation term rhr,
and the hand joint term rh j. To enforce a match between the simu-
lated object and the reference object’s position and orientation, we
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Figure 4: Overview of the control loop

define the terms rod and ror:

rod = exp
(
−kod∥x̂ob j − xob j∥2

)
, (3)

and

ror = exp
(
−kor∥q̂−1

ob jqob j∥2
)
, (4)

which compares the object’s position xob j and orientation qob j to
their desired values. For all N rigid segment of the hand with the
index i, we define the reward terms rhd and rhr:

rhd = exp

(
−khd

N

∑
i=1

∥x̂i − xi∥2

)
, (5)

and

rhr = exp

(
−khr

N

∑
i=1

∥q̂−1
i qi∥2

)
, (6)

where xi and qi represent the position and orientation of the ith body
segment. In addition enforcing the hand rigid segment’s tracking,
we also define the reward term rh j

rh j = exp

(
−kh j

M

∑
i=1

∥θ̂i −θi∥2

)
, (7)

by comparing all the current and desired joint angles, θ and θ̂. For
all experiments, we set the weights as wod = 4, wor = 4, whd =
0.05, whr = 0.05, and wh j = 0.1.

4.5. Terminal Condition

As studied in DeepMimic [PALvdP18], early termination of a roll-
out when the simulation enters an unrecoverable state can save
computation on low value trajectories. We design the early termi-
nation criteria to restrict how much the object’s state is allowed
to deviate from the reference: either dthr = 10cm in translation or
φthr = 60◦ in rotation. We choose these thresholds to allow the
hands to explore its action space more freely, but this still elimi-
nates irredeemable failures.

5. Greedy Shape Curriculum for Novel Objects

It would be undesirable to record a new motion capture sequence
for each new object that we want to manipulate. Instead, we would
like to generalize an existing motion example to different objects
in simulation. For example, we may want to manipulate a teapot or

Figure 5: Illustration of our greedy shape curriculum. Each iter-
ation of the algorithm (1) selects and trains the most promising
(policy, shape) pair, (2) evaluates the updated policy on all shapes,
and (3) overwrites a shape’s policy pairing if the new policy is bet-
ter than the cached policy. Example policy performance metrics are
displayed numerically below each policy shape.

a toy train using the same reference motion for a cube. However, it
is not straightforward to learn an effective policy for a new shape
because it often requires significant changes in the control strategy.

Our key intuition is that we can co-train policies on a set of in-
termediate shapes morphing between the original object and the
target object as a curriculum. A naive method would be to use a
training curriculum that starts the learning from the source object
and gradually morph the shape to the target in a linear progres-
sion. In practice, however, this linear curriculum is often unsuc-
cessful because the morphing progression may not exactly correlate
to the task’s difficulty. A better tuned morphing algorithm might be
able to give stronger correlation between morphing progression and
training difficulty, but such algorithm requires additional human ef-
fort, and may not be able to generalize across different source target
pairs.

Instead, we design a novel training schedule that allows greedily
switching between any intermediate shape morphs for a more flex-
ible curriculum. Our algorithm maintains a collection of best poli-
cies for each shape. For every K = 20 policy iteration, it selects the
best performing unsuccessful morph and its paired policy for the
next round of training. Once the policy is further trained, the newly
updated policy’s performance is evaluated across the entire collec-
tion of shapes, and overrides existing policies if it performs better
(Figure 5). Despite its greedy nature, we found this automated cur-
riculum more effective in policy transfer than naive fining-tuning
or a fix curriculum. The full procedure is described in Algorithm 1.

A key component of our greedy shape curriculum is a goodness
score that describes how likely a policy will succeed on a given
shape. This metric will be used to update the best policy for a shape,
and for selecting the next (shape, policy) pair for training. An ob-
vious choice would be the average episodic reward. However, the
consideration here is slightly different. A high episodic reward im-
poses a more strict constraint to the quality of object pose match-
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Figure 6: Morph stages of the collision shapes for transferring the cube motion to a bunny after applying V-HACD.

Figure 7: Still frames from manipulation sequences involving a wineglass (top) and a hemisphere (bottom).

ALGORITHM 1: Greedy Shape Curriculum
1: Initialize score list S
2: Initialize policy list Π

3: Initialize current shape s = 0 and current policy π = Π[s]
4: for i = 0,1,2, . . . do
5: if i mod k == 0 then
6: for Every shape j do
7: score = rollout on j using policy π

8: if score > S[ j] then
9: S[ j] = score

10: Π[ j] = π

11: end if
12: end for
13: s = Get best unsuccessful shape
14: π = Π[s]
15: end if
16: PPO using s and π

17: end for

ing, making it hard to achieve when the target shape is too different
from the source shape. A low episodic reward, on the other hand,
cannot guarantee the completion of a rollout. On the other hand,
the rollout length alone is too simple and fails to reflect the qual-
ity of the motion. We want a criteria with high tolerance to object
deviation but with low tolerance to failure of completion. To this
end, we design our criteria as a combination of the rollout duration
and tracking accuracy, and this works robustly in practice. As de-
scribed in Equation 8, we use the product between the normalized
episode length and the sum of hand joint reward of the rollout as
the goodness score of a policy for a given shape. This encourages
the resulting policy to use a similar manipulation strategy to the in-
put. We consider a score higher than d = 0.55 as successful, and we
only pick from the unsuccessful shape morphs for policy training

to make progress.

f =
L
T
· ∑

L
0 r joint

T
(8)

Our greedy schedule is effectively an exploitation strategy, and
we still need to balance it with some exploration to avoid local
minima. If a particular shape is repeatedly picked for training and
starving other shapes, we instead randomly select another shape
and its paired policy in the next iteration. This is especially help-
ful when a policy gets “stuck” on a challenging frame towards the
end of a sequence while other shapes have not had much training
yet. Training progress on other shapes can then help improve such
challenging cases later. Similarly, if we are successful on all shapes
before the compute budget has been reached, we randomly pick a
policy to continue training for further improvement.

6. Results

To validate our approach, we evaluate the performance of our pol-
icy on a variety of mocap sequences. These include single-handed
manipulations of several distinct objects, as well as passing and
rotating an object between two hands. We show that the resulting
policies can endure a moderate amount of dynamic perturbations.
We also demonstrate successful transfer of manipulations to novel
everyday objects using our greedy shape curriculum. Please refer
to the accompanying video for visual evaluation.

For all of our results, we use Proximal Policy Optimization
(PPO) [SWD∗17], a common on-policy reinforcement learning al-
gorithm. The policy architecture is a fully connected network with
two hidden layers, each of which has 256 units with tanh activation
functions. Each policy is trained with 32 million observation/action
pairs over 800 iterations. This training setting is held consistently
across all trainings for original object sequences and shape morphs.

Because our source shapes are convex, we can use a simple
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(a) (b) (c) (d) (e)

Figure 8: Examples of transferring the manipulation of an original shape (top) to a target shape (bottom). Left to right, the examples shown
are: cube to teapot, cube to elephant, cube to bunny, cube to toy train, and cylinder to bottle.

projection-based shape morphing technique in order to generate
intermediate shapes. To create the morphs, we project all vertices
from the target shape to the surface of the source shape. We then
use the intermediate positions along the projection paths as the
vertex positions for each morph. For each shape pair, we create
four intermediate morphs with vertices linearly interpolated be-
tween the corresponding positions on the source and target shapes.
To create Mujoco compatible models, we use the commonly used
convex decomposition method V-HACD [MLP16] with a maxi-
mum voxel resolution of 40 × 40 × 40 to generate a collection
of convex parts for each of the intermediate morphs. All the
morphing operations are retrieved from a pre-processing stage in
Blender [The02]. Figure 6 shows an example of the collision shapes
of the source, target, and all intermediate morphs between a cube
model and a bunny model. In later sections, we refer to each
shape by its interpolation distance from the original shape along
with the shape name. For any intermediate shape, the shape name
is referred to as "Morph". For example, the sequence of morphs
from the cube to the bunny are denoted as Cube(0.0), Morph(0.2),
Morph(0.4),Morph(0.6),Morph(0.8), and Bunny(1.0).

We conduct our experiments on AWS C4 compute nodes with
36 virtual cores on each machine. Each learner process executes
800 iterations of PPO, collecting 32 million rollout samples in total
with 8 parallel worker processes at a rate of 350 frames per second.
This results in an end-to-end policy training duration of about 40
hours, depending on the complexity of the object’s geometry and
the number of contacts.

6.1. Reproducing single dynamic sequences

We first demonstrate the success of our approach across a diverse
set of sequences involving a variety of objects and manipulation
skills. First, we train a set of policies to track single-handed ma-
nipulation sequences, involving different objects over a 4-second
horizon. These results indicate that our approach is successful for
sequences involving both primitive convex objects such as cubes,
cylinders, and hemispheres, as well as more complex, concave ge-
ometries such as a torus and a wineglass. Figure 7 (top) shows
still frames from the manipulation of a wineglass, an example of
a non-convex object, and (bottom) shows still frames from rotat-

ing a hemisphere in the hand. Additionally, we show that our ap-
proach can be trivially extended to control two-handed manipula-
tions that require coordination, such as passing and cooperative ro-
tation shown in Figure 1.

Even though each policy is trained to follow one object manip-
ulation sequence, it is able to endure moderate dynamic perturba-
tions. To demonstrate this, at random frames through the simula-
tion, we apply forces of 8N on all fingertips for 0.25 second. De-
spite these perturbations, the policies adapt to these forces and still
successfully track the motion. Similarly, a policy can easily track
a motion sequence when modifying the masses and friction coeffi-
cients of the manipulated objects. These results are best seen in the
supplementary video.

We summarize a quantitative analysis of success rates and mean
reward of our final policies across the full set of motions in Table 1.
To compute each entry in the table, a sample population of 500
episode rollouts are initialized from the first frame of each motion
capture sequence, and stochastic policy actions are applied until
the final frame is reached successfully or the object tracking error
crosses a threshold value. For a more detailed analysis and com-
parison, we cache the episode length of each trial, and plot the
percentage of the rollouts that meet or exceed a range of rollout
length thresholds. In our experience, a success rate was too simple
to capture the performance of the policy for our problem because

Table 1: Success rate on example sequences with stochastic policy
execution (500 samples). The maximum cumulative reward is 500.

Experiment Sequence Success % Cumulative Reward

Single Hand

Cube 1 94 463.16
Cube 2 81.6 415.18
Cube 3 98.6 480.45

Cylinder 1 75.6 403.88
Hemisphere 1 88.6 431.58

Torus 1 85 432.55
Wineglass 1 94.2 458.99

Two Hand
Cube Passing 82.6 417.66
Cube Rotation 99.6 482.63
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Figure 9: Completion percentage of all sequences. This plot illus-
trates the relationships between the difficulty of a given frame and
the associated success rate. The least performing sequence (Cylin-
der1) has more than 75% success rate to complete the entire roll-
out.

it does not capture various difficulties of different frames. To this
end, we plot “completion percentage” that shows the percentage of
successful policies (Y-axis) to reach the given frame (X-axis). We
summarized completion percentages in Figure 9. The figure shows
how difficult each sequence is, and how often a final trained pol-
icy can successfully track the object to the end of the sequence.
For instance, the cylinder 1 motion shows a significant drop of the
completion percentage around frame 300, where thumbs are having
trouble rotating a standing cylinder back into the palm, and thus
where the cylinder may fall out of the hand.

6.2. Transferring to Complex Objects using a Greedy Shape
Curriculum

We demonstrate that using our greedy shape curriculum, we can
easily train policies that can manipulate both the source object and
the target object by tracking a provided motion clip. For example,
Figure 8 shows the simulation result after adapting the manipula-
tion of a simple shape (e.g. cube or cylinder) to a more complex
object (teapot, elephant, bunny, toy train, bottle).

We compare our method with a naive curriculum learning
method where a policy will only proceed to the next shape morph
when the previous one receives a goodness score above the thresh-
old. Two examples are shown in figure 10. In the figures, blue
dashed lines indicate the policy training progression, and the black
dots indicate which shapes are receiving a better score when evalu-
ating the current policy. We highlight the first success of each shape
in green dots labeled with the respective score. Greedy shape cur-
riculum results are shown on the top row, and the naive curriculum
results are on the bottom row.

Figure 10 (a) shows an example in which the intermediate
morphs do not introduce a smooth linear curriculum. The naive
curriculum (bottom row) spends the majority of its compute budget
on Morph(0.2) and eventually stops at Morph(0.8) without reach-
ing the target shape. In contrast, the greedy shape curriculum (top
row) skips training on these two difficult morphs, yet still finds a
successful policy for the target shape by utilizing the other inter-
mediate morphs. Training starts on Morph(0.4) and finishes much
sooner than the 800 iteration budget at iteration 320, by alternating
among Cube(0.0), Morph(0.6), and the target Bunny(1.0). The two

difficult shapes, Morph(0.2) and Morph(0.8), do not get trained on
and are not successful at the end.

Our greedy shape curriculum can also be more efficient than
the naive curriculum in easy cases when both methods succeed. In
Figure 10 (b), the greedy shape curriculum picks the target shape
Elephant(1.0) for training at iteration 80 by inheriting the policy
trained on Morph(0.6) at iteration 20. After further training, it is
able to successfully manipulate the elephant at iteration 120. On
the other hand, the naive curriculum has to receive high goodness
score on all five previous shapes before succeeding on the target
shape Elephant(1.0) at iteration 240.

To highlight the benefits of our method, we compare greedy
shape curriculum with four different baselines: 1) Training a sin-
gle policy on the target shape; 2) Training a single policy over both
the source and the target shapes; 3) Training a single policy over
the collection of morphs from the source and the target shapes; 4)
Training a collection of policies using a naive curriculum over all
morphs. For each of the baselines, we take the mean policies trained
from four random seeds, apply them on the target shape, and record
whether or not they can successfully complete the rollout without
hitting the early termination criterion. All trials are trained using 32
million samples over 800 iterations. As shown in Table 2, Greedy
Shape Curriculum has the highest likelihood of producing work-
ing policies for all the target shapes under a fixed sample budget. In
comparison, training on the target shape directly has a lower chance
of success. Using a naive curriculum may be helpful in some cases
but could be harmful in others, because only a subset of the sam-
ple budget is allocated to improve the target shape. On the other
hand, training one generalized policy on multiple shapes is mak-
ing the problem more challenging and is therefore more difficult to
succeed, especially when the compute budget is limited.

6.3. Refining successful policies

Due to the simplification on disabling the self collision within the
hand, the generated animation sometimes have the hand interpen-
etrating between the fingers. To mitigate the issue, we take the
trained policy on target morph from the result of Greedy shape cur-
riculum, and refine the training with a hand model with self colli-
sion enabled. This simple refinement can often result in more phys-
ically realistic motion qualities for the manipulation. A comparison
is shown in Figure 11.

7. Limitations

Although we have been successful in tracking reference manipula-
tions, we still sometimes observe noticeable penetrations between
the hand and the object. Such artifacts are due to the contact han-
dling mechanism in the physics engine. They are more pronounced
when the object has a narrow or thin feature, such as the stem of
the wine glass. In addition, we found that having a self-collision en-
abled hand makes the physics simulation very fragile that rollouts
can easily get early terminated during training. Successful policies
on target morphs can hardly be trained under this setup, and we end
up disabling the self-collisions within the hand, and lead to some
finger interpenetration in our results. Even though further refining
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(a) (b)

Figure 10: Comparison between our greedy shape curriculum (top) and naive curriculum (bottom) method. Part (a) shows policy training
for cube-to-bunny, and part (b) shows cube-to-elephant. Note that our method often trains more quickly than the naive approach. The graph
at the bottom of (a) shows failure of the naive approach to even find a solution. The blue dashed lines show which shape is being trained
at each iteration. Black dots indicate which shapes can receive higher goodness score when using the currently trained policy. Green dots
indicate the first successful iteration with the corresponding goodness score, and red dots means the shape was not able to be solved when
training completes.

Table 2: Comparing the success rates of our method against four different baseline methods. Each method is trained with four random seeds.

Original Sequence - Target Shape Direct Target Source + Target All morphs Naive Curriculum Greedy Shape Curriculum
Cube1 - Teapot 50% 0% 0% 50% 75%
Cube1 - Bunny 100% 0% 0% 50% 100%
Cube1 - Train 100% 50% 0% 75% 100%

Cube2 - Bunny 50% 0% 0% 0% 100%
Cube2 - Elephant 25% 0% 0% 0% 25%
Cube3 - Elephant 50% 0% 0% 100% 100%

Figure 11: Interpenetration between fingers (left) is resolved after
refining the policy with self-collisions enabled (right).

the resulting policies may mitigate the artifacts, it’s not guaranteed
to reach an interpenetration-free rollout.

We are still limited in how much the target shape can deviate
from the source shape, and we cannot guarantee to always find a
successful policy. With extreme changes in shape or size, the origi-
nal manipulation strategy as captured may no longer be suitable or
feasible. Related to this, our method cannot discover and explore
novel manipulation skills that deviate significantly from the input.
Even when successful (eg. the object is not dropped), the resulting
finger motions may at times appear unnatural. The simple imita-
tion term in the reward function and in the goodness score trades

off exploration and exploitation, and could become a limiting fac-
tor in inventing new ways to interact with an object. An Adversarial
Motion Prior [PMA∗21] could be a promising mitigation.

Lastly, we found that some mocap sequences are particularly dif-
ficult to simulate because of noisy or erroneous frames. Although
the motion imitation can learn a robust policy and “correct” these
invalid frames via physics simulation, they tend to significantly
slow down the learning process.

8. Conclusion

We have demonstrated training of policies for in-hand manipulation
of objects based on motion capture data. Moreover, using a greedy
shape curriculum, we can also adapt a given motion to a new shape.
Because we use physics simulation, any disturbances or changes in
physical properties are reflected in the object and hand motions.
Our results closely mimic the fluidity and naturalness of real hands
in the mocap examples.

One interesting direction for future work would be to reuse the
existing motion clips for generating novel manipulation motions.
Building a manipulation motion graph [LPLL19] to smoothly join
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manipulation mocap clips would be one possible approach. Unlike
locomotion data where activities are highly repetitive, it is much
harder to find suitable transition points with similar object and con-
tact states, making this a challenging direction to explore.

Currently, policies generated from our method are only special-
ized to the target shape that it is trained on. We believe it is a first
step towards solving a universal policy that can generalize to arbi-
trary shapes and task goals, which would be fruitful future work
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