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1. Motion Update Procedure

Upon the completion of the procedural optimization, we employ an
element shuffle function, S(x), in the implementation level, to ex-
tract and rearrange the elements of the displacement x according to
the optimization order. When we update the avatar motion, we con-
vert the rearranged displacements, (xt

R,x
t
S,x

t
L), back to the original

form of x using the inverse form of S(), S−1(xt
R,x

t
S,x

t
L) = x.

The resulting avatar motion Mtar is obtained by performing the
procedural updates of the user motion as follows:

Minit =Msrc ⊕ (p̄P
0 −p0, ln (q̄

P
0 q−1

0 ),01×(3×(NJ−1))),

Mtar = ((Minit ⊕S−1
R (xR))⊕S−1

S (xS))⊕S−1
L (xL),

where xR = SR(x), xS = SS(x), and xL = SL(x) are the element
shuffle functions for each optimization variable in the implementa-
tion level. In the only example of the inverse form, S−1

R (xR) = x, x
has valid values of xR only in the original displacement form, while
the remaining elements are zero.

2. Sub-matrices in Eq (1)

In this section, we explain the sub-matrices of the matrix used in
Eq (1) of the main paper in detail.



α r1,2 · · · r1,NC 1 sT
1

r2,1 α · · · r2,NC 1 sT
2

...
...

. . .
...

...
...

rNC ,1 rNC ,2 · · · α 1 sT
NC

1 1 · · · 1 0 01×3
s1 s2 · · · sNC 03×1 03×3





wT
1

wT
2
...

wT
NC

wT
NC+1

wT
NC+2

wT
NC+3

wT
NC+4


=



tT
1

tT
2
...

tT
NC

01×3
01×3
01×3
01×3


(1)

For the full derivation of Eq (1), please refer to Eberly [Ebe18]
and Keller and Borkowski [KB19]. Thin plate spline minimizes a
smoothed bending energy [KB19]. The minimization can be for-
mulated as a form of Euler-Lagrange differential equation [Ebe18],
and it is generally solved by exploiting the Green’s function that
has a radial basis kernel, ri, j =

∥∥si − s j
∥∥2 ln

∥∥si − s j
∥∥, in our case.

Given source and target points, a matrix form of the differential
equation can be written as follows:
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Here, G is composed of the basis functions with given source
points. α is a smoothing factor that is set to 0 in our case. W1
and W2 are unknown matrices. S′ ∈ RNC×4 is a matrix consisting
of row vectors,

[
1 sT

i

]
, i = 1,2, · · ·NC. The additional dimension

by 1 in S′ makes each row a basis of the null space satisfying the
condition of orthogonality [KB19] as shown below:

S
′TW1 = 0 (3)

Simply concatenating Eq (2) and Eq (3) leads to the same linear
form as Eq (1) as follows:[

G+αI S′

S
′T 0

][
W1
W2

]
=

[
T
0

]
(4)

3. Qualitative Evaluation

We conducted two experiments to find out the operable range of
our method. The first experiment was to identify the allowed orien-
tation difference between the corresponding remote and local ob-
ject before the resulting motions become unacceptable. We created
9 scenarios by rotating the remote chair with respect to the cor-
responding local chair from 30◦ to 120◦ both in clockwise and
counter-clockwise directions with an increment of 30◦. The sec-
ond experiment was to identify the allowed size difference between
two spaces. We created 19 remote spaces by scaling the size of the
remote space to be −80% to +100% with an increment of 10%,
where 0% has the same size as the user space. The remote space
of −90% was too small to include a single object and therefore
excluded from the experiment.
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Forty-one participants were recruited (27 males and 14 females)
with an age range from 21 to 42 (average age: 29.2). The users
were instructed to watch the videos that show the resulting avatar
motion for each scene and asked to score on a 5-Likert Scale about
the naturalness of the overall motion, where 1, 3, and 5 represent
’very unnatural’, ’neutral’, and ’very natural’, respectively.

For statistical analysis, we applied the Kruskal-Wallis rank sum
test to both experiments. For the first experiment, the average rat-
ing scores became smaller as the orientation difference between
two objects becomes larger as shown in Figure 1a. There existed
significant differences at −120◦ and +90◦ and above (p < 0.05).
For the second experiment, the score dropped more sharply when
the remote room becomes smaller than when it becomes larger as
shown in Figure 1b. There existed significant differences at −50%
and below and +80% and above (p < 0.05). Based on this anal-
ysis, we concluded that our method synthesizes visually-plausible
motions within the ranges of −90◦ to +60◦ in terms of the orien-
tation difference between two objects and −40% to +70% in terms
of the size difference between two spaces.

(a) Average ratings on naturalness with respect to the orientation differ-
ences between two objects. The error bar indicates the standard error of
the mean.

(b) Average ratings on naturalness with respect to the size difference be-
tween two spaces. The error bar indicates the standard error of the mean.

Figure 1: Average rating scores for the orientation and size differ-
ences between two objects and spaces, respectively.
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