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Abstract
In this work, we present a new method for 3D face reconstruction from sparse-view RGB images. Unlike previous methods
which are built upon 3D morphable models (3DMMs) with limited details, we leverage an implicit representation to encode
rich geometric features. Our overall pipeline consists of two major components, including a geometry network, which learns
a deformable neural signed distance function (SDF) as the 3D face representation, and a rendering network, which learns to
render on-surface points of the neural SDF to match the input images via self-supervised optimization. To handle in-the-wild
sparse-view input of the same target with different expressions at test time, we propose residual latent code to effectively expand
the shape space of the learned implicit face representation as well as a novel view-switch loss to enforce consistency among
different views. Our experimental results on several benchmark datasets demonstrate that our approach outperforms alternative
baselines and achieves superior face reconstruction results compared to state-of-the-art methods.

CCS Concepts
• Computing methodologies → Mesh models; Shape analysis;

1. Introduction

In this paper, we tackle the problem of 3D face reconstruction given
sparse-view input, i.e., to generate a textured face mesh based on
a set of RGB images taken from different views. This problem is
long-standing in both computer vision and computer graphics with
many real-world applications, such as portrait manipulation and
augmented/virtual reality.

Compared with reconstruction from a single RGB image or
RGBD input, multi-view face reconstruction is a more practi-
cal setting with recent development of mobile devices, since
it does not require additional depth senor but still provides
rich information from different views about the target. Previous
methods [BBB∗10, BHPS10] propose to reconstruct 3D faces
under controlled environments, where the multi-view images are
captured from well-calibrated camera arrays with fixed lighting.
Although these methods can successfully produce high-fidelity
3D face models, their usage scenarios are quite limited due to
the complex hardware setup and their performances downgrade
significantly for general input. To address these drawbacks, some
recent approaches [BCR∗20, BCLT21, SSL∗20] exploit 3DMMs
[BV03, PKA∗09, ZLY∗15] together with multi-view algorithms
to leverage cross-view geometric consistency and demonstrate
promising improvement. However, those methods are built upon
3DMMs or the variants, where the number of vertices is limited and
the topology is fixed. Therefore, it remains challenging to generate
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Figure 1: Face reconstruction results of DFNRMVS [BCR∗20]
and our method from two-view inputs. The last two columns are
our reconstructed geometry and the rendering results. Our method
captures more local details (red boxes).

a faithful 3D face with high-quality details from multi-view input,
especially in an uncontrolled setting or when the input views are of
different expressions.

In this work, our focus is to improve the generalization perfor-
mance as well as the quality of sparse-view 3D face reconstruction
by learning an implicit neural representation. Our key insight is
that, unlike 3DMMs that are limited by a pre-defined shape space,
implicit functions such as SDFs can represent surfaces with arbitrary
resolution and topology [ZYDL21, YKM∗20, GYH∗20, PFS∗19].
To this end, we propose to learn a Geometry Network that serves as
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a neural SDF for reconstruction of the target 3D face. Specifically,
the proposed Geometry Network consists of two sub-modules, i.e.,
a Reference Network and a Deformation Network. The Reference
Network is trained offline to learn the SDF of a mean face given the
training set and provides an initiation of SDFs for optimization at
the test time. The Deformation Network generates local details and
changes topology if necessary by learning to deform the SDFs. Our
experiments show that such a decomposition effectively leverages a
3D face prior to enhance the generalization capability of the network
and prevents the neural SDFs from collapsing or distorting during
optimization with limited views (e.g., 2∼4 views).

Inspired by [YKM∗20], we further present a Rendering Network
based on self-supervised optimization. This module learns to render
on-surface points sampled from the implicit 3D face geometry. The
self-supervision is achieved by minimizing the difference between
rendered colors and the corresponding input images. Additionally,
we use geometry and color latent codes to encode shape and texture
information among different instances to enhance the generalization
ability of the trained network. To expand the shape space of the
learned neural SDF, we introduce residual latent code at test time.
Furthermore, we design a view-switch loss via exchanging the latent
code among different views and minimizing the rendering loss to
enforce consistency across different views. As a result, our method
can reconstruct 3D faces from sparse-view input with high-fidelity
details. See Figure 1 for an example of 3D face reconstruction
from two in-the-wild images of the same person but with different
expressions.

To summarize, our main contributions are as follows:

• We present a pipeline for 3D face reconstruction from sparse-
view input, including a Geometry Network to learn a deformable
implicit neural representation for 3D shapes and a Rendering
Network to model the facial texture.

• We propose a novel view-switch loss as well as a newly designed
latent code space of the implicit morphable model. These two
terms help expand the underlying shape space and enforce cross-
view consistency at the test time.

• We conduct both qualitative and quantitative evaluations on
benchmark datasets to demonstrate that our method outperforms
baseline approaches and is comparable to state-of-the-art face
reconstruction algorithms.

2. Related Work

The literature on 3D face reconstruction is vast and the algo-
rithm input ranges from depth map [KKT∗14] and single im-
age [TTHMM17, KZT∗18, RSOEK17, DSK17, ZWC∗20, CCZ∗19,
FWS∗18, SSL∗20, CLL∗21, XYC∗20, GSL∗20] to multi-view im-
ages [BCLT21, BCR∗20, WBC∗19, DYX∗19, SBFB19, CLC∗22]
and videos [GZC∗16, TBG∗19]. Since our main focus is 3D face
reconstruction from sparse-view images using neural SDFs as the
geometric representation, in this section, we briefly review 3D
morphable models, multi-view 3D face reconstruction methods,
and the most relevant implicit neural representations.

Face morphable models. The well-known 3D morphable model
[BV03,PKA∗09,CWZ∗13,ZLY∗15] is a bilinear parametric method
that decomposes the face geometry/texture into a template and

a deformation component with respect to this template based on
principal component analysis (PCA). Due to their simplicity and
effectiveness, 3DMMs are widely used in faces reconstruction
and animation. However, the capability of such models is limited
by the basis of PCA. Even though several recent methods (e.g.,
[CWZ∗13, YZW∗20, SSD∗20]) propose to extend the face basis
with more 3D face scans from larger datasets, the geometry or
texture space of those methods is still a subspace of real-world
face space. For a complete report of 3D morphable face, we refer
to [EST∗20].

Multi-view face reconstruction. Existing learning-based algo-
rithms for multi-view 3D face reconstruction can be roughly cate-
gorized into supervised methods [GZC∗16, CHZ14, BCR∗20] and
self-supervised methods [DYX∗19, SBFB19, WBC∗19]. [GZC∗16]
exploits parametric geometry prior information to learn a plausible
coarse face mesh and fine-scale details are captured via shading-
based refinement from videos. [BCR∗20] proposes to expand
the basis of 3DMMs via adaptive optimization to improve the
representation of such parametric models and enforce multi-view
consistency. To alleviate the requirement of large-scale 3D scan
datasets, some researchers tackle this problem in a self-supervised
manner. [DYX∗19] uses aggregated complementary information
among different images to achieve multi-view reconstruction.
However, those models are built upon 3DMMs, where the mesh
topology is fixed and cannot represent high-frequency details easily.

Implicit neural representation. In recent years, methods based on
implicit neural representations are emerging for shapes [DYT21,
YGKL21, PFS∗19, AL20, DNJ20, GCS∗20, TLY∗21, GYH∗20,
ZYDL21,TCY∗21] and scenes [ERB∗18,SZW19,JSM∗20,KSW20].
The seminal work DeepSDF [PFS∗19] encodes a category of shapes
into a neural network, while the specific features of each instance
are encoded into a latent code. Based on DeepSDF, [DZW∗20]
proposes a curriculum architecture to enhance the quality of the
reconstructed shape. Those methods are used to obtain the implicit
neural representations of shapes, objects, or scenes with 3D data
(e.g., point cloud) as the supervision. [ZYDL21, DYT21] further
decompose the implicit neural representation for 3D geometry into
a deformation and a template implicit representation. [SHN∗19]
exploits pixel-aligned implicit function to estimate the surface of
human subjects and the corresponding texture.

Recently, [SLB∗21, GTZN21, MST∗20, YYTK21, KJJ∗21] pro-
pose to synthesize novel views from a set of images by recon-
structing the underlying 3D scene/object geometry and the neural
radiance field at the same time. [YKM∗20,WLL∗21] use neural SDF
to represent surface geometry and reconstruct the target shape from
multi-view images. However, most of those techniques require more
than 30 images from different viewpoints for each object/scene, and
the reconstructed surface will collapse for sparse-view input due to
the lack of prior information about the object/scene. Among those
methods, the most relevant one is i3DMM [YTB∗21], which builds
implicit 3D morphable models for human heads with hair from
a dataset of 3D scans and requires calibrated dense-view capture
of the subject. Our goal instead is to reconstruct a 3D face from
sparse-view 2D input and thus is more challenging than the setting
of i3DMM.
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Figure 2: Overview of the proposed method. Our method consists of the Geometry Network and Rendering Network. And the Geometry
Network can be decomposed into a Deformation Network and a Reference Network. v is the view direction from the camera center C0 to the
randomly sampled pixel p. x is the corresponding on-surface point, and n is the normal vector. zgeo,zc are the geometry and color latent codes,
respectively. lgeo is the feature from Geometry Network (i.e., fgeo(·)). w(·) is the positional encoding function. ( ) denotes the concatenate
operation. For conciseness, we only present one view of the instance, while most of our experiments are sparse-view inputs.

3. Our Method

3.1. Face Representation and Problem Statement

In an implicit neural representation based on signed distance field
(SDF), the geometry of a 3D face can be represented as the zero
level set of a scalar valued network f :

Sθ =
{

x ∈ R3| fθ(x) = 0
}

(1)

where the network fθ(x) gives the signed shortest distance s of a
query point x ∈R3 to the face geometry Sθ and θ ∈Rm are learnable
parameters of the network. To model the facial texture, we extend
the network output to include a vector c ∈ R3, which represents the
color of the closest point on the face from the query point.

To further model various faces of different identities and expres-
sions, we introduce a latent code z to represent the face instance
in a portrait image. Following i3DMM [YTB∗21], we denote the
network as fθ(x, z) to take this latent code as additional input.

In both the training and test stages, we jointly optimize the
network parameters θ and the latent code z as described in detail
below, in order to obtain the desired morphable model and the
corresponding implicit representation of each face instance. To
simplify the notation, we omit θ in the subscript and rewrite the
network as {s, c}= f (x, z).

3.2. Network Components

As illustrated in Figure 2, our overall framework consists of two
network components, i.e., a Geometry Network fgeo and a Rendering
Network frender. Accordingly, the latent code z of each face instance
can be decomposed into two parts, i.e., a geometry code zgeo
and a color code zc, which are used as input of fgeo and frender,
respectively.

Geometry Network. Our Geometry Network fgeo is a scalar
valued function to model the implicit 3D face shape. We follow
i3DMM [YTB∗21] to further decompose fgeo into two successive
components, i.e., a Reference Network fref to learn an implicit
reference shape, and a Deformation Network fdeform to predict
a deformation offset ∆x conditioned on the reference shape. The
Reference Network can be considered as a neural version of the
mean face in traditional 3DMMs [BV99], while the Deformation

Network models the per-instance variations from the mean face. As
a result, the Geometry Network can be formulated as:

fgeo(x,zgeo) = fref ◦ fdeform(x,zgeo)

= fref(x+∆x).
(2)

Rendering Network. Our Rendering Network frender is introduced
to model the face texture in a self-supervised manner, where the
texture information is encoded as the color latent code zc for
each face instance. Therefore, for a given surface point x of a
certain instance, the RGB value c(x, zc) can be modeled using our
Rendering Network by taking several factors into account together:

c(x, zc) = frender(x,zc,n,v, lgeo), (3)

where n is the surface normal, v is the view direction, and
lgeo ∈ R256 are geometric features computed as additional out-
put by the Geometry Network fgeo. Note that the normalized
gradient of the signed distance computed by the Geometry Net-
work at a point x is the corresponding surface normal, i.e., n =
∇ fgeo(x,zgeo)/∥∇ fgeo(x,zgeo)∥2.

3.3. Network Training

Dataset. We use a training partition of the Stirling/ESRC [SE18]
dataset to train our network, which contains more than 700 registered
3D face scans of about 95 subjects. To prepare training data for the
Geometry Network fgeo, the 3D scans are scaled to fit into a unit
bounding box and then aligned to the same orientation. We then
randomly sample 860K on-surface points from each registered scan
in a uniform distribution. We consider these points together with the
corresponding normals as the zero level set of each SDF and use
them to train the Geometry Network. To prepare training data for
the Rendering Network frender, we render about 40 RGB images of
each 3D face scan from random view directions. For each rendered
image, we also compute a binary mask to represent the face region.

Geometry loss function. Given a face instance i with a geometry
latent code zi

geo and a set of sample points ΩI , the overall geometry
loss function Lgeo is computed as:

Lgeo(zi
geo) = λILI +λdLd +λeikLeik +λregLreg (4)

where λI, λd, λeik, and λreg are hyperparameters to balance different
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loss terms. We set λI = 1, λd = 0.01, λeik = 0.1, and λreg = 1e-4 in
our experiments.

In Eq. (4), LI is a reconstruction loss to enforce the signed
distance values of sampled on-surface points are close to zero and
the normals of those points are close to the ground truth values:

LI =
1

∥ΩI∥1
∑

x j∈ΩI

(∥∥∥ fgeo(x j,zi
geo)

∥∥∥
1

+λn
∥∥n j − n̂ j

∥∥
2

)
,

(5)

where ∥·∥1 is the L1 norm, ∥·∥2 is the L2 norm, ΩI = {x j} j∈I
is a randomly sampled set of the on-surface points, n j =

∇ fgeo(x j,zi
geo)/

∥∥∥∇ fgeo(x j,zi
geo)

∥∥∥
2
, and n̂ j is the ground truth

surface normal of the on-surface point x j. We set λn = 1 in our
experiments. Ld in Eq. (4) is the regularization of the deformation
offset:

Ld =
1

∥ΩI∥1
∑

x j∈ΩI

∥∥∥∆xi
j

∥∥∥
2
=

1
∥ΩI∥1

∑
x j∈ΩI

∥∥∥ fdeform(x j,zi
geo)

∥∥∥
2
,

(6)
and Lreg = ∥zgeo∥2 is the regularization for the geometry latent
code. Finally, Leik is the Eikonal term to avoid universe zero and
ensures that fgeo approximates valid SDFs [GYH∗20, YKM∗20]:

Leik =
1

∥ΩD∥1
∑

x′j∈ΩD

(∥∥∥∇ fgeo(x′j,z
i
geo)

∥∥∥
2
−1

)2
, (7)

where ΩD = {x′j} j∈D is a set of points sampled from a uniform
distribution within a unit bounding box.

Given N face instances within a mini-batch, we can jointly
optimize the parameters θgeo of the Geometry Network fgeo and the
geometry latent codes {zi

geo, i = 1, . . . ,N} of these N instances by
solving the optimization problem below:

argmin
θgeo,{zi

geo}

1
N

N

∑
i=1

Lgeo(zi
geo) (8)

Rendering loss function. Given a pair of a rendered RGB image
and the corresponding face mask, we randomly sample a subset of
pixels P in the image plane and use the following rendering loss
function Lrender to train our Rendering Network frender:

Lrender = τrgbLrgb + τmaskLmask + τdLd + τeikLeik + τregL′
reg (9)

where τrgb, τmask, τd, τeik, and τreg are set to 1, 100, 1e-4, 0.01,
and 1e-4 to balance different loss terms. L′

reg = ∥zgeo∥2 +∥zc∥2. In
Eq. (9), the loss terms Ld and Leik are similar to those in Eq. (4),
while Lrgb is the RGB reconstruction loss and Lmask is the mask
loss, respectively.

Specifically, the RGB reconstruction loss is computed as:

Lrgb =
1

∥P∥1
∑

p∈P
∥cp − ĉp∥1 (10)

where cp is the RGB value at the pixel p predicted by the Rendering
Network, and ĉp is the corresponding ground truth RGB value. We
use cross-entropy loss to compute the mask loss Lmask as below:

Lmask =
1

∥P∥1
∑

p∈P
CE(mp, m̂p) (11)

where mp and m̂p are the predicted and the ground truth mask values
at the pixel p, respectively. As in [YKM∗20], we use a sigmoid
function to achieve differentiable rendering of the mask.

Training strategy. Reconstructing 3D face geometry from a sparse
set of RGB input (i.e., 2 ∼ 4 views) with various expressions is an ill-
posed problem. Besides, the proposed self-supervision is achieved
by enforcing a similarity between the rendered RGB values and
the ground truth RGB values. As a result, the Rendering Network
tends to overfit the input RGB images and the implicit neural
geometry may collapse. To alleviate this problem, we first optimize
the Geometry Network with the geometry loss Lgeo to obtain a good
initialization. Then, we jointly optimize the Rendering Network and
the Geometry Network via the rendering loss Lrender.

3.4. Test-Time Reconstruction

Estimation of camera parameters. To handle in-the-wild images
at test time, we estimate camera parameters by optimizing the L1
distance between the projected on-surface point x and the ground-
truth pixel location p :

argmin
K,R

∥∥∥KRx⊤1 −p
∥∥∥

1
(12)

where K ∈ R3×3 are camera intrinsic parameters, R ∈ R3×4 is the
rotation matrix, x1 = [x,1] ∈ R1×4 are homogeneous coordinates
of the point x, and the superscript notation ⊤ is the transpose
operator. In our method, the on-surface point is defined as the first
intersection point of the ray across the pixel p and the face geometry
Sθ. The intersection point can be represented as a differentiable
function of the implicit geometry and camera parameters. We use
the differentiable sphere-tracing method [LZP∗20] to find the on-
surface point.

We use a coarse-to-fine strategy to estimate camera parameters.
Specifically, we first use the 68 landmarks of the mean face to obtain
a coarse estimation of the camera parameters. Then we refine the
camera parameters based on Eq. (12) using the Adam optimizer
with a learning rate of 1e-3.

Residual latent code. Given a sparse set of RGB images with
various expressions of an instance, it is difficult to learn the latent
code directly using the rendering loss described above. Hence, we
use principal component analysis (PCA) on the learned latent codes
of the training set and infer the weights of those PCA basis at test
time. Specifically, the latent code of an instance i can be represented
as the weighted sum of the principal components, such as:

zi
geo = z̄geo +W i

geoBgeo,

zi
c = z̄c +W i

cBc
(13)

where W i
geo ∈ R1×mgeo ,W i

c ∈ R1×mc are the weights to combine the
basis of geometry and color latent codes, respectively. z̄geo ∈ Rdgeo

and z̄c ∈ Rdc are the mean latent code for the identity and color.
Bgeo ∈ Rmgeo×dgeo ,Bc ∈ Rmc×dc are the PCA basis of geometry and
color latent code space. mgeo and mc are the number of the principal
components. We set mgeo and mc to be 85 and 65, respectively,
such that the explained variance is more than 96% for latent space
decomposition. At test time, we can obtain the combination weights
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Figure 3: Implementation details of our network architecture. The geometry network fgeo consists of a deformation network fdeform and a
reference network fref. zgeo ∈ R256 and zc ∈ R128 are the geometry latent code and the color latent code, respectively. x is the on-surface
point of the corresponding image plane pixel p. cp ∈ R3 is the predicted pixel RGB value. We use w6(·) and w4(·) as the positional encoding
functions for the on-surface point and the view direction, respectively. C0 ∈ R3 is the camera center, and v ∈ R3 is the view direction that
crosses the pixel p. ⊙ and ⊕ denote the concatenation and add operations, respectively. Each blue box represents a fully connected layer.

via solving the optimization problem:

argmin
W i

geo,W i
c

1
N

N

∑
i=1

Lrender(z
i
geo,z

i
c) (14)

We further introduce residual latent codes ri
geo ∈ Rdgeo and ri

c ∈
Rdc for each instance to expand the underlying representation space.
Hence, the latent codes of an instance i can be formulated as:

z̃i
geo = zi

geo + ri
geo,

z̃i
c = zi

c + ri
c

(15)

The optimization problem at test time can be formulated as:

argmin
W i

geo,W i
c ,ri

geo,ri
c

1
N

N

∑
i=1

Lrender(z̃
i
geo, z̃

i
c). (16)

View-switch loss. A key problem in multi-view reconstruction is
how to enforce view consistency to better leverage the multi-view
information. In our method, the view consistency is enforced from
two aspects. First, we divide the geometry latent code into an identity
component and an expression component (i.e., zgeo = {zid,zexp}).
Therefore, we can impose cross-view consistency implicitly via
enforcing different views of the same instance to share the same
identity and color latent code. Second, we propose a view-switch
loss Lsw to further impose an explicit view consistency. The key
observation to inspire our view-switch loss is that the rendered
images from different expression latent codes of the same identity
under the same camera pose should be similar when ignoring local
regions that are more likely to be influenced by varying expressions
(e.g., the mouth region).

Specifically, given two views im and in from a sparse set of images
for an instance i, we replace the expression latent code of the view
im with that of the view in (i.e., zin

exp). Then, we use the switched
geometry latent code (i.e., zim

geo,sw = {zi
id,z

in
exp}) to calculate the

RGB loss as Eq. (10) and the mask loss as Eq. (11). To reduce the
impact of expression variations among different views, we use a face
parsing network [YWP∗18] to omit pixels in the mouth region. We

denote the RGB and mask losses after switch views and latent code
as the view-switch loss Lsw to distinguish from previous versions in
Eq. (9). Hence, the total loss function L′

render at test time is:

L′
render = Lrender +µLsw

= Lrender +µ(τrgbLrgb, sw + τmaskLmask, sw)
(17)

where µ, τrgb, and τmask are set to 0.1, 1, and 100 in our experiments.

Mesh recovery. To recover the mesh from our neural SDF, i.e., Si
θ

for a face instance i, we use the Marching Cubes algorithm [LC87]
with a resolution of 250, which is a trade-off setting to balance the
output quality and the computational cost.

4. Experiments

4.1. Implementation Details

Network optimization. The optimization of the Geometry Network
fgeo contains two steps. First, we optimize the Reference Network
to represent the surface of one scan using the 3D data (i.e., the on-
surface points and the corresponding normals of this scan). Then,
the 3D training data are used to train the Deformation Network
fdeform and finetune the Reference Network fref. In the first step, we
use the Adam optimizer with a learning rate of 1e-3. For the second
step, the learning rate is 1e-4 with a mini-batch size of 32.

The learning rate for the Rendering Network optimization is set to
1e-4 with a mini-batch size of 32. At the test time, the input images
are used as the supervision to find the corresponding latent codes.
Since our method does not disentangle the lighting and skin colors,
we keep the Geometry Network fixed and finetune the Rendering
Network based on Eq. (17) with a small learning rate of 1e-4 to
improve the representation capability for in-the-wild RGB images
and reduce the domain gap. The hyperparameters of Eq. (17) are
similar to that of the Rendering Network optimization with µ = 0.1
which is reduced to zero after 10 iterations.

Network architecture. We use fully connected (FC) layers with
a width of 512 for our implicit neural networks. The numbers
of FC layers for Reference Network, Deformation Network, and
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Figure 4: Qualitative comparison between DFNRMVS [BCR∗20] and our method on the Stirling/ESRC test set. For each instance, from
left to right, we show the two input views, the results of DFNRMVS [BCR∗20], and the ones obtained via our method, respectively. For both
methods, we show the reconstructed mesh in the first row and the corresponding error map in the second row. All the results are overlaid with
the first input view. The unit of the color bar is millimeter.

Rendering Network are 8, 8, and 4, respectively. The detailed
network architecture is shown in Fig. 3.

Note that, following [YKM∗20], we present the intersection of
the ray and the surface in a differentiable way as defined in Eq. (18),
to compute the on-surface point x based on a differentiable function
of the view direction v and the implicit face geometry f :

x =C0 + t0v− v
∇ fgeo(x0,zgeo)v0

fgeo(C0 + t0v,zgeo) (18)

where C0 + t0v is the first intersection found by the differentiable
sphere-tracing algorithm, and t0 is the initial ray step. Besides, x0 =
C0 + t0v is the initial intersection position. v0 is the initial value of
the view direction.

Following several previous methods about implicit neural rep-
resentations [YKM∗20, MST∗20, YTB∗21], we use the Fourier
positional encoding [TSM∗20] for the input 3D coordinates of
the Reference Network and the Deformation Network to reduce
the difficulty of learning high-frequency functions. For each of the
three coordinates (i.e., xi) of x = {xi}3

i=1, the positional encoding
is wK(xi) = ∑

K
k=0(cos(2k

πxi)+ sin(2k
πxi)), where K = 6. For the

view direction v, we also use such a positional encoding as w4(·).

Timing statistics. We implement our method using Pytorch with
NVIDIA 2080Ti GPUs. The training time is about two days with 8
GPUs. The test-time reconstruction for one instance with 2∼4 input
views is about two hours with one GPU.

4.2. Experimental Setup

Datasets. We conduct experiments on two benchmarks for 3D face
reconstruction as listed below.

• The Stirling/ESRC dataset [SE18] provides more than 1K high-
quality 3D scans and is built upon more than 130 subjects with

8 different expressions. For each scan, a pair of RGB images
taken from yaw angles of ±45◦ are used as the texture. We split
this dataset into training and testing sets containing 95 and 35
subjects, respectively, in the same way as [BCR∗20].

• The Bosphorus dataset [SAD∗08] contains 106 subjects with
35 expressions and 13 poses. For each subject, the images of
non-neutral expressions are under the frontal view, while those
of the neutral expression are under various poses. Following
[DYX∗19, BCR∗20, BCLT21], we adopt this dataset to evaluate
the performance of our method under a two-view setting. Specif-
ically, we select a non-neutral frontal view image and another
image of a neutral expression under a yaw angle of −30◦ for each
instance. Hence, the overall test set contains 453 pairs of images.

Evaluation protocols. Following previous methods [DYX∗19,
BCR∗20, BCLT21], we use the Euclidean distance between the
ground truth 3D face surface points and the aligned output mesh to
evaluate the geometric error. The average geometric error (Mean,
in mm) and the standard deviation (STD, in mm) among all test
samples are computed and reported in our quantitative evaluations.
The alignment contains two steps: (i) we first use the ground
truth landmarks (e.g., 7 landmarks provided in Bosphorus dataset
[SAD∗08]) and the landmark points in our reconstruction results
to achieve rough alignment [Sch66]; (ii) we use the rigid ICP
algorithm [ZPK18] to further improve the alignment between
our prediction and the ground truth. Besides, the ground truth
is cropped to reduce the noise based on the corresponding 3D
landmarks. Note that those strategies are the same as previous
methods [DYX∗19, BCR∗20, BCLT21].

4.3. Qualitative Results

We present qualitative comparisons between DFNRMVS [BCR∗20]
and our method on both Stirling/ESRC and Bosphorus datasets
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Input DFNRMVS Ours
(a) Instance 1

Input DFNRMVS Ours
(b) Instance 2

Figure 5: Qualitative comparison between DFNRMVS [BCR∗20] and our method on the Bosphorus dataset [SAD∗08]. The images are
arranged in the same way as Figure 4.

Method Mean (mm) STD (mm)
Deng et al. [DYX∗19] 1.47 0.40
DFNRMVS [BCR∗20] 1.44 0.38
Bai et al. [BCLT21] 1.36 0.38
Ours 1.39 0.35

Table 1: Quantitative results using two-view input on the Bosphorus
dataset [SAD∗08].

in Figs. 4 and 5, respectively. For each test instance in both
figures, we show the two input views on the left, the result by
DFNRMVS [BCR∗20] in the middle, and our result on the right
side. We provide the flat-shaded face mesh in the first row and the
corresponding error map in the second row.

From these two figures, we can see that compared to DFNR-
MVS [BCR∗20], the geometry of our method is closer to the ground
truth with more local details, such as the forehead and the mouth
region. Also, the nose shape of our method is more similar to the
input target than that from [BCR∗20]. In Figure 5, the region of the
error map is determined by the available ground truth data.

In addition, we qualitatively compare our method with DFNR-
MVS [BCR∗20] in a two-view setting using in-the-wild images
of several different identities. Since [BCR∗20] outperforms other
previous methods [CCZ∗19, FWS∗18, TBG∗19], we only present
the comparison with [BCR∗20] in Fig. 6. In our optimization-based
framework, the entire face is treated equally and the amount of
pixels in the eye region is relatively small. Therefore, the color of
the reconstructed eyes may be slightly influenced by neighboring
pixels of skin. It is possible to alleviate this kind of artifact by
introducing different penalty weights for different subregions.

Method Metric 2 views 3 views 4 views

DFNRMVS [BCR∗20]
Mean (mm) 1.04 1.03 1.02
STD (mm) 0.33 0.30 0.29

Ours
Mean (mm) 0.995 0.991 0.981
STD (mm) 0.177 0.206 0.196

Table 2: Quantitative results on the Stirling/ESRC dataset [SE18]
with different numbers of input views.

4.4. Quantitative Results

To illustrate the effectiveness of the proposed method, we compare
with several state-of-the-art methods quantitatively in multi-view
3D face reconstruction, including [DYX∗19, BCR∗20, BCLT21].
As shown in Table 1, our approach achieves better performance in
terms of mean errors compared with previous methods [BCR∗20,
DYX∗19] and is comparable to a more recent method [BCLT21]
when evaluate on the Bosphorus dataset.

We also conduct quantitative comparisons on the test set of Stir-
ling/ESRC dataset as shown in Table 2. Since [DYX∗19, BCLT21]
have not provided results on this test set, we only compare our
results with DFNRMVS [BCR∗20]. The results demonstrate that our
method has consistently lower mean errors with different numbers
of input views. Moreover, the performance improvement of our
method becomes more significant with increased number of views.

Furthermore, it is worth noting that the number of parameters of
our method (4.99M) is about one order of magnitude smaller than
those of existing methods, such as 54.69M for [BCLT21], 83.21M
for [BCR∗20], and 53.35M for [FFBB21]. Overall, we consider our
results comparable to [BCLT21] while being superior than other
SOTA methods in terms of mean errors.
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Input DFNRMVS Ours Ours w/ texture
(a) View 1

Input DFNRMVS Ours Ours w/ texture
(b) View 2

Figure 6: Qualitative comparison with DFNRMVS [BCR∗20] based on in-the-wild input images in a two-view setting. Each row presents the
input images (i.e., view1, and view2) and the corresponding results of one identity. In each quadruple, the first column is the one of the two
input views, the second column is the reconstruction result of DRNRMVS [BCR∗20], the third column is our reconstructed mesh, and the last
column is our result rendered with reconstructed texture.

Method Mean (mm) STD (mm)
DFNRMVS 1.040 0.33
DFNRMVS∗ 1.171 0.35
Baseline 1.152 0.351
Baseline + view-switch loss 1.108 0.163
Our full algorithm 0.995 0.177

Table 3: Ablation study on the Stirling/ESRC dataset [SE18]. The
symbol ∗ denotes that the results are obtained by testing the released
model of DFNRMVS [BCR∗20] with the same samples as ours.

4.5. Ablation Studies

We perform ablation study on the test set of Stirling/ESRC dataset
to evaluate the impact of the proposed view-switch loss and residual
latent code. The corresponding two-view reconstruction results are
shown in Table 3. Our baseline is the reconstruction performance
obtained by solving the optimization problem as Eq. (14), without
using our residual latent code or view-switch loss.

As shown in Table 3, our proposed view-switch loss leads to
better reconstruction performance. The improvement of our full
algorithm with the addition of residual latent code is also noticeable
(the last row in Table 3). This fact demonstrates that our residual
latent codes effectively extend the shape space of the morphable
models. Since the Stirling/ESRC test partition of [BCR∗20] is not

available, we follow the same selection strategy as in [BCR∗20] and
present the test results of their released model on our selected test
samples for fair comparison in Table 3.

5. Conclusions

In this work, we present a novel method for 3D face reconstruction
from multi-view images via implicit neural deformation. By using a
neural SDF based representation, we are able to reconstruct faces
with high-fidelity details even from sparse-view input of diverse
expressions. Different from previous 3DMM based methods, we
propose residual latent code to extend the shape space of implicit
morphable models. To further enforce consistency among different
views of one instance at test time, we introduce a novel view-switch
loss for joint optimization of the network and latent code. Besides,
we design a training strategy for the implicit neural network to
alleviate the collapse issue during self-supervised optimization by
introducing prior information of face geometry and colors. Our
results on the Stirling/ESRC dataset and the Bosphorus dataset
demonstrate that our approach outperforms alternative baselines and
state-of-the-art methods.

Our current implementation of test-time reconstruction takes
about two hours for a single instance and the major bottleneck
is the ray-tracing module. We plan to integrate several recent
approaches [RJY∗21, GKJ∗21, TCY∗21, LGZL∗20] for accelerated
rendering of neural SDFs to speed up the computation.
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