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Figure 1: Given the same surface (a) and different signals (b), our perceptual driven method can generate different parameterizations

optimized for the texture (c). As shown in (d), our parameterizations can achieve lower perceptual loss with same number of pixels than

the parameterizations from other automatic methods, including geometry only methods (e.g. OptCuts [LKK∗18] leads to blur problem) and

previous signal-aware methods (e.g. SSP [SGSH02] has aliasing artifacts). For the explanation of the blur and aliasing artifacts mentioned,

please refer to Figure 2.

Abstract

Texture mapping is a ubiquitous technique to enrich the visual effect of a mesh, which represents the desired signal (e.g. diffuse

color) on the mesh to a texture image discretized by pixels through a bijective parameterization. To achieve high visual quality,

large number of pixels are generally required, which brings big burden in storage, memory and transmission. We propose

to use a perceptual model and a rendering procedure to measure the loss coming from the discretization, then optimize a

parameterization to improve the efficiency, i.e. using fewer pixels under a comparable perceptual loss. The general perceptual

model and rendering procedure can be very complicated, and non-isotropic property rooted in the square shape of pixels

make the problem more difficult to solve. We adopt a two-stage strategy and use the Bayesian optimization in the triangle-wise

stage. With our carefully designed weighting scheme, the mesh-wise optimization can take the triangle-wise perceptual loss into

consideration under a global conforming requirement. Comparing with many parameterizations manually designed, driven by

interpolation error, or driven by isotropic energy, ours can use significantly fewer pixels with comparable perception loss or

vise vesa.
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1. Introduction

In computer graphics, parameterization is a technique for mapping
a 3D mesh to a 2D domain. Given a signal (e.g. diffuse color)
on a mesh, one can map it along with the mesh to the 2D do-
main, then discretize the 2D signal by sampling it at pixels in a
texture image. Increasing the density of pixels, i.e. using a larger
texture image, can reduce the discretization error, but increases
the cost in storage, memory and transmission etc. To use fewer
pixels to faithfully represent the signal on a mesh, some previous
works [SGSH02,TSS∗04,CW15] propose to guide the parameteri-
zation by interpolation error. Roughly speaking, triangles contain-
ing non-smooth signals require denser sampling than the ones con-
taining smooth signals.

We argue that the common polynomial interpolation error used
in previous works is not good enough. This error does not
take the downstream rendering procedure and human’s percep-
tion [XZMB13] into account. For instance, comparing with low
frequency error, the same amount of high frequency error could
be less visible especially when the camera is relatively far away
(or screen resolution is relatively low). Besides, although the dis-
cretization defined by a texture image looks uniform, actually is not
isotropic because the texture image is composed of square-shaped
pixels in a square lattice structure. As a consequence, rotating the
parameterized mesh will change the error. However, all the previ-
ous works ignore this point, and just use a metric to characterize
the optimal parameterization for each triangle. This brings artifacts
(e.g. aliasing) for textures containing strong sharp edges.

Thus, we replace the previous “numerical” error by perceptual-

loss-on-screen which involves a customizable rendering procedure
H and a full-reference image quality assessment (FR-IQA) D. The
basic idea is to take a rendering image as the ground truth. Then,
the quality of another image is measured by the visual difference
between them, which helps find the blur problem (See Figure 2).
This error is also aware of aliasing artifacts, so it helps to optimize
the orientation of triangles in the texture domain.

Figure 2: Left: high quality rendering; Middle: medium quality

rendering (blur); Right: low quality rendering with aliasing arti-

facts. Aliasing artifacts are easily recognizable even without com-

parison while blur means the loss of high frequency details and

usually must be recognized by comparison with the high quality

rendering.

The perceptual loss and rendering procedure are generally com-
plicated, so we adopt a two-step strategy (see Figure 3). First, in
the triangle-wise step, we find the optimal local parameterization
(not only a metric) for each triangle via Bayesian optimization. To
make the problem friendly for Bayesian optimization, we carefully
re-parametrize the deformation Jacobian from a common 2×2 ma-
trix into a 4D box-constrained vector space. Then, in the mesh-wise

step, we solve the global parameterization best matching the local
optimal deformation Jacobian. To further improve the results, we
propose to use perceptual loss guided weighting scheme to replace
commonly used Frobenius norm when measuring the deviation to
the local optimal deformation Jacobian. Results show that using
our parameterization, one can use less number of pixels to achieve
comparable visual similarity or vise vesa. In short, our parameteri-
zation is more efficient.

In summary, the novelty and contribution of this work include:

• guiding the parameterization by customizable perceptual loss
and rendering procedure,

• re-parametrizing the deformation Jacobian in favor of Bayesian
optimization in the triangle-wise step,

• and a perceptual loss induced weighting scheme in the mesh-
wise parameterization.

2. Related work

Parameterization is a fundamental problem of geometry process-
ing, and many methods have been proposed. A lot of topics about
parameterization have been explored, such as kinds of distor-
tion measurements, constraints like bounded distortion, cross pa-
rameterization between different meshes, high performance nu-
merical methods, and its downstream applications like remesh-
ing [RLL∗06, BZK09], texture synthesis [YHBZ01, LH06] etc.
Some representative works are introduced in surveys like [SPR06].

Parameterization for texture mapping Most parameterization
methods measure the quality by distortion criteria like isometric
or conformal, and suggest that such a measurement is good for
texture mapping. However, it does not generally hold. Even some
texture packing methods [NS11, LVS18, LFY∗19] try to reduce
useless pixels in the texture images. They keep the resulting pa-
rameterization locally as-isometric-as-possible to the input one, so
the number of pixels covered by the mesh, i.e. the useful pixels,
in the texture image will not change significantly. A few signal-
aware methods [SWB98, SGSH02, CW15] argue that the mapping
should be adaptive and anisotropic according to the signal field,
i.e. allocates more texture samples in areas with greater signal
details. [SWB98] warps the texture domain to evenly distribute
a user-defined importance field. [BBT03] automatically computes
the field by wavelet-based technique to guide the texture optimiza-
tion. Unlikely, [SGSH02, TSS∗04] compute signal-aware param-
eterization by minimizing a signal approximation error. Noticing
the error of representing the signal are rooted in the nature of dis-
cretization by limited samples, and the desired anisotropic density
is usually induced from the polynomial interpolation error. [CW15]
computes an importance map from averaged gradient magnitudes,
which indeed is also about the error of piece-wise constant inter-
polation. [MA10] presents a perception-based metric to generates
space-optimized texture atlases from 3D scenes with per-polygon
textures. Such methods can successfully reduce the number of use-
ful pixels without significantly sacrificing the signal reconstruction
error. We take a similar view, but go a step further that measures the
loss at the end of the rendering procedure with a human perceptual
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Figure 3: Overview of our approach. With the input parameterization and texture (left), our method first optimizes the efficiency for each

triangle using perceptual-loss-on-screen (middle top). Then we solve a mesh-wise optimization to fit the triangle-wise result (middle bottom)

and obtain the optimized parameterization and texture in the end (right).

model. We also noticed that end-to-end fashion get a lot of atten-
tion in recent years. Differential rendering is obviously related to
our work. Such methods [GLD∗19,BLD20] often explicitly model
the whole rendering procedure, so the derivatives of the loss with
respect to a few variables can be computed. However, the problem
of parameterization involves large number of variables (the texture
coordinates of every vertex), and thus they are still very costly even
if computing the derivatives is feasible.

Local-global parameterization Local-global strategy is a com-
mon alternating optimization method, and widely used in geomet-
ric processing [SA07, BDS∗12]. Typically, the optimal local Jaco-
bian is computed on each element without the consideration of con-
forming condition, then a Poisson-like problem guided by these Ja-
cobians is solved to obtain a conforming mesh. For example, in
as-rigid-as-possible parameterization [LZX∗08], the optimal local
Jacobian is optimized to be the rotation best matching the current
local Jacobian in the conforming mesh, then the conforming mesh
is updated by minimizing the difference between the Jacobian of
each triangle and the local rotation. The local problem on each el-
ement usually involves small number of variables, so one can use
more complicated objective function and constraints here. For ex-
ample, [RPPSH17] enhances the local energy for flip-preventing.
Our method takes a two-stage strategy. First we optimize a lo-
cal deformation for each triangle (triangle-wise optimization), then
solve a global deformation (mesh-wise optimization). There is no
iteration at this level, so it is not a typical local-global optimize
strategy. But we can exploit the advantage of local-step and formu-
late the perceptual loss in the triangle-wise step. In the global step,
Frobenius-norm [LZX∗08, LYNF18] is generally used to measure
the deviation of the Jacobian to the optimal local one. Though it

works well in many situations, our triangle-wise problem related
measurement leads to better results in our mesh-wise problem. Our
mesh-wise optimization takes typical local-global iterations.

3. Problem statement

For a 3D triangular mesh M ⊂R
3, a single channel signal (e.g. dif-

fuse) f̂ : M → R on it is usually provided by a texture mapping
(ψ̂, Ît): a parameterization ψ̂ and a texture image Ît . For conve-
nience, we assume that parameterization ψ̂ : M → [0,1]2 maps M to
a subset of a unit square, and the texture image of resolution r̂× r̂

(with possible padding) covers this square. In other words, each
pixel covers a square with edge length 1/r̂ in the texture domain,
and number of pixels covered by M̂t = ψ̂(M) ⊂ [0,1]2 is about
r̂2|M̂t |. The texture domain signal is a 2D function f̂ t = S(Ît) :
[0, r̂]2 → R interpolated from Ît according to certain interpolation
scheme S (e.g. bi-linear), so signal f̂ at p∈M is f̂ (p) = f̂ t(r̂ψ̂(p)),
i.e. f̂ = S(Ît) ◦ r̂ ◦ ψ̂. Figure 4 shows the illustration of some im-
portant symbols used in this paper.

Using another parameterization ψ along with a new texture image
It with resolution r × r will change the texture domain signal Ît

and surface signal f̂ . The difference is estimated based on piece-
wise constant interpolation [SGSH02], piece-wise linear interpola-
tion [TSS∗04], or averaged gradient magnitudes [CW15]. Guided
by such error estimations, these methods stretch each triangle in
the texture domain by a signal-stretch metric so that the error is
uniformly distributed on the mesh.

This error does not take the downstream rendering procedure and
human’s perception into account. For instance, comparing with low
frequency error, the same amount of high frequency error could be
less visible if the camera is relatively far away (or screen resolu-
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Figure 4: Illustration of some important symbols.

tion is relatively low). Thus, we replace the previous “numerical”
error by perceptual-loss-on-screen which involves a customizable
rendering procedure H and a Full-reference image quality assess-
ment (FR-IQA) D. Roughly speaking, the mesh M along with the
texture mapping (ψ̂, Ît) can be rendered into a screen image Îs via
a rendering procedure H involving a camera C and other rendering
settings (i.e. screen resolution):

Î
s =H(M,C, ψ̂, Ît). (1)

We can also get the rendering result from ψ and It with the same
procedure:

I
s =H(M,C,ψ, It). (2)

The difference between the two rendering results, i.e. perceptual-

loss-on-screen, is

EC,H(ψ, It) =D(Îs, Is). (3)

Indeed, the texture image It under a given resolution r × r can be
formulated as a function of parameterization ψ via

I
t∗ = argmin

It

EC,H(ψ, It), (4)

and then perceptual-loss-on-screen of ψ under r,C and H is

Er,C,H(ψ) = EC,H(ψ, It∗). (5)

3.1. The two-stage approach

Obviously, E is camera-dependent, and one may immediately no-
tice that there does not exist a method of selecting C where every
triangle △⊂ M contributes to the rendering for general meshes due

to the perspective and hidden face removal. So it is not suitable for
an optimization objective on the whole mesh.

Therefore, we would take a similar two-stage strategy
with [SGSH02], where we firstly optimize the parameteriza-
tion ψi for E on every individual triangle △i (Section 4.1), and
then solve a mesh-wise optimized ψ matching ψi without direct
involve of E(Section 4.2). Later, we would verify the efficiency of
ψ on the view of the whole mesh with E for several testing cameras
in experiments (Section 5).

4. Method

Without loss of generality, we will elaborate our method as a
reparametrization problem regarding the input parameterization ψ

composed of per-triangle deformations φi, i.e. we would like to find
a locally injective mapping φ such that ψ = φ ◦ ψ̂ is the optimized
parameterization. Such mapping φ can be viewed as a deformation
on the parameterization mesh M̂t .

4.1. Triangle-wise optimization for φi

Now we would try to improve the efficiency for a single △i ∈ M. A
strightforward way is to reduce the number of pixels with the same
loss E = ε. When texture resolution r is fixed as r = r̂, the number
of pixels is approximately proportional to the area of the triangle,
so we can write the objective as:

min
φi

det(∇φi)|△̂
t
i |,

s.t. E(φ̃◦ ψ̂) = ε, det(∇φi)> 0,
(6)

where φ̃ j = φi,∀△ j . Note that the triangles used for rendering here
are the whole mesh instead of a single triangle △i, which would
help avoid ambiguity pixels at boundary of △i. Practically, due to
the setting of the camera described in Section 4.1.1, we can only
take one-ring neighbors that share a vertex with △i.

However, for triangle with simple signal (e.g. constant), E may al-
ways be less than ε, so a more reasonable way is to relax it to an
inequality constraint:

min
φi

det(∇φi)|△̂
t
i |,

s.t. E(φ̃◦ ψ̂)≤ ε, det(∇φi)> 0,
(7)

which turns out to be a bounded error compression problem on
each triangle, and thus improves the efficiency (see Figure 5 for
the intuition). In the following, we first introduce the computation
of E and then present the Bayesian optimizing strategy for solving
an optimal φi.

4.1.1. Computation of perceptual-loss-on-screen

There are several abstract procedures involved in Equation (5).
We would describe the one used in this paper of the triangle-wise
perceptual-loss-on-screen in this section.

Camera. The camera Ci used is a parallel camera pointing towards
the center of the triangle along its normal direction and the visi-
ble region is roughly the bounding box of △i(details can be found
in Appendix A). This setting would allow every direction to con-
tribute to the rendering equally.
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Rich signal Simple signalDifferent shrinking

Figure 5: For two triangles of the same size in the input parameter-

ization, one with rich signal and another with simple signal, they

would be shrinked to different sizes in the triangle-wise optimiza-

tion. Then we can use relatively fewer pixels for the simple signal,

and the efficiency is thus improved.

Rendering and interpolation. The rendering procedure H used is
a simple rasterization that does not consider lighting:

I
s
i =H(M,Ci, φ̃◦ ψ̂, It)

I
s
i (q) = (S(It

i )◦ r̂ ◦ φ̃◦ ψ̂◦C−1)(q), for all pixel q ∈△s.
(8)

The interpolation is the common bi-linear interpolation:

S(It
i )(p) = (1−u)(1− v)It

i (⌊p⌋)+(1−u)vI
t
i (⌊p⌋+(1,0))

+u(1− v)It
i (⌊p⌋+(0,1))+uvI

t
i (⌊p⌋+(1,1)),

(9)

where (u,v) = p−⌊p⌋. It is easy to see that the screen pixels are
linear combinations of the texture pixels under such settings.

Texture. When ψ = φ̃◦ ψ̂ is obtained, we need to compute the cor-
responding texture It

i , which is known as baking. However, directly
solving Equation (4) even locally

I
t∗
i = argmin

It
i

E(φ̃◦ ψ̂, It
i ) (10)

is usually very difficult because It
i is in high dimensions and D may

have very complicated forms. Therefore, we take an approximation
in our experiments:

I
t
i ≈ argmin

It
i

‖Î
s
i − I

s
i ‖

2, (11)

which turns out to be a simple least square problem when H is a
linear mapping from texture pixels to screen pixels. Intuitively, this
is the same as optimizing E(φ̃◦ ψ̂, It

i ) with D(Îs
i , I

s
i ) = MSE(Îs

i , I
s
i ).

In other words, we use MSE to approximate D when optimizing It
i

for efficiency .

FR-IQA Having both Îs and Is at hand, we use Gradient Magni-
tude Similarity Deviation (GMSD for short) [XZMB13] to com-
pute the visual difference as the loss: E(φ̃ ◦ ψ̂) = D(Îs

i , I
s
i ) =

GMSD(Îs
i , I

s
i ). For an intuition of visual quality about different

GMSD, please refer to Figure 6. Of course, other perceptual model
can also be used here, even MSE is also feasible though it is inac-
curate enough to measure visual difference.

4.1.2. Bayesian optimization

Because the visual difference D and rendering procedure H for Îs
i

and Is
i are complicated in general, it is difficult to solve such local

optimization problem using common deviation dependent meth-
ods. Thus, we resort to Bayesian optimization strategy [CCAM18],

which just needs to evaluate the value of the objective function at
some samples in a domain. To apply [CCAM18], we first parame-
terize φi properly, then approximate Equation (7) into an optimiza-
tion with box-constraints.

As φ is piecewise-linear, we have φi(x) = (∇φi)x+ti locally, where
∇φi ∈ R

2×2 and ti ∈ R
2 is the offset. The offset part would have

less impact on the visual quality and bring difficulties for the com-
forming requirement. Therefore, we choose to set ti = 0 always and
only need to take 4 DoFs of ∇φi.

To turn the anti-flip constraint det(∇φi) > 0 into a box constraint,
we decompose ∇φi =RiSi into rotational part Ri and stretching part
Si by polar decomposition. The symmetric part Si can be further
decomposed by eigen decomposition as Si = ViΣiV

⊤
i . We restrict

both Ri,Vi in SO(2), i.e. 2D rotations in angles α,β ∈ (−π,π] re-
spectively. It is easy to see that the anti-flip constraint can be easily
replaced by λ1,λ2 > 0, i.e. the two eigenvalues in Σi are positive.
The eigenvalues indicate the stretch of the triangle under deforma-
tion φi, so they should be less than 1 because the input texture is
taken as ground truth and any bigger triangle would not provide
extra benefits to visual quality.

We then approximate the bounded constraint about E as a penalty
term Lε(E(φ̃◦ ψ̂)) using the following softer barrier function,

Lε(x) =

{

∞ x > ε,
− log(ε− x) otherwise.

(12)

By det(∇φi) = λ1λ2, we now have a box-constrained optimization
with only four variables:

min
α,λ1,λ2,β

λ1λ2|△̂
t
i |+Lε(E(φ̃◦ ψ̂)),

s.t. λ1,λ2 ∈ (0,1],α,β ∈ (−π,π].
(13)

Symmetry of the optimization. Because the square-shaped
pixels are packed in a square lattice structure in the tex-

ture image, it is easy to see that H
(

M,Ci, φ̃◦ ψ̂, It
i

∣

∣

φ̃

)

=

H
(

M,Ci,R(π/2)◦ φ̃◦ ψ̂, It
i

∣

∣

R(π/2)◦φ̃

)

, i.e. the 90-degree rotation

of Ri will not change Is
i . It means that the perceptual loss D(Îs

i , I
s
i )

is symmetric with respect to 90-degree rotation of Ri as shown in
Figure 7. For β, we have S(λ1,λ2,β+ π

2 ) = S(λ2,λ1,β)obviously,

0.10141 0.141900.074390.01068 0.04778

0.138930.03717 0.17000 0.24376 0.26576

Figure 6: Illustration of visual quality at different GMSD
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Figure 7: The perceptual loss is related to the rotation α with a

symmetry property. Triangle: rendering result; Square: texture.

so there is also a symmetry of 90-degree rotation for Vi. There-
fore, we restrict α,β ∈ [0,π/2). It shrinks the sampling domain of
Bayesian optimization for efficiency, and more importantly, elimi-
nates the problem of having multiple symmetric optimal solutions.
Finally, the Bayesian optimization problem is:

min
α,λ1,λ2,β

λ1λ2|△̂
t
i |+Lε(E(φ̃◦ ψ̂)),

s.t. λ1,λ2 ∈ (0,1],α,β ∈ [0,
π

2
].

(14)

4.2. Mesh-wise optimization of φ

For i-th triangle, now we get an optimal deformation Jacobian
∇φ̄i = R̄iS̄i. In consideration of the 90-degree rotational symmetry
of Ri, the optimal Jacobian are indeed ∇φ̄i,k = R(kπ/2)R̄iS̄i,k =
0,1,2,3. In the mesh-wise step, we are seeking for a global param-
eterization φ that best matches one of them on each triangle. Taking
the common Frobenius norm, the deviation on i-th triangle can be
written as

e(φi) = min
k∈{0,1,2,3}

‖∇φi −R(kπ/2)R̄iS̄i‖
2
F . (15)

However, as shown in our experiments (see Figure 17), such a mea-
surement of deviation is not good enough since it totally ignores the
perceptual loss E .

Taking the polar decomposition ∇φi = RiSi and using Ri,Si as the
variables, we approximate the triangle-wise perceptual loss E by a
positive defined quadratic approximation on i-th triangle as:

e(Ri,Si) = min
ki∈{0,1,2,3}

w
R
i ‖Ri −R(kiπ/2)R̄i‖

2
F +w

S
i ‖Si − S̄i‖

2
F ,

(16)

where wR
i and wS

i measure the sensitivity of E with respect to the
rotation Ri and stretch Si respectively. Specifically, we first rewrite
the loss as E(α,λ1,λ2,β) and keep other variables fixed. Then the
weights are defined as variance of the loss:

wR
i = Var[E(α, λ̄1, λ̄2, β̄)],

wS
i = Var[E(ᾱ,λ1,λ2,β)].

(17)

With this perceptual loss related weighting scheme, we solve the
following optimization in the mesh-wise step:

min
φ,{ki}

∑
△i∈M

w
R
i ‖Ri − R̄iR

ki

π/2‖
2
F +w

S
i ‖Si − S̄i‖

2
F ,

s.t. ∇φi = RiSi,Ri ∈ SO(2),S⊤i = Si,

det(∇φi)> 0, ki ∈ {0,1,2,3}.

(18)

Different from the conventional Poisson-like problem, our formu-
lation uses specialized weight scheme, and also needs to count
the symmetry of rotation. To evaluate the variance in the weight
scheme, we uniformly sample the angle α and the singular val-
ues λ1, λ2 in the domain. For the symmetry of rotation, we enu-
merate k ∈ 1,2,3,4 to find the optimal rotation Rk

π/2 that minimize

‖Ri − R̄iR
k
π/2‖

2
F , after the polar decomposition of ∇φi on each tri-

angle.

After handling the difficulties coming from the weights and the
symmetry of rotation, we introduce the slack variables {Ri} and
{Si} into above problem:

min
φ,{ki},{Ri},{Si}

∑
△i∈M

Efit(φi,ki,Ri,Si)+w
rs

Ers(φi,Ri,Si),

s.t. Ri ∈ SO(2),S⊤i = Si,det(∇φi)> 0,ki ∈ {0,1,2,3}.

(19)

Here Efit fits the rotation and stretch: Efit = wR
i ‖Ri − R̄iR

ki

π/2‖
2
F +

wS
i ‖Si − S̄i‖

2
F and Ers recovers the mapping φi from the rotation

and stretch: Ers = ‖∇φi −RiSi‖
2
F . We iteratively solve the problem

via the standard local-global update strategy [SA07]. To be specific,
we find the optimal ki, Ri and Si in the local step and solve φ via
an unconstrained optimization in the global step. For the detailed
algorithm, we provide the updating strategies in Appendix B.

Bijectivity The method described above is designed for local
injectivity instead of bijectivity, and the resulting parameteriza-
tion may have self-intersections. To handle this problem, one can
use [JSP17] after triangle-wise optimization as an optional step to
guarantee the bijectivity with the following steps: 1. Construst scaf-
folding triangles by [JSP17]; 2. Perform mesh-wise parameteriza-
tion in Section 4.2 with anti-flip constraint of the scaffolding tri-
angles; 3. Remove the scaffolding triangles. The results are shown
in Figure 19.

5. Experiments

Our method can generate efficient parameterization on models with
various signals. Figure 8 shows a gallery of our results, and the per-
formance statistics about the results are listed in Table 1. All the re-
sults are generated on a desktop with AMD Ryzen™ 9 5900X and
NVIDIA® GeForce® GTX 1650. As formulated in Equation (7),
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Figure 8: The gallery of the rendered models, the reparametrized textures with our method. cr ≈ 0.3. The input parameterizations are shown

as the untextured planar meshes.

the perceptual loss is controlled via the parameter ε, and we exper-
imentally take ε = 0.01 by default (see Section 5.3.5). To demon-
strate the efficacy of our method, we first introduce the assessment
of texture parameterization in our experiment, then make compar-
isons with state-of-the-arts, and finally present the algorithm be-
haviors under different experiment settings.

Model #V / #F r cinput ttriangle / tmesh

Bunny 15258 / 30338

1024

678742 841.94s / 68.50s
Feline 5131 / 10266 624538 277.56s / 3.17s
Plate 7482 / 14956 500777 402.70s / 65.09s

Statuette 1443 / 2882 556417 76.33s / 1.23s
Tiger 5396 / 10788 283775 253.43s / 8.05s
Vase 6366 / 12723 598658 321.88s / 9.43s

Vase-2 6366 / 12723 598658 314.66s / 10.60s
Watemelon 4870 / 9737 575943 193.71s / 8.90s

Zebra 5040 / 10076 570767 264.24s / 8.57s

Table 1: Statistics of the results. All the models are shown in Fig-

ure 8. cinput is roughly the number of pixels used for texture map-

ping in the input texture image, as defined in Equation (20). ttriangle

and tmesh list the time taken for the triangle-wise and mesh-wise

optimization respectively.

5.1. Assessment of texture parameterization

As mentioned in Section 3.1, perceptual-loss-on-screen can be de-
fined for a single triangle or for the whole mesh. For typical ap-
plications, the surface is viewed as a whole instead of many trian-
gles. Therefore, we would use perceptual loss defined for the whole
mesh as the “visual quality” metric in our evaluation.

Generation of texture images. To compare the efficiency of pa-
rameterizations, we need to first generate corresponding textures
with the same number of pixels used for texture mapping. Similar
to what we do for single triangles, we would take cost

c(ψ,r) = r
2 ∑ |△t

i | (20)

as an approximation. Given a desired c̄ where the comprasion is
made, we can then find proper r to satisfy

r
2 ∑ |△t

i | ≈ c̄.

The symbol “≈” here is due to the fact that resolution r ∈ Z.

For convinience, we use relative cost defined as following:

cr(ψ,r) = c(ψ,r)/c(ψ̂, r̂) (21)

And we can still easily solve r such that cr(ψ,r)≈ c̄r. Once we get
proper r for both parameterizations, we generate the texture images
It with Blender [Ble22].

Perceptual loss for the whole mesh. Computing the perceptual-
loss-on-screen for the whole mesh is generally the same as the one
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for a single triangle except for the camera. To get a comprehensive
metric, we use 20 cameras located at the vertices of a regular do-
decahedron and pointing to the center of the mesh to calcuate E ,
and take the average as the visual quality at texture resolution r:

q(ψ,r) =
1
20

20

∑
i=1

Er,Ci,H(ψ), (22)

or at the relative cost c̄r:

qr(ψ, c̄r) = q(ψ,r),s.t. cr(ψ,r)≈ c̄r. (23)

Texture packing. We do not change the cuts of the input mesh. If
the mesh is cut into several disconnected patches, we pack the cor-
responding patches in the parameterization domain by [LPRM02]
to reduce the whitespaces between the patches. It should be noticed
that to keep the optimized orientation, we only allow limited opera-
tions of translation and multiply-of-90-degree rotation during pack-
ing to avoid affecting the efficiency of the parameterization. Other
methods that only take these limited operations can also be used
here, and the cost and loss described above will not be affected.

5.2. Comparisons

In real world applications, a parameterization would usually not
be limited to a single resolution. Moreover, it is not fair enough
to compare parameterizations on a single resolution. We fol-
low [SGSH02] to compare parameterizations in a series of c̄r. The
result will be presented as a qr − cr curve.

5.2.1. Comparison with input parameterizations

With the guidance of the perceptual loss, our method can gener-
ate efficient parameterization for texture mapping, while the input
parameterizations (e.g., designed manually or generated automati-
cally) are usually not optimized for this. Thus, it is not surprising
that our method can supply parameterizations with lower percep-
tual loss in the same relative cost as showed in Figure 9 and the re-
sults on “Vase” model are shown in Figure 10. Please notice that the
term “Input” in Figures 9 and 10 only refers to “input parameteri-
zation” instead of the whole input which includes the input texture
image. In this experiment, the texture image associated with the in-
put parameterization are re-generated by the procedure described
in Section 5.1.
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Bunny
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Figure 9: Comparison with input parameterizations. Y-axis is the

logarithm of the perceptual loss, i.e. log(qr).

5.2.2. Comparison with SSP [SGSH02]

SSP [SGSH02] attempts to find the best triangle-wise Jacobian
minimizing the interpolation error of the discretized signals. How-
ever, their expected stretch λ1,λ2,θ are not always be able to make
improvement on the result because they ignore the rendering pro-
cedure. In our experiments, we compare our methods with theirs
(SSP). Further, since their global parameterization technique is rel-
atively old, to compare their triangle-wise parameterization defor-
mation with ours fairly, we use their expected stretch in our global
parameterization with rotation weight wR = 0 (SSPOP). As shown
in Figure 11, our method can generate results with lower percep-
tual loss (qr) than both SSP and SSPOP under different relative
cost (cr). We also show the rendered texture models in Figure 10
and Figure 12.

Ours
Eiso = 2.62

SSPOP
Eiso = 9.48

Input
Eiso = 1.23

SSP
Eiso = 3.04

Figure 10: Detailed comparison of the Vase model with input

parameterization, SSP [SGSH02] and SSPOP. The relative cost

cr ≈ 0.3. Similar to OptCuts in Figure 1, the rendering result of in-

put parameterization also suffers from the blur problem, especially

at the center region.

5.2.3. Comparison with OptCuts [LKK∗18]

One may expect that a parameterization can usually lead to high
quality texture mapping when each triangle reserves isometry to
its original shape. However, such isometric parameterization only
focuses on the geometry but ignores the texture signals, so it usually
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Figure 11: Comparison with SSP [SGSH02]. Y-axis is the loga-

rithm of the perceptual loss, i.e. log(qr).

Ours SSP SSPOP

Eiso = 1.43 Eiso = 1.70 Eiso = 9.13

Figure 12: Detailed comparison of the Zebra model with SSP

[SGSH02] and SSPOP. The relative cost cr ≈ 0.3.

leads to inefficient results. Here, we compare with one of the state-
of-the-art isometric parameterization methods [LKK∗18].

5.2.4. Comparisons about distortion

One may also be interested in the comparisons about common pa-
rameterization distortion. Here, we use the symmetric Dirichlet en-
ergy defined in [SS15, LYNF18] to measure the isometric distor-
tion:

Eiso =
1
4 ∑ai(‖Ji‖

2
F +‖J

−1
i ‖2

F ), (24)

where ai is the area of i-th triangle in the input mesh and Ji is its
Jacobian of parameterization with respect to the input mesh. Un-
der this measurement, our method can generate parameterizations
with lower distortion than SSP and SSOP (see Figures 10 and 12).
Though our results have higher distortion than the input parameter-
ization, they are more efficient because the distortion and efficiency
are not strongly related. Figures 13 and 14 show the same behav-
ior that our method generates parameterizations with higher Eiso
compared to OptCuts [LKK∗18], but we can achieve more efficient
results for texture mapping.

5.3. Algorithm behaviors

We show the behaviors of our method in the following.

Ours OptCuts OC→Ours
Eiso = 7.99 Eiso = 1.02 Eiso = 1.25

Figure 13: Detailed comparison of the Statuette model with Opt-

Cuts [LKK∗18]. The relative cost cr ≈ 0.3.
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Figure 14: Comparison with OptCuts [LKK∗18]. Y-axis is the log-

arithm of the perceptual loss, i.e. log(qr).

5.3.1. Sensitivity to the input parameterization

Our method can be viewed as a reparametrization, and the input
parameterization has some influences on the results. To show the
sensitivity to the input parameterizations of our method, we first
apply OptCuts to the input, then use its resulting parameterization
ψ̂OC to generate a new texture image Ît

OC. Taking them as the in-
put of our method, the efficiency (see “OC→Ours” in Figures 13
and 14) is slightly worse than using ψ̂, Ît . Considering the quality
loss when generating Ît

OC, our method shows good stability in this
experiment. However, the distortion is much lower than directly us-
ing the input parameterization. So first applying OptCuts or other
isometric parameterization methods could be a practical way to re-
duce the distortion if distortion is important, or generate the input
for our method if the quality of original parameterization is bad.

5.3.2. Convergency of the triangle-wise stage

Though lacking assistant of derivative information, the Bayesian
optimization used in our triangle-wise stage would converge in
fast pace. As shown in Figure 15, taking 100 iterations is usually
enough.

5.3.3. Perceptual loss after mesh-wise parameterization

Although we can solve the optimal rotation and stretch in triangle-
wise optimization with a bounded perceptual loss, it is usually im-
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Figure 15: Convergence of the triangle-wise optimization. The X-

axis is the iteration counts. For the Y-axises in each sub-figure, the

left one (marked in orange) is the average det(φi), and the right

one (marked in blue) is the average perceptual loss E .

possible to find a parameterization on the whole mesh that matches
all the optimal solutions on each triangle due to the conforming
requirement. Experimentally, our method can help to find a mesh-
wise parameterization that most of the perceptual loss are under
the given bar and Figure 16 shows some distribution. For the “Stat-
uette” and “Watermelon” model, there are 93% and 66% triangles
under the perceptual bound (E ≤ 0.01) after mesh-wise parameter-
ization respectively.
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Figure 16: The distribution of triangle-wise perceptual loss after

mesh-wise parameterization.

5.3.4. Benefit of the weight scheme

In the stage of mesh-wise parameterization, our method fully takes
the perceptual loss E into consideration, and seperates the rotation
and stretch into two items. Compared to the common parameter-
ization strategy which mixes rotation and stretch together under
the Frobenius-norm as formulated in Equation (15), our method
can generate more efficient parameterization results. Moreover, our
carefully designed weighting scheme is well aware of the percep-
tual loss, so it can provide parameterizations with lower loss under
the same relative cost. The comparisons under different weighting
settings are shown in Figure 17.

5.3.5. Customized-control of perceptual loss

Our method can support the control of preceptual loss with a cus-
tomized parameter ε in Equation (7). Generally, a larger ε usually
lead to higher perceptual loss as shown in Figure 18, and we prat-
ically find ε = 0.01 works well in all experiments.

6. Conclusions

This paper has proposed a novel two-stage method for parametriza-
tion driven by the perceptual loss. The parametrization results are
efficient for texture mapping because the triangle-wise optimal ro-
tations and stretches fully take the perceptual-loss-on-screen into
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Figure 17: Comparisons under different weight settings. “Identity”

is our global parameterization with wR
i =wS

i = 1,∀△i. “Common”

is directly solving Equation (15).
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Figure 18: The balance between the relative cost and perceptual

loss controlled by ε.

consideration via a Bayesian optimization. To alleviate the numer-
ical difficuties in the mesh-wise optimization, we first count the
symmetry of the rotation and then use a percepture loss awared
weight scheme to solve the problem. Experimental results show
that the proposed method outperforms many previous methods on
a lower relative cost under a comparible perceptual loss. Even the
input parametrization is fairly efficient, our method can also help
to further improve its efficiency as our experiments indicate.

Limitations and future work One limitation is that there is no
guarantee of such bounded-loss in the mesh-wise stage, though
the Bayesian optimization can achieve the optimal rotations and
stretches on each triangle under the perceptual loss bound. Besides,
our method only focuses on the effect of rotation and stretch on
the perceptual loss but ignores the visual artifacts on seams (see
Figure 20). One can apply [LFJG17] as a post-processing to alle-
viate the artifacts around the seams. Although the current mesh-

Figure 19: Use [JSP17] to guarantee the bijectivity of the param-

eterization. Left: the result with self-intersections. Right: the result

without self-intersection by applying [JSP17].
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wise optimization method works well on many models, the results
may be further improved by applying better initialization strategies
(see Appendix B) and solvers. Besides, Bayesian optimization in
triangle-wise step leads to good results but is slow. Replacing it by
recently developed differentiable rendering technique may greatly
improve the performances. Finally, the current perceptual loss is
only calculated from the naive rendering and baking procedure,
thus it is a valuable future work to integrated our framework with
more complicated and advanced rendering and baking techniques.

GroundtruthOurs

Figure 20: Visual artifacts on the seam. The relative cost cr ≈ 1.0.

If zoomed in, the seam on ours is indeed more visible, as we do not

take any special attension to the seams. .
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Appendix A: Camera Ci in our experiment
The camera Ci used in our experiment is an orthographic camera,
which would view on a square region centered at the barycenter
of △i. For △i with vertices ai,bi,ci, it can be calculated from the
following pseudocode Algorithm 1.

Algorithm 1 Compute Ci for △i

1: procedure CAMERA(a,b,c)
2: C = (a+b+ c)/3
3: N = ((b−a)× (c−a))/‖(b−a)× (c−a)‖
4: R = (a−C)/‖a−C‖
5: U = (N ×R)/‖N ×R‖
6: (Pl ,Pr,Pb,Pt) = BBOX(a,b,c,C,U,R)
7: View = LOOKAT(eye =C+500N, front =C,up =U)
8: Project = ORTHO(Pl ,Pr,Pb,Pt ,near = 0.1, far = 1000.0)
9: Viewport = VIEWPORT(width = 64px,height = 64px)

10: return Viewport◦Project◦View
11: end procedure

12: procedure BBOX(a,b,c,C,U,R)
13: ap = PROJECT(C,a,R,U)
14: bp = PROJECT(C,b,R,U)
15: cp = PROJECT(C,c,R,U)
16: Pl = min{ap.x,bp.x,cp.x}
17: Pr = max{ap.x,bp.x,cp.x}
18: Pb = min{ap.y,bp.y,cp.y}
19: Pt = max{ap.y,bp.y,cp.y}
20: w = Pr −Pl , h = Pt −Pb

21: if w > h then

22: Pb = Pb − (w−h)/2
23: Pt = Pt +(w−h)/2
24: else

25: Pl = Pl − (h−w)/2
26: Pr = Pr +(h−w)/2
27: end if

28: return (Pl ,Pr,Pb,Pt)
29: end procedure

30: procedure PROJECT(C,x,R,U)
31: d = x−C

32: return (〈d,R〉 ,〈d,U〉)
33: end procedure

Appendix B: Local-global strategy
The problem in Equation (19) is highly nonlinear. We thus apply
a local-global strategy with an alternating iterative scheme to de-
couple the whole optimization problem into several relatively sim-
ple ones. In this section, we will describe the numerical strategy to
solve Equation (19). For the local step, we update ki, Ri and Si with
the fixed φi on each triangle, and in the global step, we optimize
φ under the given {ki}, {Ri} and {Si}. In the following, we will
introduce the two steps individually.

Locally updating ki, Ri and Si. With a given φi, we use its Ja-
cobian ∇φi to first update the rotation part (ki and Ri), and then
optimize the stretch part Si. For the rotation part, we parametrize
the rotation matrix Ri via a rotational angle θi and the optimization

of rotation can be approximated as:

min
θi,ki

w
R
i ‖R(θi)− R̄iR

ki

π/2‖
2
F +w

rs‖R(θi)−∇φiS
−1
i ‖2

F . (25)

For a better recovery of ∇φi, we first search ki ∈ {0,1,2,3} via:
minki

‖∇φi − R̄iR
ki

π/2‖
2
F , and θi can be solved analytically under a

given ki.

Similarly, we can also solve the stretch Si with fixed ki and Ri on
each triangle as the following approximation:

min
Si

w
S
i ‖Si − S̄i‖

2
F +w

rs‖Si −R
⊤
i ∇φi‖

2
F , (26)

which can be solved via a simple linear system. Notice that, both
S̄i and R⊤

i ∇φi are symmetric matrices, so the optimal solution of
the above equation satisfies the constraint S⊤i = Si. In our imple-
mentation, wR

i and wS
i are carefully designed as described in Equa-

tion (17), and wrs is a factor that balances the first fitting and the
second recovery terms. We empirically set wrs to 10−5 in our ex-
periments.

Globally updating φ. In the global step, we solve φ in Equa-
tion (19) with the fixed {ki},{Ri},{Si} and the only constraint
comes from the flip-free requirement det(∇φi) > 0, and we also
turn it into penalty as:

min
φ

∑
△i∈M

w
rs‖∇φi −RiSi‖

2
F +w

b
Ebarrier(∇φi). (27)

For the barrier term, we borrow the similar spline-like function with
nice properties in [SKPS13], but other approaches, i.e. in logarith-
mic term, can also be used.

The minimization of Equation (27) can be solved through the sim-
ilar damped Newton solver [SKPS13]. In practice, an amount of
triangles of the optimized parameterization approach degeneration,
which may squeeze the corresponding triangles dramatically during
the iteration. In such a moment, Ebarrier may dominate the whole
energy which results in poor fitting effect. Therefore, we use an
adaptive weighting scheme to decrease wb, where the denominator
20 is an empirical value:

w
b
j+1 =

{

wb
j Ers ≥ Ebarrier,

wb
j/20.0 Ers < Ebarrier.

(28)

The whole optimization of Equation (19) is initialized by the in-
put parameterization. Specifically, the local-global strategy begins
from the local step, and the non-linear optimization is initialized
with given ∇φi = Id. Equation (26) is a simple quadratic problem,
and does not require initialization. For the first global step in Equa-
tion (27), φ is initialized by the input parameterization coordinates.
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