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This supplemental material contains five parts as follows:

1. Additional qualitative results on real-world rainy images.
2. Parameter settings analysis.
3. Data paradigm analysis.
4. Impact of precise depth prediction.
5. Application.

1. Additional qualitative results on real-world rainy images.

Fig. 1 and Fig. 2 show the mixture of rain scenes and those that
only contain rain streaks, respectively. Our method restores the
best results on these real-world rainy images, which demonstrate
that Semi-MoreGAN can tackle various degradations in real-world
rainy scenes and preserve image details effectively.

Table 1: Quantitative evaluation on the testing set of RainCi-
tyscapes. Note that deraining performance increases with different
number settings of CFABs.

Number 1 2 3 4 5 6

PSNR 30.67 32.39 34.22 35.67 35.75 35.81
SSIM 0.912 0.932 0.941 0.948 0.949 0.951

Table 2: Quantitative evaluation and GPU time on the testing set
of RainCityscapes, DGNL-Net w PDNL indicates replacing DGNL
module by our PDNL, and 56.3ms/52.8ms indicate the GPU time
of replacing the whole PDNL and PDNL without attention module.

Datasets Metrics DGNL-Net DGNL-Net w PDNL

RainCityscapes
PSNR 32.21 34.72/33.10
Time 76.7ms 56.3ms/52.8ms

2. Parameter Settings Analysis

We also conduct experiments to adapt different number settings of
CFABs as shown in Table. 1. Deraining performance increases with
the number of CFABs. While for a model with four CFABs, adding
more layers obtains little improvement on deraining performance,
thus we adopt four CFABs in the design of CFPN. Besides, We
also compare DGNL [HZW∗21] with our PDNL. Concretely, we
replace the DGNL [HZW∗21] by our PDNL with the pooling size
n ∈ {1,2,4,8}, and set the input size of depth map and feature map
to (1,512,1024) and (64,256,512), respectively. Table 2 shows that
the network with PDNL achieves better performance with a less
computational time. Furthermore, the additional attention module
costs a little more consuming time (3.5ms) with significant im-
provement (1.62dB PSNR).

Table 3: Deraining results (PSNR/SSIM) with different data
paradigms. Note that &MOR-Rain200 denotes that the model is
trained on RainCityscapes&MOR-Rain200, and all models are
tested on the testing set of RainCityscapes.

Settings &MOR-Rain200 &MOR-Rain600 &MOR-Rain1000

PSNR 35.67 34.39 32.36
SSIM 0.948 0.940 0.936

3. Data Paradigm Analysis

Since Semi-MoreGAN is trained in a semi-supervised manner, we
also analyze the capacity of Semi-MoreGAN to use different data
paradigms for training the model on RainCityscapes and real-world
rainy images. Specifically, we add 600 and 1000 real rainy images
to the unsupervised learning branch for training, which are denoted
as MOR-Rain600 and MOR-Rain1000.

From Table 3 and Fig. 3, we make the following observations: In-
creasing the amount of real-world rainy images leads to significant
deraining performance drop on the testing set of RainCityscapes,
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Figure 1: Visual comparison results on heavy rainy images. Note that all models are trained on RainCityscapes&MOR-Rain200.

Table 4: Quantitative evaluation on the testing set of RainCi-
tyscapes. Note that w ADPN denotes networks incorporated with
ADPN, r ADPN denotes replacing the depth prediction subnetwork
of DGNL-Net [HZW∗21] by ADPN, and we use a common multi-
plication on obtained feature map and depth map.

Model
PReNet Syn2Real DGNL-Net

- w ADPN - w ADPN - r ADPN

PSNR 26.83 28.17(↑ 1.34) 28.66 31.01(↑ 2.35) 32.21 34.14(↑ 1.93)
SSIM 0.910 0.917(↑ 0.07) 0.919 0.925(↑ 0.06) 0.936 0.940(↑ 0.004)

due to the domain shift between synthetic and real images, which
makes the training process difficult to converge. However, the per-
formance of real-world image deraining gradually becomes better
when adding more real images. From these experiments, we can
conclude that Semi-MoreGAN possesses a better generalization
ability when leveraging more unpaired real-world rainy images.

4. Impact of precise depth prediction

According to the model of Garg and Nayar [GN07], the visual in-
tensity and presence of rain streaks and rainy haze depend on the
scene depth, thus it is reasonable to develop a depth prediction net-
work to predict depth maps, which guides the process of mixture of
rain removal. To verify validity of our attentional depth prediction

Table 5: Comparison of depth prediction results. Note that
monocular depth prediction methods DORN [FGW∗18], DVSO
[YWSC18] and MDPGAN [CKBP18] are trained on RainCi-
tyscapes dataset.

Method DGNL-Net DORN DVSO MDPGAN Semi-MoreGAN

RMSE 30.22 7.10 3.69 5.70 3.15
PSNR 32.84 34.21 35.29 34.96 35.67

network (ADPN), we incorporate ADPN into PReNet [RZH∗19],
Syn2Real [YSP20] and DGNL-Net [HZW∗21]. The results are
shown in Table 4, it is observed that PReNet [RZH∗19], Syn2Real
[YSP20] and DGNL-Net [HZW∗21] improve the quantitative re-
sults significantly on the testing set of RainCityscapes. Especially,
the PSNR of Syn2Real [YSP20] gains more than 2.35dB.

To further explore the impact of depth prediction accuracy on
mixture of rain removal, we adopt a commonly accepted evalua-
tion indicator RMSE [EPF14] to evaluate the results of DGNL-Net
[HZW∗21], Semi-MoreGAN and three monocular depth prediction
methods (i.e., DORN [FGW∗18], DVSO [YWSC18] and MDP-
GAN [CKBP18]) as shown in Table 5. It is observed that the RMSE
of Semi-MoreGAN is lower than 27.07m compared with DGNL-
Net [HZW∗21]. Fig. 4 shows more qualitative visualizations be-
tween Semi-MoreGAN and DGNL-Net [HZW∗21]. Furthermore,
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Figure 2: Visual comparison results on dense rain accumulation images. Note that all models are trained on Rain200H&MOR-Rain200.

Figure 3: Deraining comparison of Semi-MoreGAN
on real-world images. From (a) to (d) are Input, model
trained on RainCityscapes&MOR-Rain200, model trained
on RainCityscapes&MOR-Rain600, and model trained on
RainCityscapes&MOR-Rain1000, respectively.

Our method even produces better and more accurate depth maps
than explicit monocular depth prediction methods. Then, we input
these depth maps into the saved generator Gs model to obtain de-
rained images and take quantitative evaluations on the testing set of

RainCityscapes. As demonstrated in Table 5, the depth map with
lower RMSE will obtain higher PSNR. These experiments verify
that the robust and accurate depth map from ADPN can improve
performance and generalization capability in mixture of rain im-
ages.

5. Application

To provide further evidence that the visibility enhancement of
Semi-MoreGAN could be helpful for computer vision applications,
we employ Google Vision API to evaluate our deraining results. As
can be seen in Fig. 5 (a-b), the Google API can recognize most ob-
jects in the derained image rather than the original rainy image. Es-
pecially, the scores of the hat and T-shirt are improved by 13% and
15% after deraining by our Semi-MoreGAN, respectively. More-
over, we also employ Google API to test 100 real rainy and cor-
responding derained images by our Semi-MoreGAN. As demon-
strated in Fig. 5 (c), our approach has greatly improved the number
of recognized object labels and the accuracy of detection.
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Figure 4: Visualizing the predicted depth maps by DGNL-Net [HZW∗21] and our Semi-MoreGAN. Note that DGNL-Net only extracts coarse
depth maps and our method can obtain more accurate depth maps.
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Figure 5: The deraining results tested on the Google Vision API. From (a)-(c): (a) object recognition result in the real-world rainy image, (b)
object recognition result after deraining by our Semi-MoreGAN, and (c) column chart of improvement based on Google Vision API contains
the number of object labels recognized in the rainy image and derained image, and the average score of identifying the main objects in the
rainy image and derained image.
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