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Abstract
Recent methods on image denoising have achieved remarkable progress, benefiting mostly from supervised learning on massive
noisy/clean image pairs and unsupervised learning on external noisy images. However, due to the domain gap between the
training and testing images, these methods typically have limited applicability on unseen images. Although several attempts
have been made to avoid the domain gap issue by learning denoising from singe noisy image itself, they are less effective in
handling real-world noise because of assuming the noise corruptions are independent and zero mean. In this paper, we go
step further beyond prior work by presenting a novel unsupervised image denoising framework trained from single noisy image
without making any explicit assumptions on the noise statistics. Our approach is built upon the deep image prior (DIP), which
enables diverse image restoration tasks. However, as is, the denoising performance of DIP will significantly deteriorate on non-
zero-mean noise and is sensitive to the number of iterations. To overcome this problem, we propose to utilize multi-scale deep
image prior by imposing DIP across different image scales under the constraint of a scale consistency. Experiments on synthetic
and real datasets demonstrate that our method performs favorably against the state-of-the-art methods for image denoising.

1. Introduction

Image denoising aims to recover a clean image x from an ob-
served noisy image y = x+n, where n denotes the corrupted noise.
This problem has been widely studied, since the presence of noise
would not only significantly degrade the perceptual quality of an
image, but also may adversely affect the performance of many fun-
damental tasks, e.g., object detection [TPL20, CMS∗20], tracking
[BDGT19, CYZ∗21], and image enhancement [ZNZ19, ZNZ∗20,
WZF∗19, ZYX∗18, ZNZX15].

Various methods have been proposed to tackle the image denois-
ing problem. Early methods work by exploring sparse and low-
rank representation of natural images [BCM05, EA06, DFKE07,
GZZF14], while recent methods are mostly deep learning-based.
Among them, supervised methods achieve promising performance
on images with additive white Gaussian noise (AWGN) by train-
ing on noisy/clean image pairs [XXC12, MSY16, Lef17, TYLX17,
ZZC∗17, LWF∗18, GLGT19, GYZ∗19, ZAK∗20]. However, their
performance usually deteriorates on test images that have different
image content and noise statistic from the training images (see Fig-
ure 1), and a large number of noisy/clean training image pairs are
difficult and expensive to collect.
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To avoid the dependence on clean training images, some meth-
ods proposed to train unsupervised denoising networks from a
set of external noisy images [LMH∗18, KBJ19, BR19] or single
noisy image itself [UVL18, RP19, XHC∗20, QCPJ20]. However,
these methods still have their respective limitations. For instance,
Noise2Noise (N2N) [LMH∗18] requires massive paired noisy im-
ages with independent noise corruption of the same scene for
training, which are difficult to acquire. Deep image prior (DIP)
[UVL18] has good performance on zero-mean noise, while real
noise is usually not zero-mean [PR17, ALB18] and it is non-trivial
to stop its network training at the right moment to achieve the
ideal denoising result. Noisy-As-Clean (NAC) [XHC∗20] may fail
to handle images that break its basic assumption of weak noise.
S2S [QCPJ20] requires a prerequisite that the noise corruption is
zero-mean and independent between pixels. This method is effec-
tive to alleviate the over-fitting arising from training on a single
image, but would incur degraded training efficiency.

In this paper, we propose to learn to denoise from a single
noisy image, without any explicit modeling or assumption on the
noise statistics. We build our network on top of the “Deep Im-
age Prior (DIP)” work by Ulyanov et al. [UVL18], which showed
that the structure of a convolutional generation network can cap-
ture powerful natural image priors, and can be employed to achieve
compelling results for a wide variety tasks (e.g., denoising, super-
resolution, in-painting, and layer separation [GSI19]) using only
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Input (29.67dB/0.863) CBM3D (30.99dB/0.904) DnCNN (32.03dB/0.935) N2N (31.68dB/0.926) DIP (32.19dB/0.947)

NAC (31.40dB/0.7955) S2S (34.41dB/0.963) CycleISP (31.29dB/0.910) Ours (35.42dB/0.975) Clean image (GT)

Figure 1: Comparison with existing image denoising methods on a real noisy image in terms of PSNR(dB)/SSIM. CBM3D [DFKE07] is a
traditional denoising method, DnCNN [ZZC∗17] and CycleISP [ZAK∗20] are supervised methods based on noisy/clean image pairs, while
N2N [LMH∗18], DIP [UVL18], NAC [XHC∗20] and S2S [QCPJ20] are unsupervised denoising methods trained in absence of clean images.

Input 500 iterations 1200 iterations

2900 iterations Ours Clean image (GT)

Figure 2: Denoising results produced by DIP [UVL18] with differ-
ent numbers of training iterations.

single training image. However, DIP has two limitations in image
denoising. First, it does not work well for non-zero-mean noise.
Second, as shown in Figure 2, its performance is sensitive to the
moment of stopping its network training. In general, a premature
stopping will lead to over-smooth result with degraded image de-
tails, while a late stopping may produce a fine-grained reconstruc-
tion of the original noisy image.

To address the limitations of DIP and allow more effective im-
age denoising, we in this work present an unsupervised denoising

Figure 3: Similarities between a noisy image and its clean counter-
part at different image scales. As shown, the corresponding patches
across-scale in the clean image share strong similarity, and the
clean patch at a 1/3 coarse scale is also very similar to the cor-
responding noisy patch at the same scale. Image from [ZMI13].

framework that imposes DIP across different scales of an input
noisy image. As shown in Figure 3, our approach is built upon the
following observation: the noise level of an image can be naturally
reduced at coarser image scales, making noise corruption that is
difficult to handle with DIP at the finest image scale may be easier
to handle with DIP at a coarser image scale. Based on the obser-
vation, we develop multi-scale deep image prior (MS-DIP), which
is able to robustly generate high-quality denoising results for both
synthetic and real noisy images. MS-DIP consists of multiple DIP
generator networks, each responsible for learning unsupervised de-
noising at a certain scale of the given noisy image. Particularly,
the denoised image produced by each DIP network at a coarser
scale will be used to guide the training of DIP at the next finer
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scale through a scale consistency loss, such that the output of the
finer scale DIP can maintain the noise removal effect learned from
the previous scale while recovering previously missing image de-
tails. In addition, with the scale consistency loss, we can train each
DIP network until convergence to obtain the denoised image, rather
than stopping its training in advance as done in the original DIP
method [UVL18]. To take full advantage of denoising results from
different scales, a multi-scale inference ensemble is developed to
average all estimates into a single denoised image. The major con-
tributions of this work are:

• We find that multi-scale deep image prior can be used to enable
more effective image denoising.
• We design a novel single-image-based unsupervised denoising

framework by coupling deep image priors learned from different
image scales.
• Experiments show that our method outperforms previous unsu-

pervised image denoising methods, and can achieve comparable
or better results than leading supervised denoising methods.

A preliminary version of this work appeared in [ZNZWS22] for
unpublished poster presentation. In this paper, we have improved
the paper with the following major changes. First, an additional
figure is provided to clearly illustrate the main observation of our
approach (see Figure 3). Second, two additional figures are incor-
porated to show more evaluation of our method on real-world noisy
images (see Figures 10 and 11). Last, we provide deeper analysis
on the model design and improve the method description.

2. Related Works

This sections reviews previous works on image denoising from the
following two aspects, i.e., non-learning-based and learning-based
methods, with a focus on recent learning-based methods closely
related to our work.

Non-learning-based methods. Prior to the deep learning era, it
is a common paradigm to formulate non-learning-based image de-
noising methods, based on the assumption that the noise corrup-
tion and the underlying clean image are of different statistics such
that they can be separated by certain observations on natural im-
ages. Following this idea, various hand-crafted image priors (e.g.,
gradient sparsity, patch recurrence, and low rank) were adopted to
perform noise removal [ROF92, Cha04, BCM05, EA06, DFKE07,
MES07, DLZS11, GZZF14].

Learning-based methods. Recent effort on image denoising is
mostly learning-based, since deep neural networks have been
proven to be a very powerful tool to infer clean images from their
noisy counterparts by learning the statistical difference between the
two components. Methods in this category can be further broken
down into three groups: (i) methods trained on noisy/clean image
pairs; (ii) methods trained on a set of noisy images; (iii) methods
trained on a single noisy image.

(i) methods trained on clean/noisy image pairs. Many supervised
denoising methods are developed by training on a large amount
of noisy/clean image pairs [ZZC∗17, ZZZ18, ZZGZ17, GYZ∗19,
ZTK∗20,AB19,YYZ∗19,Lef17,BSH12,JLFZ19,CCCY18,Lef18,
ZAK∗20]. These methods achieve impressive performance on

AWGN noise removal, since the paired images employed for su-
pervised learning are typically synthesized according to the AWGN
noise model. Due to the domain gap between the synthesized train-
ing data and real noisy images, the performance of these meth-
ods typically deteriorates on photographs with real noise. Some
attempts have been made to alleviate the domain gap by collect-
ing real noisy/clean image pairs for supervised training [ALB18,
CCXK18,CCDK19,JZ19,BMX∗19,WFYH20]. However, it is dif-
ficult to collect a sufficient amount of such image pairs for training
a network that generalizes well to unseen images.

(ii) methods trained on a set of noisy images. Since pairs of noisy
and clean images are difficult to acquire, several methods proposed
to train unsupervised denoising networks from a set of noisy im-
ages. N2N [LMH∗18] trained a denoising network using paired
noisy images of the same scene under the assumption that the noise
of paired images is independent. Although this work achieves com-
petitive results, a large number of noisy image pairs are difficult to
collect. Instead of using paired noisy images, some recent works
proposed to learn unsupervised denoising model from a collec-
tion of unorganized noisy images [BR19,KBJ19,LKLA19,KVJ19,
WLC∗20]. Noise2Void (N2V) [KBJ19] predicted each pixel from
its neighboring pixels by learning blind-spot networks. Similar
training schemes as the one in [KBJ19] are adopted by later works
[BR19, KVJ19, LKLA19] with further performance improvement.
More recently, Noiser2Noise [MSZC20] was introduced to gener-
alize N2N [LMH∗18] into the setting of a single noisy realization
for each image.

(iii) methods trained on single noisy image. Training unsuper-
vised denoising network from a single noisy image has emerged
to be a new trend, since it does not suffer from the domain gap
problem and is convenient to employ in practice. The first work
is originated by DIP [UVL18], which showed that meaningful
image patterns are learned more preferentially than random pat-
terns such as noise, when training a randomly initialized convolu-
tional generator network to reconstruct a degraded image. Based
on this finding, DIP achieves image denoising by early-stopping
a generative network trained for reproducing the original noisy
image. Although this method is easy to implement and demon-
strates impressive denoising results, its performance is sensitive
to the moment choice of stopping the network training, and may
not work well for non-zero-mean noise. In order to overcome the
over-fitting problem arising from the network training on a single
image, Self2Self (S2S) [QCPJ20] proposed to train with dropout
on pairs of Bernoulli-sampled instances of the input image. This
method produces promising results, but the training scheme signif-
icantly degrades the training efficiency. NAC [XHC∗20] developed
a “Noisy-As-Clean” training strategy for unsupervised image de-
noising. This strategy has broad applicability, but its effectiveness
may deteriorate significantly when the key assumption of weak
noise is not met.

3. Our Method

In this section, we describe the proposed unsupervised image de-
noising framework named as MS-DIP. We first illustrate the moti-
vation of our approach. Next, we introduce the network architecture
of MS-DIP, and then elaborate its training, inference, and imple-
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Figure 4: Overview of the proposed MS-DIP. Our model consists of multiple DIP generator networks, for which both the training and
inference are done in a coarse-to-fine fashion. At each scale, a DIP generator is employed to generate a denoised image xn by reproducing
the downsampled noisy image yn, under the guidance of a denoising output xn+1 produced by DIP generator at previous coarser scale (except
for the coarsest level). With the denoised images {xN ,xN−1, ...,x0} from all image scales, a multi-scale inference ensemble is performed to
produce the final denoising result.

mentation details. Figure 4 presents the overall denoising workflow
of MS-DIP. As shown, MS-DIP employs multiple DIP generators
to learn unsupervised denoising of an input noisy image from dif-
ferent image scales, and then averages all the denoising estimates
into a single denoised image.

3.1. Motivation: Single DIP vs. Multi-scale DIP

This section describes the motivation of our approach by discussing
the necessity of learning multi-scale DIP instead of single-scale
DIP for image denoising. We start by giving a brief introduction
of how the original single DIP network [UVL18] achieves image
denoising. Next, we analyze the limitations of single DIP in image
denoising, and illustrate why multi-scale DIP can be employed to
allow more effective and robust image denoising.

Denoising by single DIP. Image denoising is achieved in [UVL18]
by interpreting a single DIP generator network as a parameteriza-
tion x= fθ(z) of an image x and enforcing the network to reproduce
a given noisy image y:

θ
∗ = argmin

θ

‖y− fθ(z)‖2, x∗ = fθ∗(z), (1)

where z is a random code vector. θ are initialized random network
parameters, while θ

∗ are parameters learned from optimization.
x∗ = fθ∗(z) can be treated as the recovered clean image, since the
above parameterization has been shown to present high impedance
to image noise.

Limitations of single DIP. Despite single DIP is easy to implement
and works well for various image restoration tasks, we found that
it has the follow two limitations when applied for image denoising.
First, as analyzed in [XHC∗20], single DIP is effective to handle
zero-mean noise, while it may fail to produce satisfactory results
for real-world images with non-zero mean noise. Second, its per-
formance is sensitive to the number of iterations for optimizing the
image reconstruction in Eq. (1), which is hard to control.

Why multi-scale DIP works better? Compared with single DIP,
multi-scale DIP has the following advantages in image denoising.
First of all, as shown in Figure 3, it was observed that the noise
level of an image can be naturally reduced at coarser image scales,
such that noise difficult to handle with DIP may be easier to han-
dle at a coarser image scale [ZMI13]. Hence, by coupling multiple
DIP generator networks across different scales of an image and then
combining the denoising results from all image scales into a single
denoised image, we are able to obtain higher noise impedance than
single DIP, especially for previously challenging signal-dependent
real noise. On the other hand, since denoising result produced by
DIP networks at coarser image scales can be used to guide the net-
work training of DIP networks at the subsequent finer scales, we
can train the entire network (including DIP generator network at
each image scale) until convergence to produce the desired denois-
ing results, unlike the original single DIP method [UVL18] which
requires manually setting a proper number of training iterations to
achieve image denoising.
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3.2. Network architecture

The network architecture of our MS-DIP is shown in Figure 4. It
consists of a pyramid of DIP generators (same as the one employed
in [UVL18]), which are trained over an image pyramid of the given
noisy image y: {y0, ...,yN}, where yn is a downsampled version of
y with a factor rn (r < 1). Each DIP generator aims to produce
a denoised image xn from the downsampled noisy image yn. This
is achieved by reconstructing yn from random code vector zn, as
illustrated in Eq. (1). The whole network is trained in a coarse-to-
fine manner. We start at the coarsest image scale, which has the
minimum noise level since it has been observed that noise level
drops dramatically at coarser image scales [ZMI13]. Owing to the
noise suppression naturally enabled by image downsampling, train-
ing DIP network at the coarsest scale allows us to obtain a denoised
image with strong noise removal but weak detail preservation. The
denoising output of the coarsest scale is then used to guide the train-
ing of DIP network at the next finer scale, such that the output of the
finer scale DIP can maintain similar noise removal effect while re-
covering the previously missing details. Subsequent DIP networks
at finer image scales are trained similarly. Based on denoising re-
sults produced from all image scales, we perform a multi-scale in-
ference ensemble to generate the final denoising result.

3.3. Training

Besides the coarsest image scale yN whose training is the same as
the single DIP introduced in [UVL18], the training loss function
for DIP networks at other image scales n ∈ [0,N−1] is as follows:

Ln
total = L

n
rec +λnLn

sc, (2)

whereLn
rec is a reconstruction loss as in Eq. (1), whileLn

sc is a scale
consistency loss that aims to enforce DIP network at the current
scale to obtain a denoised image with similar noise removal effect
as the denoising output from previous coarser scale. λn is a scale-
adaptive weight. Below we describe the consistency loss Ln

sc and
the weight λn in detail.

Scale consistency loss. To avoid bringing back noise from finer
scale DIP generators, we design a scale consistency loss to encour-
age similarity between the training output xn of the current scale
and the known denoised output xn+1 from the previous coarser
scale. Rather than encouraging the pixels of xn to exactly match the
pixels of xn+1, we follow [JAFF16] to encourage them to have sim-
ilar feature representations computed by a VGG-16 network pre-
trained on ImageNet, which is formulated as

Lsc = MSE
(
φi((xn) ↓r),φi(xn+1)

)
, (3)

where φi denotes the i-th feature layer of the VGG-16 network.
(xn) ↓r is a downsampled version of xn by a factor of r, which has
the same size as xn+1.

Scale-adaptive weight λn. The weight λn in Eq. (2) plays an im-
portant role in determining the overall denoising performance. Intu-
itively, a large λn tends to make the DIP network to simulate the de-
noised images from previous coarser scales, and produces a smooth
output with degraded image details. On the contrary, a small λn
may result in noise residual in the denoising output. According to
above analysis, setting a proper λn for each image scale can help

obtain high-quality noise removal results. To this end, we design a
scale-adaptive weighting scheme for λn, which is expressed as

λn =
√

σyn(N−n), (4)

where σyn is the noise level of yn, which is estimated by the method
of [CZAH15]. N is the total number of image scales. In general,
high noise level of yn and shallow image scale n correspond to
large λn. The reason behind this design is twofold. First, when yn
has high noise level, we want to enhance the capability of noise re-
moval by enforcing strong scale consistency to the denoising output
from previous scale. Second, as the image scale goes up, the risk
of bringing back noise from the finer scale DIP learning becomes
high. Hence, we gradually enlarge λn to lower the effect of the re-
construction loss to alleviate this problem.

3.4. Inference

Since multiple DIP networks are trained across the image scales,
multi-scale denoising results {x0, ...,xN} are thus generated along
with the training of MS-DIP. To obtain the final denoising result
that gathers all noise removal estimates, a multi-scale inference en-
semble is developed.

Multi-scale inference ensemble. The multi-scale denoising out-
puts {x0, ...,xN} are averaged to obtain the final denoised image
x. As {x0, ...,xN} are in different sizes, we choose to average two
neighboring results at each time, and then use the obtain result to
compute average between the result from the next finer scale. Sup-
pose xn and xn−1 are two results to be averaged, we first upsample
xn to the same resolution as xn−1 in an edge-aware fashion by per-
forming joint bilateral upsampling [KCLU07] as

x̂p
n =

1
Zp

∑
q↑∈Ωp↑

xq
nF(‖p−q‖)G(

∥∥∥xp↑
n−1− xq↑

n−1

∥∥∥), (5)

where p and q denote coordinates of pixels in xn, while p↑ and q↑
denote coordinates of pixels in xn−1 and the upsampled version x̂p

n
of xn. F and G are spatial and range filter kernels with standard
deviation σd = 0.5 and σr = 0.1, respectively. Ω denotes a 5× 5
window centered at pixel p↑.Zp is the normalizing factor that sums
the filter weight F(·)G(·). With the upsampled x̂n, we average it
with xn−1 to update xn−1. The updated xn−1 is then used to perform
averaging between xn−2, until the finest scale result x0 is averaged
to produce the final denoised image x. Note, the reason we adopt
joint bilateral upsampling instead of simple upsampling strategies
such as bilinear upsampling and nearest neighbor upsampling is
because it is able to produce results with sharper edges and details.

3.5. Implementation Details

Our model is implemented in Pytorch using Adam optimizer with a
fixed learning rate of 10−3. The random noise input to DIP genera-
tor at each scale is initialized as uniform noise with same size as the
downsampled noisy image. To stabilize the network training and
achieve more stable results, we follow [UVL18] to perturb the noise
code zn with random Gaussian disturbance at each iteration. In ad-
dition, we found that training with a L1 reconstruction loss at early
iterations and then switching to L2 reconstruction loss can help pro-
duce denoising results with clearer structures. The downsampling
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Table 1: Quantitative comparison between our method and state-of-the-art methods on the Set9 and BSD68 datasets in terms of average
PSNR(dB)/SSIM. The best numerical results for different AWGN noise levels are shown in boldface.

Dataset Set9 BSD68
Noise level σ = 10 σ = 15 σ = 20 σ = 25 σ = 10 σ = 25
Metric PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
CBM3D [DFKE07] 31.40 0.918 30.87 0.902 30.16 0.899 29.36 0.889 34.43 0.951 30.72 0.910
DnCNN [ZZC∗17] 31.06 0.848 30.10 0.824 29.29 0.804 28.58 0.785 33.73 0.945 30.01 0.874
N2N [LMH∗18] 30.38 0.914 30.07 0.900 29.70 0.896 29.27 0.891 33.85 0.943 30.37 0.903
DIP [UVL18] 29.68 0.889 29.18 0.880 28.95 0.878 28.09 0.864 33.00 0.932 29.71 0.885
N2S [BR19] 25.10 0.822 25.96 0.825 25.42 0.825 25.37 0.799 29.66 0.922 28.60 0.891
NAC [XHC∗20] 29.35 0.759 24.97 0.569 22.50 0.458 20.65 0.383 30.63 0.850 25.56 0.616
S2S [QCPJ20] 30.11 0.900 29.89 0.895 29.59 0.889 29.24 0.884 33.16 0.933 30.45 0.905
Ours 31.94 0.926 31.25 0.908 30.48 0.906 29.94 0.903 34.94 0.956 31.04 0.913

Input (20.48dB/0.434) CBM3D (29.84dB/0.863) DnCNN (28.92dB/0.737) N2N (29.80dB/0.878) DIP (28.86dB/0.861)

N2S (26.12dB/0.833) NAC (27.33dB/0.700) S2S (29.97dB/0.878) Ours (31.42dB/0.896) Clean image (GT)

Figure 5: Visual comparison of blind AWGN denoising on an image from the Set9 dataset with noise level σ = 25.

factor r is set as 0.8, and the minimum scale is 128× 128. Note,
unlike [UVL18] which requires manually setting a proper number
of iterations to achieve image denoising rather than fine-scale im-
age reconstruction, our network can be trained until convergence to
generate denoising results, because the multi-scale framework can
provide denoising guidance for the training of the DIP generator
network at each image scale. In general, our network converges af-
ter 800 to 1000 training iterations, depending on the image content.

4. Experiments

In this section, we present experiments to evaluate the proposed
MS-DIP on image denoising. We first compare our method with
state-of-the-art methods on blind Gaussian denoising and real-
world image denoising. Next, we conduct ablation studies to eval-
uate the model design and discuss the limitations of our method.

4.1. Blind Gaussian Denoising

Datasets. We evaluate the performance of our method on the
benchmark Set9 and BSD68 datasets corrupted by synthetic
AWGN noise, which are widely employed by previous works
[UVL18,KBJ19,QCPJ20,XHC∗20]. The first one contains 9 color
images, while the second one has 68 gray-scale images.

Compared methods. We compare our method with vari-
ous state-of-the-art methods, including: (i) CBM3D [DFKE07],
which is a well-performed non-learning-based method; (ii)
DnCNN [ZZC∗17], a common benchmark for supervised image
denoising; (iii) five recent unsupervised denoising methods, i.e.,
N2N [LMH∗18], DIP [UVL18], N2S [BR19], NAC [XHC∗20],
and S2S [QCPJ20]. Note, N2N and N2S are unsupervised meth-
ods trained on a set of noisy images, while DIP, NAC, and S2S are
single-image-based unsupervised methods. For fair comparison,
we produce results of all the compared methods using publicly-
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Table 2: Quantitative comparison between our method and state-of-the-art methods on the SIDD-Medium and CC datasets.

Dataset Metric
Non-learning Supervised Unsupervised (datasets) Unsupervised (single-image)

CBM3D DnCNN CycleISP N2N N2S DIP NAC S2S Ours

CC
PSNR 35.19 34.65 35.56 35.32 31.86 35.69 36.59 37.29 37.82
SSIM 0.906 0.960 0.962 0.916 0.950 0.926 0.950 0.976 0.981

SIDD-Medium
PSNR 35.06 33.40 36.90 32.74 33.25 34.05 32.64 35.32 36.76
SSIM 0.891 0.886 0.974 0.870 0.952 0.920 0.769 0.927 0.967

Input (21.28dB/0.577) CBM3D (23.57dB/0.682) DnCNN (25.14dB/0.753) CycleISP (30.35dB/0.967) N2N (24.39dB/0.721)

DIP (27.02dB/0.875) NAC (22.88dB/0.4813) S2S (28.16dB/0.873) Ours (31.69dB/0.972) Clean image (GT)

Figure 6: Visual comparison of real-world image noise removal on an image from the SIDD-Medium dataset.

available codes or trained models provided by the authors with rec-
ommended parameter setting. In addition, since DIP’s denoising
performance is sensitive to the number of iterations, we thus im-
plemented it multiple times with different number of iterations and
adopted the best results for comparison.

Quantitative comparison. To evaluate our method’s effectiveness
in blind AWGN noise removal, we compare it with the other meth-
ods on the Set9 and BSD68 datasets in terms of average PSNR
(dB) and SSIM. Table 1 reports the results, where we can see
that our method outperforms the others on the two metrics for
both benchmark datasets. CBM3D and DnCNN produce very com-
petitive results, since the former is non-blind to the noise level
and the latter benefits from supervised training on massive high-
quality noisy/clean image pairs. Our method clearly outperforms
DIP, manifesting that learning multi-scale deep image prior al-
lows more effective image denoising. N2N and S2S also produce
promising results, while their visual results in Figure 5 demon-
strates that they tend to generate overly smoothed images with de-
graded image details.

Visual comparison. We further provide visual comparison results
in Figure 5. As can be seen, there are obvious noise residuals in
results produced by CBM3D, DIP, and NAC, while the results of

DnCNN, N2N, N2S, and S2S degrade the image textures and struc-
tures. In contrast, our method produces better result, by not only
effectively removing the noise, but also faithfully preserving the
underlying image details.

4.2. Real-World Noise Removal

Datasets. Two real-world noisy datasets are employed for perfor-
mance evaluation, which are the SIDD-Medium dataset [ALB18]
and the CC dataset [NHMJK16]. The SIDD-Medium dataset con-
tains 160 real noisy images captured by five different smartphone
cameras with corresponding ground-truth clean counterparts. The
CC dataset consists of images of 11 scenes captured by three cam-
eras, and their corresponding clean images.

Compared methods. Our method is compared with the following
eight methods: (i) CBM3D; (ii) DnCNN and CycleISP [ZAK∗20];
(iii) N2N, DIP, NAC, and S2S, where CycleISP is a state-of-the-art
supervised method. Note, the same method configuration as in Sec-
tion 4.1 is adopted to achieve fair comparison. Akin to [QCPJ20],
we employ [CZAH15] to estimate the noise level for CBM3D.

Quantitative comparison. Table 2 shows the quantitative com-
parison results. As shown, on both SIDD-Medium and CC, our
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Noisy (33.34dB/0.922) CBM3D (36.80dB/0.971) DnCNN (36.65dB/0.972) CycleISP (36.00dB/0.960) N2N (37.01dB/0.973)

DIP (36.52dB/0.983) NAC (36.20dB/0.900) S2S (38.45dB/0.984) Ours (40.47dB/0.989) Clean image (GT)

Figure 7: Visual comparison of real-world image noise removal on an image from the CC dataset.

method produces better results than the non-learning-based and
unsupervised methods. Benefiting from the dropout-based train-
ing strategy, S2S achieves competitive results on CC since noisy
images in this dataset are typically corrupted by relatively weak
noise, while its performance deteriorates on SIDD-Medium con-
sisting of images with heavy sensor noise. It is worth mentioning
that our method also produces comparable or even better results
than DnCNN and CycleISP, which are leading supervised meth-
ods. Note that, although CycleISP reports best numerical results
on SIDD-Medium, our results are very close to that of CycleISP.
Furthermore, as shown in Figure 6, we are able to obtain better
results than CycleISP on some noisy images from SIDD-Medium
with complex textures.

Visual comparison. The visual comparison on SIDD-Medium is
shown in Figure 6, where the input image is corrupted by heavy
camera sensor noise. As the sensor noise is signal dependent and
it is nontrivial to estimate a proper noise level, there are obvious
noise residuals in result of CBM3D. Similar issues also appear in
results of DnCNN and N2N, mainly due to the domain gap be-
tween the training samples and test images. NAC fails to remove
noise, because its weak noise assumption is violated by the em-
ployed noisy image. DIP, S2S, and CycleISP produce competitive
results, while they also induce lightweight noise residuals or de-
graded image structures. In comparison, our method produces a
high-quality result without noticeable noise residual and structure
degradation. Figure 7 presents visual comparison on an image from
the CC dataset. We can see that our method produces high-quality
result, while the compared methods either fail to completely re-
move the noise, or destroy the underlying texture structure of the
input image.

Input (18.77) w/o Ln
sc (26.31) w/o ada. λn (28.78)

w/o ensem. (30.19) Full method (32.15) Clean image (GT)

Figure 8: Visual ablation study (with PSNR) on the scale consis-
tency loss Ln

sc, scale adaptive weight λn, and multi-scale inference
ensemble. The input image is from the SIDD-Medium dataset.

4.3. Ablation Study

Besides the visual comparison results shown in Figure 8, we also
conducted ablation studies to evaluate the effectiveness of each
component in our model. Comparing the numerical results in Ta-
ble 3, we observe clear performance improvements by adopting the
scale consistency loss Ln

sc, the scale adaptive weight λn, and the
multi-scale inference ensemble, which convincingly demonstrate
their respective effectivenesses. Note, the ablation choice of “w/o
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Noisy (26.57dB/0.714) Clean GT S↓=64 (36.39dB/0.972) S↓=128 (37.00dB/0.975) S↓=256 (36.53dB/0.973)

Figure 9: Effect of varying minimum image scales S↓ on denoising an image from the SIDD-Medium dataset.

Figure 10: More denoising results on real-world images produced by our method.

ensemble” in Table 3 means that the final denoising result is the
finest scale output (i.e., x0 in Figure 4), rather than the combination
of the denoising outputs from different image scales. The choice
of “w/o adaptive λn” indicates that λn in Eq. (2) is a fixed value
same for all image scales instead of a scale-adaptive value. We also
analyzed the effect of varying minimum image scales on the de-
noising performance, and found that smaller minimum scales may
not produce better results, as shown in Figure 9.

4.4. More Results on Real-world Noisy Images

Figures 10 and 11 show more results and comparisons on real-
world noisy images, where the input images cover a broad range
of scenes, subjects, and lighting conditions. As can be seen, for all
these cases, our method produces visually compelling results, man-
ifesting its effectiveness in handling real-world noisy images.

4.5. Effect of Different Number of Iterations

Figure 13 examines the denoising performance of our method with
different number of training iterations. As can be seen, unlike the

Table 3: Quantitative ablation studies on the scale consistency loss
Ln

sc, scale adaptive weight λn, and multi-scale inference ensemble
on the CC and SIDD-Medium datasets (w/o - without).

Method
CC SIDD-Medium

PSNR SSIM PSNR SSIM
Ours w/o ensemble 37.02 0.963 36.37 0.951
Ours w/o adaptive λn 35.83 0.949 35.52 0.934
Ours w/o Ln

sc 34.13 0.901 33.27 0.916
Ours (full method) 37.82 0.981 36.95 0.967

original DIP method whose denoising results are very sensitive to
the number of iterations (see Figure 2), we are able to produce high-
quality denoising results by simply training our network until con-
vergence.

4.6. Limitations

Although the proposed method provides a simple yet effective ex-
ploration to unsupervised image denoising based on single training
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Noisy (25.74dB/0.6707) CBM3D (31.51dB/0.896) DnCNN (31.36dB/0.893) CycleISP (37.18dB/0.989) N2N (30.54dB/0.872)

DIP (34.66dB/0.973) NAC (32.06dB/0.804) S2S (35.18dB/0.966) Ours (40.18dB/0.993) Clean image (GT)

Figure 11: More comparison with the state-of-the-art methods on real-world noise removal.

Noisy input DnCNN [ZZC∗17] Our result

Figure 12: Our method fails to completely remove noises from the
leftmost noisy image with highly textured background, while faith-
fully preserving the texture details.

image, it still has several limitations. First of all, unlike most prior
learning-based denoising methods where the training and testing
phase are separately, as the testing phase of our method involves the
whole time-consuming training procedure, it typically takes rela-
tively high time cost (a few minutes for an image of size 640×480)
to produce the denoising results. In addition, for real-world noisy
images with highly textured background in Figure 12, our method
as well as other state-of-the-art methods may fail to completely re-
move the noise while faithfully preserving the texture details.

5. Conclusion

In this paper, we present MS-DIP, a single-image-based unsuper-
vised framework for high-quality image denoising. It is built upon
the observation that the noise level of an image usually drops dra-
matically at coarser image scales, such that noise removal at coarser
scales is more tractable. Based on the observation, we propose to

perform image denoising by learning deep image prior across im-
age scales under the guidance of denoising outputs produced by
previous coarser scales, and then averaging the denoising outputs
from different scales into a single denoised image. Experiments on
benchmark synthetic and real-world datasets show that our method
outperforms previous unsupervised image denoising methods, and
can achieve comparable or even better results than the state-of-the-
art supervised image denoising methods.
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