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Figure 1: Built upon imperfect caches precomputed at the barycentre of every triangle in a 3D scene with a low sampling rate (e.g., 32
samples per-pixel) and a low image resolution (e.g., 64×16), we propose a neural rendering pipeline that can reproduce a wide range of
global illumination effects in real-time (> 90 frames per-second). The quality of reconstructed images are close to the path-traced ground
truth and better than a real-time baseline (real-time path tracing+denoising), thanks to a deep learning-based radiance reconstruction
method.

Abstract
Real-time global illumination is a highly desirable yet challenging task in computer graphics. Existing works well solving
this problem are mostly based on some kind of precomputed data (caches), while the final results depend significantly on the
quality of the caches. In this paper, we propose a learning-based pipeline that can reproduce a wide range of complex light
transport phenomena, including high-frequency glossy interreflection, at any viewpoint in real time (> 90 frames per-second),
using information from imperfect caches stored at the barycentre of every triangle in a 3D scene. These caches are generated
at a precomputation stage by a physically-based offline renderer at a low sampling rate (e.g., 32 samples per-pixel) and a
low image resolution (e.g., 64×16). At runtime, a deep radiance reconstruction method based on a dedicated neural network
is then involved to reconstruct a high-quality radiance map of full global illumination at any viewpoint from these imperfect
caches, without introducing noise and aliasing artifacts. To further improve the reconstruction accuracy, a new feature fusion
strategy is designed in the network to better exploit useful contents from cheap G-buffers generated at runtime. The proposed
framework ensures high-quality rendering of images for moderate-sized scenes with full global illumination effects, at the cost
of reasonable precomputation time. We demonstrate the effectiveness and efficiency of the proposed pipeline by comparing it
with alternative strategies, including real-time path tracing and precomputed radiance transfer.

CCS Concepts
• Computing methodologies → Ray tracing; Neural networks;

† Corresponding author: guojie@nju.edu.cn

Volume 41 (2022), Number 7

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.14675

https://diglib.eg.orghttps://www.eg.org

https://doi.org/10.1111/cgf.14675


H. Tao et al. / Real-time Deep Radiance Reconstruction from Imperfect Caches

1. Introduction

Reproducing photo-realistic images from complex 3D scenes in
real time has been a long-standing problem in computer graph-
ics. Despite recent advances in hardware-accelerated ray tracing
in modern GPUs [SABB18, Bur20, Har20] and efficient denois-
ing techniques [SKW∗17,CKS∗17,ZSWL21,FWHB21,KIM∗19],
Monte Carlo ray/path tracing, as a flexible and general solution
for capturing every physically-based rendering effect, is still out
of reach for time-critical applications, especially for low-end de-
vices with a very limited computational budget [CJ16, KKW∗13,
KVBB∗19].

Currently, numerous rendering engines rely on some form of pre-
computation or baking to enable real-time global illumination. This
technique computes parts of the lighting at a precompuation stage,
and the resulting information is cached in specially-designed data
structures e.g., some form of vertex attributes [SKS02, SHHS03,
KBS11], textures [SSDS12, SSS∗20] or probes [SL17, RLP∗20].
At runtime, a query process is typically involved to reconstruct
the final images from these precomputed caches. To guarantee the
high accuracy of the reconstructed images, the precomputed caches
should be generated at a very high sampling rate to suppress any
noise or artifact. Baked textures or probes are also need a high
resolution to avoid aliasing. Unfortunately, the high sampling rate
and high image resolution require a large amount of precompuation
time which is not affordable for some rendering systems running on
a low-end devices.

In this paper, we investigate the possibility to generate caches for
a static scene with a low sampling rate and a low image resolution.
We name these caches as imperfect caches as they only capture in-
complete information of the scene. Undoubtedly, this is beneficial
for lowering the time consumption required at the precomputation
stage, but will result in annoying noise and aliasing artifacts in the
final images after query or interpolation based on traditional meth-
ods. With the advent of deep learning [LBH15], as well as its in-
creasing and successful adoption in rendering [TFT∗20], it is possi-
ble to reconstruct accurate radiance map from any viewpoint in the
scene, just using these imperfect caches and some cheap G-buffers
(e.g., depth, normal and albedo) generated at runtime.

To achieve the above goal, we develop a new neural rendering
framework based on imperfect caches. The imperfect caches are
generated by a physically-based path tracer with 32 samples per-
pixel (spp), a fairly low sampling rate, and stored at the barycentre
of every triangle in a 3D scene. The resolution of the cache is also
set to a low level (64×16 in our current implementation), to fur-
ther reduce the precomputation time. At runtime, a ray differential
based query method is first involved to generate imperfect radiance
(IR) maps from the imperfect caches close to the primary intersec-
tion points. These IR maps will have noise and aliasing artifacts
due to the limited sampling rate and cache resolution. Considering
the success of data-driven models in Monte Carlo image denoising
and reconstruction [GLL∗19,KHL19,BVM∗17,YNL∗21] in recent
years, we design a deep radiance reconstruction method based on a
dedicated convolutional neural network to reconstruct high-quality
radiance maps of full global illumination from the IR maps. In this
network, a new feature fusion strategy is adopted to better exploit
useful contents from cheap G-buffers. Thanks to the light-weight

design of the network, the whole pipeline, including cache query
and network inference, runs in real time.

In summary, we make the following contributions:

• We introduce imperfect caches to bake outgoing radiance with
full global illumination effects at the barycentre of every triangle
of a 3D scene. The low sampling rate and low resolution of the
caches reduce the time consumption at the precomputation stage.

• We design a deep neural network to infer high-quality images
from low-quality inputs with the guidance of G-buffers. The
light-weight design of the network enables real-time global il-
lumination for scenes with a moderate scale.

• We adopt a novel feature fusion module in our network archi-
tecture to better fuse features from both low-quality inputs and
clear G-buffers. This allows us to better exploit useful informa-
tion from the G-buffers which can serve as the guidance for the
final image reconstruction.

It should be noted that the proposed framework is a general way
towards lowering the computational cost required at the precompu-
tation stage, while still reconstructing accurate radiance maps from
baked imperfect caches. Either vertex/triangle-based baking or tex-
ture space baking can be adopted in this framework.

2. Related Work

2.1. Precomputation for Real-time Rendering

In industry, it is very common to use precomputed scene in-
formation to achieve real-time global illumination. For instance,
light maps have been widely adopted in real-time rendering of
purely diffuse surfaces. They usually precompute and bake the
global lighting effects as vertex attributes or textures. Schäfer et
al. [SSDS12] proposed a memory efficient approach that combines
texture- and vertex-based baking. Seyb et al. [SSS∗20] described a
new method based on light maps to handle low-level light source
changes.

Another general attempt to handle complex illumination with
precomputation is precomputered radiance transfer (PRT), which
was first proposed by Sloan et al. [SKS02, SHHS03]. The ratio-
nale of PRT is to represent the lighting and the light transport func-
tion with a certain linear basis, such as spherical harmonics (SH),
thus making precomputation storage affordable and, meanwhile,
approximating the computationally expensive rendering integral at
each vertex of a scene with simple operations of the basis. There
have been many subsequent developments about basis functions
in PRT. Sloan et al. [SLS05] extended it to arbitrarily deformable
models by using zonal harmonics (ZH) which approximate spher-
ical functions as sums of circularly symmetric Legendre polyno-
mials around different axes. Tsai et al. [TS06] allowed real-time
rendering with comparable quality under high-frequency lighting
using spherical radial basis functions and clustered tensor approxi-
mation. Xu et al. [XJF∗08] presented spherical piecewise constant
basis function (SPCBF) for PRT, enabling new effects such as ob-
ject rotation in all-frequency rendering of dynamic scenes and on-
the-fly BRDF editing under rotating environment lighting. Currius
et al. [CDAS20] approximated the precomputed local light field
in a scene using spherical Gaussians (SG) and adopted a convo-
lutional neural network to predict their parameters, so as to lower
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the cost both in memory and performance. Besides, for non-distant
illumination, it is not sufficient to sample the lighting only once.
Kristensen et al. [KAMJ05] introduced the concept of unstructured
light clouds for real-time relighting of scenes illuminated by local
light sources. Wang et al. [WR18] developed a novel analytic for-
mula for the spatial gradients of the SH coefficients for uniform
polygonal area lights, further adding area light to the PRT frame-
work. However, PRT still has many tough problems. For example,
it cannot handle complex light paths, and indirect illumination from
area light cannot be processed easily. In contrast, our method can
handle complex light paths well, and has no restriction to the light
sources in the scene.

2.2. Radiance Caching

Our work is also closely related to irradiance/radiance caching
which can be traced back to the seminal work of Ward et al.
[WRC88]. This method computes and caches indirect irradiance
only at a sparse set of points in the scene, and extrapolates or
interpolates these values whenever possible from cache points
deemed to be sufficiently close by. However, glossy surfaces would
invalidate the Lambertian assumption for irradiance caching al-
gorithms. To handle moderately glossy and non-Lambertian sur-
faces, Krivánek et al. [KGPB05] suggested using radiance cache,
representing the directional domain with spherical harmonics.
A wealth of recent works further explored the use of radiance
caching in offline [DBN17,MJJG18,ZBN19] and real-time render-
ing [MRNK21]. Müller et al. [MRNK21] presented a real-time neu-
ral radiance caching (NRC) method for path-traced global illumina-
tion. This method is designed to handle fully dynamic scenes, and
makes no assumptions about the lighting, geometry, and materials.
They employed online self-training to provide low-noise training
targets and simulate infinite-bounce transport by merely iterating
few-bounce training updates. Its high efficiency stems from path
truncation and a low sampling rate. Therefore, the results are noisy
and always require a denoiser for post-processing. In addition, due
to the network capacity and positional encoding, NRC easily suf-
fers from cross-shaped artifacts and over-blurriness of highlights.

The interpolation strategy of various cache records is an in-
evitable consideration no matter for radiance caching or irradiance
caching. Even robust and principled solutions has been proposed
[KG09, JDZJ08], they have strict restrictions and requirements for
the scene. In our method, we also propose a well designed inter-
polation strategy and a neural reconstruction strategy to generate
high-quality images.

2.3. Probe-based Real-time Rendering

Precomputed environment maps are widely adopted in production
to achieve real-time rendering of specular surfaces. A reflected ray
can estimate the incident radiance by querying these maps. These
ideas originate with the irradiance volume [GSHG98], which pre-
computes probes to light diffuse objects. Recently, Silvennoinen
et al. [SL17] used a sparse set of radiance probes combined with
a local reconstruction step to estimate indirect radiance on diffuse
surfaces. Different from the probe just saving radiance function,
Majercik et al. [ZJPDM19,MMK∗21] added the depth information

to the probes, so as to avoid light leakage. This method relies on
probes at a rather low resolution to estimate irradiance, but updates
them at runtime.

Handling glossy reflection paths in these methods mentioned
above requires significantly increasing the sample rate. In order
to handle glossy reflection, Rodriguez et al. [RLP∗20] proposed
glossy light probes in which glossy components of radiance are
precomputed and stored in sparsely located light probes. Combined
with traditional light maps for diffuse lighting, they can interac-
tively renders all light paths in static scenes with opaque objects.
However the high time consumption of the precomputation is the
main drawback of this approach. In contrast, our method can han-
dle glossy reflections well and effectively reduce the preprocessing
time by using low resolution radiance caches generated by a low
sampling rate.

2.4. Neural Rendering

Recently, there is a huge interest in applying deep learning tech-
niques to some rendering-related tasks, forming a new field named
neural rendering [TFT∗20]. For instance, deep learning techniques
have been used to facilitate the learning of local light distribu-
tions and importance sampling of light paths [ZZ19, MMR∗19,
BMDS19, ZXS∗21]. The networks involved in this task can be
trained either offline [BMDS19] or online [MMR∗19]. In Monte
Carlo (MC) denoising, many learning-based methods also out-
perform their traditional counterparts. Kalantari et al. [KBS15]
adopted a multi-layer perceptron to learn the filter weights for
cross-bilateral and cross non-local means filters from training data.
Bako et al. [BVM∗17] utilized a convolutional neural network to
predict filtering kernels for each pixel. Yu et al. [YNL∗21] recently
presented a self-attention based MC denoising deep learning net-
work, achieving state-of-the-art MC denoising quality. Besides im-
portance sampling and MC denoising, deep learning techniques
have also been successfully used in supersampling [XNC∗20], gra-
dient domain rendering [KHL19, GLL∗19] and deferred render-
ing [TZN19, GCD∗20]. In this paper, we also design a dedicated
neural network to recover high-quality images from low-quality
imperfect caches.

Our method also bears some similarity with Neural Radiance
Field (NeRF) [MST∗20] which also relies on neural networks for
novel view synthesis of static scenes. However, NeRF fails to rep-
resent signals with fine details at moderate resolutions due to its
volumetric representation. It is also challenge to handle specular
(or highly glossy) materials that our method is adept at and gener-
ate images at resolutions greater than a megapixel.

3. Motivation and Challenges

Before we describe our method, we would like to illustrate the mo-
tivation behind our work, and the challenges we face.

Arbitrary light paths. For majority of the real-time global il-
lumination techniques, complex light paths with multiple glossy
bounces are always expensive to compute. Consequently, a lot
of existing approaches, such as light probes [SL17], light maps
[SSDS12, SSS∗20] and PRT [SKS02], prefer to take the diffuse
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reflection into account. For PRT, it is still a challenge to handle in-
direct illumination stemming from local area lights [WR18]. The
goal of our method is to handle light transport with arbitrary com-
plexity, based on some form of precomputed caches. There is also
no restriction on the types of light sources used in the scene.

Time consumption of precomputation. In precomputation-based
real-time rendering methods, there is always a tradeoff between the
precomputation time cost and the reconstructed image quality. Pre-
vious methods based on analytical query or interpolation mostly
require high-quality caches generated with a long time, to avoid
noise and aliasing artifacts. For instance, the glossy probe reprojec-
tion method proposed by Rodriguez et al. [RLP∗20] takes roughly
30 hours on a cluster to precompute light maps and glossy probes
with full global illumination. However, the neural reconstruction
strategy which is adopted in our pipeline allows us to generate im-
perfect caches with a low sampling rate and a low resolution, thus
significantly reducing the precomputation time cost.

High runtime frame rate. A high frame rate at runtime is the
key to many rendering applications, including video games and vir-
tual reality systems. To achieve this goal, traditional methods make
many compromises of geometries, materials or luminaries in the
scenes, limiting the lighting effects that can be reproduced. We shift
the computational burden of simulating complex global illumina-
tion effects to the precomputation stage. During the runtime, a high
frame rate can be achieved by an efficient query algorithm and a
light-weight neural network for final image reconstruction. Recent
developments on specialized performance optimization (e.g., Ten-
sorRT) for deep learning further improve the frame rate. Our cur-
rent implementation allows us to generate a noise-free and aliasing-
free image of 1080P (1920×1280) within 11 ms.

4. Method

To address the above challenges and achieve global illumination in
real time without noticeable artifacts, we propose a neural render-
ing pipeline (see Fig.1) that can reproduce a wide range of global il-
lumination effects, including high-frequency glossy interreflection,
at any viewpoint in real time. In this section, we start with problem
formulation and overview in Section 4.1, and then describe the gen-
eration of imperfect caches in Section 4.2. A ray differential based
cache query and interpolation strategy is detailed in Section 4.3,
while a deep radiance reconstruction method based on a dedicated
neural network is exposed in Section 4.4.

4.1. Problem Formulation and Overview

Before we introduce the details of our method, we would like to
formalize the problem and also give a high-level overview of the
proposed framework.

Our real-time rendering framework comprises two stages: the
precomputation stage and the runtime stage. In the first stage, we
generate per-triangle imperfect caches of outgoing radiance for a
given scene containing K triangles. We denote the set of imperfect
caches generate by a low sampling rate path tracer as

Rc = {C(1),C(2), .....,C(K)} (1)

where the k-th cache C(k) contains the outgoing radiance in the
upper hemisphere of the k-th triangle. Some imperfect caches are
visualized in Fig.1.

At runtime, we cast primary rays from a given viewpoint o in
order to obtain the relevant information of primary intersection for
each pixel. With the necessary information, we generate an imper-
fect radiance (IR) map Iimp for the viewpoint o by querying the set
of imperfect caches Rc. Here, we employ a ray differential based
query and interpolation strategy Q, according to the arrangement
of our caches:

Iimp =Q(Rc,o). (2)

Meanwhile, we also record the G-buffers, including depth Idepth,
albedo Ialbedo, normal Inormal , at runtime.

The IR map Iimp has noise and aliasing artifacts due to the lim-
ited sampling rate and cache resolution. To reconstruct a high-
quality image Î from the IR map, we resort to a deep radiance re-
construction method in which a light-weight convolutional neural
network Φ with trainable parameters Θ is designed to infer Î from
Iimp, as well as some G-buffers, i.e.,

Î = ΦΘ(Iimp,Idepth,Inormal ,Ialbedo). (3)

This network is trained on multiple examples with ground truth
(synthesized by path tracing with a high sampling rate) from each
3D scene. Each training example contains an IR map, a depth map,
a normal map, an albedo map and a corresponding ground truth,
all of which are captured from a randomly chosen viewpoint in the
scene. Our network training minimizes the following error:

ε(Θ) =
M

∑
m=1

L(I(m)
GT , Î

(m)) (4)

where L is the loss function that is used in the image reconstruction
network and I(m)

GT is the ground truth for the m-th example.

4.2. Imperfect Caches

One of the key contribution of our real-time rendering framework
is the introduction of imperfect caches which are generated at the
barycentre of every triangle in the scene. Each imperfect caches
is generated as follows. For each sampling point located at a 3D
barycentre position c, we render a 180◦ panorama storing the radi-
ance collected from the center of the probe. Different from some
typical radiance caching methods which record the incident ra-
diance, we choose to cache exitant radiance Lo(c,ωo), the radia-
tive energy leaving point c in direction ωo in the panoramas. The
exitant radiance is computed by path tracing the scene through a
hemispherical camera. For best results, large triangles in the scene
should be tessellated before generating the caches.

Our neural radiance reconstruction method allows the caches to
be imperfect, meaning that we can generate them at a low sampling
rate. This differs from some prior methods [RLP∗20] which require
noise-free caches, and is beneficial for reducing the time cost in the
precomputation stage. Besides, we set the resolution of the cache to
64×16, so that the time and memory consumption of preprocessing
can be further reduced.
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Figure 2: Ray differential based cache query and interpolation.
For each pixel in the image plane, we shoot three rays from the
viewpoint o: a primary ray (the black ray) and two offset rays (the
orange and blue rays). We then find and query the imperfect cache
on the same triangle with each intersection point. The queried ra-
diance values from the caches are blended with customized weights
according to the position and normal of the intersection points.

Figure 3: Impact of the ray differential structure in cache query
and interpolation. Here, we compare the query results without (left)
and with (right) the ray differential structure.

4.3. Cache Query and Interpolation

At runtime, we query the imperfect caches from a given viewpoint
o. This will result in an IR map Iimp which inevitably contains noise
and aliasing artifacts due to the imperfect nature of the caches. To
suppress noise and aliasing artifacts as much as possible and ease
the burden of the network in the following subsection, we leverage
a ray differential [Ige99] based query strategy in this step, as shown
in Fig.2.

For each image pixel, we cast three rays from the viewpoint o:
a primary ray (p) and two offset rays (ox and oy). The offset rays
are generated by offsetting the primary ray by a pixel along the X
and Y axes, respectively. When these rays starting from the camera
hit the mesh in the scene, the caches that are located on the same
triangle with the intersection points (xp, xox and xoy) are selected to
query the radiance information. These caches have the barycentres
of cp, cox and coy as shown in Fig.2. It should be noted that we
do not require the intersection points to be non-specular. Even if
a ray hits a transmissive or mirror-reflected material, we do not
need to bounce the ray until it hits a non-specular surface. Since we
store outgoing radiance in the caches, our framework is free from

BRDF sampling and Monte Carlo integration. Therefore, the time
consumption in this step is very low.

Finally, we query and interpolate the caches’ data based on the
information of the barycentric coordinates, distances and surface
normals. Specifically, for each ray we obtain the exitant radiance
by mapping the incident direction to the cache’s local space accord-
ing to direction of the ray and the normal of the cache’s position
c. After obtaining three radiance values, we average them using a
customized weighting scheme to obtain the final pixel value. The
weight for each ray is determined by the following heuristic:

W =Wd ·Wn +δ (5)

where Wd and Wn denote weights calculated according to world po-
sitions and surface normals, respectively. δ is a small term to avoid
computation error when all other terms are zero. It is set as 0.01
in our currently implementation. Note that world positions and sur-
face normals both have impacts on the weight but are relatively in-
dependent. Therefore, they are simply multiplied in our weighting
formula. The position weight is computed by

Wd,i∈{p,ox,oy} = e−dist(ci,xi) (6)

where dist is a function returning the distance between the cache’s
position ci and the intersection point xi of the corresponding ray
in the scene. This weight penalizes the case in which the distance
between the cache’s position and the intersection point is too large.
The normal weight is computed according to

Wn,i∈{p,ox,oy} = max(0,(nci ·nxi)). (7)

The normal weight is large when the normals at the intersection
point and the cache’s position are very similar, and approaches zero
when their dot product is negative.

The effect of employing the ray differential structure in cache
query is demonstrated in Fig.3. As seen, if we query the caches us-
ing a single ray for each pixel, the IR map will be very noisy and
contains severe artifacts such as aliasing due to the limited resolu-
tion of caches. Our ray differential based method can alleviate this
problem to some extent, resulting in more smooth structures.

4.4. Deep Radiance Reconstruction

Even adopting a ray differential structure in the cache query stage,
the imperfect nature of the caches still makes the resulting image
low quality. To further remove the noise and aliasing artifacts, a
straightforward way is to increase the sampling rate and the cache
resolution. However, this will cause a large amount of precompu-
tation time. In our framework, we resort to a deep radiance recon-
struction method based on a dedicated neural network to achieve
the same effect without introducing too much time consumption in
the precomputation stage.

4.4.1. Network Architecture

Our network is a typical encoder-decoder architecture, shown in
Fig.4, which extracts multi-scale feature maps from an IR map and
the corresponding G-buffers, respectively. The IP map has 3 chan-
nels while the G-buffers form 7 channels (3 for normal, 3 for albedo
and 1 for depth). Notably, the IR map and the G-buffers have quite
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Figure 4: Detailed architecture of the network used in deep radiance reconstruction. We extract features from IR map and G-buffers
respectively using two different branches. The extracted feature maps are fused at multiple scales and then concatenated to the corresponding
layers in the decoder using skip connection.

Figure 5: The details of the fusion module (Fuse in Fig.4) used
in the network. Here, SE means a Squeeze-and-Excitation (SE)
[HSA∗20] block.

different behaviors: the IR map comprises the same contents with
the final image but is plagued with artifacts; the G-buffers have high
image quality but can only serve as the guidance. Considering this,
we design two branches in the encoder of our network to ensure
that different branches extract features from the IR map and the G-
buffers properly. Features are extracted at three different scales in
the encoder. We downsample the resolution of feature maps using
stride-2 convolutions as shown in Fig.4. To better exploit features
from both branch, we employ a new feature fusion module which
will be explained later. Feature fusion is conducted hierarchically
and the fused features are skip-connected to the corresponding lay-
ers in the decoder. The skip connections allow the network to pre-
serve more details after passing through a deep neural network. A
noise-free and aliasing free image is produced as the output of the
network.

4.4.2. Feature Fusion

Considering the different behaviors of IR maps and G-buffers,
we develop a new fusion module to fuse features from different
branches to combine the advantages of IR maps and G-buffers
while compensating for the deficiency of each other. The details

are visually explained in Fig.5. With this new feature fusion mod-
ule, the features from different branches are successively integrated
at multiple scales to ensure global smoothness while preserving vi-
sually salient details.

In this fusion module, we first generate a residual feature map
from G-buffers to perform element-wise addition with color chan-
nels. The residual block contains a 1×1 convolution layer to
squeeze the channels and a 3×3 convolution layer to generate the
residual feature maps. The remained part is similar to concatena-
tion. As we have dual channels of features from both branches,
we add a Squeeze-and-Excitation (SE) [HSA∗20] block, which can
adaptive recalibrate channel-wise feature responses. In this way, the
information from G-buffers is merged into the radiance map to en-
hance sharp edges and correct erroneous estimation.

4.4.3. Loss Function

The loss function we used to train the network in the deep radiance
reconstruction stage has two terms:

L= LL1 +αLperceptual (8)

where α is a weight to balance the influence of different terms and
is currently set as 0.03.

To ensure pixel-level accuracy, a standard L1 loss is used to
evaluate the difference between our reconstructed image Î the the
ground-truth image IGT . Moreover, a perceptual loss Lperceptual is
adopted to improve the perceptual quality of the reconstructed im-
age. The perceptual loss is calculated via the learned perceptual
image patch similarity (LPIPS) [ZIE∗18], according to the features
of Î and IGT obtained by a pretrained VGG19 network [SZ15].

4.4.4. Dataset Preparation and Implementation

We currently train a separate network for each 3D scene in the ex-
periments. We collect several scenes and design two camera paths
for each scene. One camera path contains 100 frames, including
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RTPT (4 spp) RTPT (3 spp)+denoise IR Map Our final Ground truth

Figure 6: Equal frame rate comparisons against two real-time baselines: RTPT (4 spp) implemented on top of the Falcor rendering frame-
work [BYC∗20] and RTPT (3 spp) with an AI-accelerated denoiser based on [CKS∗17]. Here, we provide both IR maps and our reconstructed
final images for four test scenes: dragon, tabletop1, tabletop2 and chairs.

90 frames for training and 10 frames for validation. Another cam-
era path contains 200 frames which are only used for testing. The
ground-truth images are generated by an offline path tracer sampled
at 4000 spp.

Our neural network is trained using the PyTorch framework
[PGM∗19]. Mini-batch SGD and Adam optimizer [KB14] are used
for optimization. Specifically, we set the minibatch size as 2, β1 in
Adam optimizer as 0.9 and β2 as 0.999. Exponential learning rate
decay is used, with a decay rate of 0.95 per epoch. The initialization
of the network follows the default setting in PyTorch.

Because the range of the color and depth in the input is rela-
tively large, logarithm transformation y = log(1+ x) is applied to
HDR images to avoid large values before feeding images into our
network. The depth is normalized by y = x/dmax where dmax is the
maximum depth in the scene.

5. Results

We have implemented our neural reconstruction network in Py-
torch, and network inference is accelerated by TensorRT. The rest,
including precomputation of caches, real-time interpolation and
query, is all implemented in Direct3D 12. All results are rendered
at 1920×1080 on an AMD Ryzen 7 5800X CPU PC with 32 GB
memory and NVIDIA RTX 3090 GPU.

To show the advantages of our method, we first compare our
method to some real-time rendering methods that also support
global illumination. We then analyze the performance of our al-
gorithm. Finally, we evaluate each part of our algorithm on four
test scenes (dragon, tabletop1, tabletop2, chairs) to emphasize their
value. The first scene comes from Wang et al.’s work [WR18]. This
scene contains some complex area light sources to test the effect
of our method on different types of light source. The other three
also add some elements with different textures and materials with
varying levels of glossiness to showcase all kinds of reflections.
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[RLP∗20] Ours GT

Figure 7: Visually comparing our method against the glossy probe
reprojection method proposed by Rodriguez et al. [RLP∗20], with
equal precomputation time.

5.1. Qualitative Comparison

Fig. 6 shows selected frames from our supplementary video’s cam-
era paths, together with our comparisons and the corresponding
ground truth. We accurately capture glossy light paths at real-time
frame rate (>90 FPS), including complex secondary glossy effects
(e.g., the glossy highlights on the reflected dragon on the floor —
right closeup of the first row).

In Fig.6, we compare to two baselines, along with path-traced
ground truth. All these results are rendered using the Falcor ren-
dering framework [BYC∗20]. Both of the baselines use real-time
path tracing (RTPT) implemented on top of the NVIDIA’s Falcor
framework. The first baseline is a real-time path tracer, denoised
with an AI-accelerated denoiser based on [CKS∗17]. We give this
path tracer the same compute budget as our prototype, resulting in 3
paths per pixel. This method captures the general structure of light
paths and provides good results. However, some highlights (e.g.,
in the reflections on the vases — right closeup of the third row)
and texture details (e.g., details of squama on the dragon — left
closeup of the first row) are missing due to blurriness caused by the
denoiser. The second baseline removes the denoising component
and increases the sampling rate for 1 more path per pixel to achieve
the same frame rate as the first baseline. This method has strong
noise due to insufficient count of samples. In addition, we compare
the temporal stability of each method by collecting several con-
secutive frames generated. In Fig.8, the flickering highlights along
the edge of the vase are absent in our method, but are obvious in
other real-time baselines. It indicates that our method is temporally
stable and does not suffer from flickering artifacts. Due to the low
quality of the IR maps, our method occasionally suffers from some
artifacts along the boundaries, especially at some places without
sufficient G-buffer information (e.g., on the golden pot in Fig. 1).
A finer tessellation of the scene could alleviate this problem. Nev-
ertheless, our solution has overall good image quality. The quality
is best appreciated over the entire path in the supplement video.

In Fig. 7, we compare our method to the glossy probe reprojec-
tion method proposed by Rodriguez et al. [RLP∗20]. Like ours, this
method can also handle arbitrary paths in real time. However, it’s
precomputation time cost is very large since high-quality probes
captured at a very large sampling rate (2048 spp) and a high resolu-
tion (1024×512) are required. To ensure the same precomputation
time as ours, probes in the glossy probe reprojection method should

RTPT
(4 spp)

RTPT
(3 spp)

+Denoise

Ours

GT

Figure 8: We compare closeups from four consecutive frames gen-
erated by our method, RTPT (4 spp), RTPT (3 spp)+denoiser and
GT. Note that the flickering highlights along the edge of the vase are
absent in our method, but are obvious in other real-time baselines
(marked by red arrows).

Figure 9: Visually comparing our method against the Precom-
puted Radiance Transfer (PRT) method supporting hundreds of
area lights [WR18]. The first row is our method’s result, while the
bottom is PRT’s result. In our method, the specular reflection on the
floor is well displayed and the details on the dragon are clearer.

be captured at a low sampling rate and a low resolution. However,
this leads to obvious noise and aliasing artifacts as highlighted in
Fig. 7.

PRT is another famous real-time rendering method based on pre-
computed data. In Fig.9, we also compare to Wang et al.’s PRT
method for polygonal area lights [WR18]. Again, the result is plau-
sible, but glossy effects are missing (e.g., the highlight on the
dragon). Besides, their PRT method fails to handle indirect illu-
mination of area lights (e.g., the mirror image on the floor). Our
method generates more convincing results that are close to the
ground truth.
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Ours RTPT
IR Map Final +Denoise -Denoise

PS
N

R
↑ dragon 30.12 34.14 31.94 23.72

tabletop 22.57 33.38 27.85 16.47
tabletop2 26.14 30.81 27.90 18.24

chairs 20.40 26.30 23.95 16.41

SS
IM

↑ dragon 0.92 0.98 0.96 0.81
tabletop 0.80 0.98 0.95 0.63

tabletop2 0.94 0.97 0.90 0.75
chairs 0.73 0.89 0.84 0.58

L
PI

PS
↓ dragon 0.257 0.068 0.118 0.386

tabletop 0.249 0.047 0.062 0.374
tabletop2 0.076 0.036 0.105 0.257

chairs 0.369 0.126 0.203 0.485

Table 1: Quantitative error metrics, using learned perceptual im-
age patch similarity (LPIPS) [ZIE∗18], peak signal to noise ra-
tio (PSNR) and structural similarity (SSIM) [WBSS04], comparing
RTPT (4 spp), RTPT (3 spp)+denoiser, IR maps, and our final re-
sults.

5.2. Quantitative Evaluation

We perform a quantitative evaluation using learned perceptual im-
age patch similarity (LPIPS) [ZIE∗18], peak signal to noise ratio
(PSNR) and structural similarity (SSIM) [WBSS04]. We compute
the error between the generated and ground-truth images. Error is
averaged over 200 frames along the path recorded in each scene.
Table 1 summarizes the error for baselines and our method. The
error for our method after deep radiance reconstruction is consis-
tently lower than baselines.

5.3. Performance Analysis

The timings and memory consumption for our method, including
preprocessing, are shown in Table 2. Rendering times are also aver-
aged over 200 frames. Since our network is trained scene by scene,
the time consumption of the preprocessing step consists of three
parts: cache precomputation, network training and the generation
of ground truth. Time for cache precomputation is approximately
linear with the resolution and sample rate. If we want to obtain
equivalent high-quality results directly through query and interpo-
lation, cache resolution should be at least 1024×256 (similar to
that in [RLP∗20]), which means that we need 768 hours for pre-
processing. With deep radiance reconstruction, time consumption
is significantly reduced to an average of 6.5 hours, which is nearly
a 120x speedup in preprocessing. At runtime, we first perform ray
casting, which uses only <1 ms of GPU time for query and inter-
polation. Then, thanks to our light-weight network architecture and
TensorRT for the acceleration of network inferring, it only costs
roughly 10 ms for the reconstruction of a 1080P (1920×1080) im-
age.

dragon chairs tabletop2 tabletop

Preprocess
Cache precomput. 2.8 h 4 h 3.2 h 3.6 h
Network training 1.5 h 2 h 2 h 2 h

Ground truth 1.2 h 1.3 h 1.6 h 1.5 h
Total 5.5 h 7.3 h 6.8 h 7.1 h

Runtime
Query/Interpolation 0.6 ms 0.7 ms 0.8 ms 0.7 ms

Network infer 10.1 ms 10.1 ms 10.1 ms 10.1 ms
Total 10.7 ms 10.8 ms 10.9 ms 10.8 ms

VRAM for caches 3.9 GB 4.2 GB 3.2 GB 5.7 GB
VRAM for network 2.9 GB 2.9 GB 2.9 GB 2.9 GB

Table 2: Timings and memory consumption of our method. Render-
ing timings average costs over frames in our videos.

Figure 10: Ablation experiment for using higher-resolution caches
calculated with equivalent preprocessing time. Left: image gener-
ated by interpolation with higher-resolution caches.

5.4. Ablation Study

We analyze our method with various ablation experiments in this
section.

Effectiveness of deep radiance reconstruction. In Fig.10, we
show a visual comparison to the results generated by querying and
interpolating higher-resolution (64 × 32) caches, which are calcu-
lated with equivalent preprocessing time as our method. The ex-
periment demonstrates the quality gained from our reconstruction
network.

Impact of the loss term. As aforementioned, our method adopts
a customized loss function, which is a weighted sum of L1 loss
and perceptual loss. To understand its impact on the reconstruction
quality, we conduct several ablation experiments with alternative
ways for it, i.e., using L1 or perceptual loss only. The results are
reported in Table 3. We observe about 4dB improvement in PSNR
by using our customized loss function compared to other losses.
And the other two quantitative indicators (SSIM/LPIPS) are also
significantly better. This indicates the superiority of the proposed
loss function. Meanwhile, we also display the impact of different
loss terms through the closeups of final results, shown in Fig.11.

Effectiveness of the fusion module. We also conduct an ablation
experiment to analyze the quality improvements stemming from
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Perceptual Loss L1 Loss Our Loss

PSNR 13.66 29.41 33.38
SSIM 0.72 0.92 0.98
LPIPS 0.132 0.091 0.047

Table 3: Ablation experiment quantitative result for our loss func-
tion, tested on the tabletop scene.

Figure 11: Ablation experiment for our customized loss function.
Left: the highlights on the outer surface and the interior of the bot-
tle reconstructed by the well trained network using L1 loss. Unrea-
sonable color on the inner wall and ghost appears at the edge of the
glossy reflections area. Middle: the reconstructed result by the net-
work trained by our customized Loss function. Right: ground truth
image.

our feature fusion module. We compare our fuse strategy with the
one utilizing the G-buffer channels by directly concatenating. In
Fig. 12, we provide a visual comparison to demonstrate the contri-
bution of our feature fusion module. When the network is trained
without the fusion module, obvious artifacts occur.

5.5. Limitations

Our method achieves plausible results with a satisfactory accuracy
in many cases; however it has some limitations.

Generalization ability of the model. Since we choose to train
a network for each scene to maximize its quality, we need addi-
tional network training and ground truth generation for preprocess-
ing stage. If the generalization ability of the reconstruction network
is improved, the preprocessing time consumption of our method
can be further reduced.

Memory consumption of the precomputation. Our caches are lo-
cated on the barycentre of each triangle mesh instance in the scene,
therefore the complexity of the scene will become an important fac-
tor affecting the memory cost of our method. Besides, in order to
retain both high and low frequency information, we still store the
panorama directly as HDR images. We believe that if a reasonable
way can be found to compress the caches and keep all the informa-
tion as much as possible, the application space of this method will
be greatly improved.

Restriction on scene and lighting. Since outgoing radiance from
each scene is already computed in the precomputation stage, we
can handle complex light paths and generate high-quality images

Figure 12: Ablation experiment for our feature fusion module.
Left: the reconstructed result by the network without our fusion
module. Middle: the reconstructed result by the network with our
fusion module. Right: ground truth image.

in real-time frame rate. However, this comes at the limitation to
static scenes and lighting.

Tessellation of the triangles. Our approach generates caches in
the center of each triangle mesh. Hence, the quality of our results
relies on the tessellation of the scene. Even the scene is tessellated
sufficiently from a far view, large triangles may still appear after
zoom-in of the camera. It would be possible to use some mipmap
strategies to improve the image quality for zoom-in cases.

6. Conclusions

In this paper, we have presented a new approach for real-time
global illumination using information from imperfect caches stored
at the barycentre of every triangle in a 3D scene and a light-weight
neural network. Our work includes three main technical contribu-
tions: the introduction of imperfect caches to lower the time con-
sumption at the precomputation stage due to the low sampling rate
and low resolution of the caches, a light-weight deep neural net-
work to infer high-quality images from low-quality inputs with
high efficiency and a new feature fusion module to better fuse fea-
tures from both low-quality inputs and clear G-buffers. Our solution
allows real-time walk-through with global illumination for opaque
scenes based on precomputation: the merit is that diffuse and glossy
light paths are both precomputed, such that rendering at runtime
can be completed at a fast speed through our query, interpolation
and deep reconstruction.
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