
Pacific Graphics 2022
N. Umetani, E. Vouga, and C. Wojtan
(Guest Editors)

Volume 41 (2022), Number 7

Fine-Grained Memory Profiling of GPGPU Kernels

Max von Buelow1 , Stefan Guthe1 and Dieter W. Fellner1,2

1Technical University of Darmstadt, Germany
2Fraunhofer IGD, Germany & Graz University of Technology, Institute of Computer Graphics and Knowledge Visualization, Austria

Abstract
Memory performance is a crucial bottleneck in many GPGPU applications, making optimizations for hardware and software
mandatory. While hardware vendors already use highly efficient caching architectures, software engineers usually have to
organize their data accordingly in order to efficiently make use of these, requiring deep knowledge of the actual hardware.
In this paper we present a novel technique for fine-grained memory profiling that simulates the whole pipeline of memory
flow and finally accumulates profiling values in a way that the user retains information about the potential region in the GPU
program by showing these values separately for each allocation. Our memory simulator turns out to outperform state-of-the-
art memory models of NVIDIA architectures by a magnitude of 2.4 for the L1 cache and 1.3 for the L2 cache, in terms of
accuracy. Additionally, we find our technique of fine grained memory profiling a useful tool for memory optimizations, which
we successfully show in case of ray tracing and machine learning applications.

CCS Concepts
• Hardware → Simulation and emulation; • Computing methodologies → Graphics processors; • Theory of computation
→ Program analysis;

1. Introduction

Standard general purpose GPU profilers (like NVIDIA Nsight
Compute) commonly evaluate hardware performance counters that
are available on the granularity of a kernel call in order to dis-
play cache hit rates, the number of memory transactions and other
memory-related metrics to the user. Supported by these metrics,
software engineers usually aim to enhance inefficient parts of their
software programs. While this is a standard way of investigating
potential bottlenecks in GPU applications, the exact cause of an in-
efficiency remains invisible to the software engineer. Deep knowl-
edge into hardware and the program itself is required in order to
find and optimize these inefficiencies. In many cases it would thus
be useful to have a finer grained representation of memory-related
profiling metrics that records memory metrics for each memory al-
location separately, allowing the user to narrow down the problem
into specific regions of the program where this allocation is actually
used.

In this paper, we introduce profiner, a profiling pipeline that au-
tomatically derives such fine-grained memory profiles from com-
piled GPU applications during run-time—analogous to existing
profilers. For this purpose, our profiler extracts a list of memory
references from the target application and simulate the whole mem-
ory flow from the processor through the caches to the DRAM. We
rely on realistic hardware parameters from NVIDIA GPU archi-
tectures that have been extracted using previous micro benchmarks
and model them in our simulator.

In summary, our contributions are:

• A profiling tool that implements allocation-wise display of cache
hit rates and coalescing behavior.

• A detailed model of the memory of recent GPU architectures
that outperforms state-of-the-art memory models in terms of ac-
curacy compared to actually measured profiling metrics.

2. Related Work

Memory Modeling Performance modelling is a well-researched
topic. While simulators like GPGPU-Sim [BYF*09] and Accel-
Sim [KSAR20] aim to model the whole GPU, other works—
including ours—specifically focus on accurate memory models.
In order to model memory given a list of memory transactions,
many cache simulators rely on reuse distances in order simu-
late the behavior of LRU caches. This technique is popular for
CPU architectures [DZ03], as well as for GPUs [NvdBCB14;
TYL11; WX16]. In particular, the model of ARAFA, CHENNU-
PATI, BARAI, et al. [ACB*19] samples estimations from the Stack
Distance Cache Model (SDCM) of AGARWAL, HENNESSY, and
HOROWITZ [AHH89], which models associativity of LRU caches,
on basis of a reuse distance histogram. Based on this, PPT-GPU-
Mem [ABC*20] uses the NVIDIA Binary Instrumentation Tool
(NVBIT) [VSNK19] in order to simplify the memory trace extrac-
tion process.

© 2022 The Author(s).
Computer Graphics Forum published by Eurographics - The European Association for Computer
Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.1111/cgf.14671

https://orcid.org/0000-0002-0036-319X
https://orcid.org/0000-0001-5539-9096
https://orcid.org/0000-0001-7756-0901
https://doi.org/10.1111/cgf.14671


M. von Buelow et al. / Fine-Grained Memory Profiling of GPGPU Kernels

Benchmarks and Ray Tracing While existing GPGPU bench-
mark suites [GXS*12; CBM*09; CBRS13; KKS*19] already cover
a wide range of individual GPU applications, our fine-grained
memory profiler was specifically, but not exclusively, designed for
GPU-based ray tracers. In contrast to these benchmarks, ray trac-
ers usually produce very heterogeneous work loads that access a
wide range of different allocations in the same kernel call, ranging
from geometry to hierarchical acceleration structures. Additionally,
memory and especially the amount of data movement from DRAM
and caches is the primary bottleneck of GPU-based ray tracers
[VSM*18; AL09]. This makes ray tracers an interesting target for
further fine-grained analysis based on a set of different optimiza-
tions that we shortly summarize in the following. A popular method
to reduce memory traffic in ray tracing is the use of bounding vol-
ume hierarchies (BVH) and optimizations of these (surface area
heuristic, e.g.) [MB90; AKL13]. Besides the BVH, memory lay-
out also plays a crucial role in performance optimization of GPU
ray tracers. While WODNIOK, SCHULZ, WIDMER, and GOESELE

[WSWG13] apply low level optimizations onto memory organiza-
tion, WALD, MORRICAL, and ZELLMANN [WMZ22] employ com-
pression techniques onto the mesh geometry. We use simplified ver-
sions of such optimizations to show their impact onto our extracted
fine-grained profiling values.

3. GPU Preliminaries

In this section, we briefly describe relevant parts of typical NVIDIA
GPU architectures that are mandatory for our memory model.

Units of Execution Most GPUs consist of multiple layers of par-
allel execution units. While the program being run on the GPU is
named the kernel, the set of all threads executing said program is
called the grid. The grid is split into multiple blocks. Inside a block,
all threads can cooperate tightly, mirroring the underlying hierar-
chy. From a hardware perspective, the first layer, named stream-
ing multiprocessor (SM), is similar to a multi-core CPU and im-
plements the MIMD model of FLYNN’s taxonomy [Fly66]. As al-
ready mentioned, a user-defined number of threads form a block.
This block is then permanently mapped onto a single SM until it
terminates, freeing all its resources like registers and shared mem-
ory. Multiple blocks may execute on a single SM if a block contains
too few threads for full occupancy. Each block is split into multiple
warps consisting of up to 32 threads per warp, operating in SIMD
fashion. Each thread within a warp is permanently assigned to a
single lane.

Memory On NVIDIA GPUs, a thread may reference 1 B, 2 B,
4 B or 8 B of aligned virtual memory with a single instruction
[NVI22a]. However, due to the SIMD architecture of warps, mem-
ory requests are executed warp-wise and therefore contain ad-
dresses from 32 threads. These addresses are coalesced automat-
ically if they form an aligned sequence. If not, memory accesses
must be executed sequentially. The size of a sequence (i.e. a mem-
ory transaction) depends on the architecture and access type, tra-
ditionally up to 128 B. GPUs also involve a cache hierarchy for
memory references in order to speed up consecutive accesses. How-
ever, details of the cache hierarchy are unpublished and must be
explored using fine-grained micro-benchmarking [MC17]. Virtual

memory is cached SM-wise in the L1 cache. The L1 cache is a
set-associative LRU cache for older architectures and a propri-
etary implementation of an LRU-like cache for recent architectures.
The L1 line size is defined to be 128 B, resulting in referencing
only a single cache line if every thread accesses a 32-bit data type
(e.g. float) in an aligned fashion. The L2 cache is also a set-
associative LRU cache and maps physical memory. It is located
off-chip and acts between the DRAM and all L1 caches.

Binary Instrumentation Binary instrumentation tools (NVBIT
[VSNK19] on NVIDIA GPUs) replace user-selected instructions
with a jump instruction to a trampoline program whose purpose
is exclusively to save and restore the program state for calling the
user-defined instrumentation function safely and execute the actu-
ally replaced instruction. This way, binary instrumentation can be
used to add such function before each memory instruction into the
program flow. Prominent use cases for such memory tracing tech-
niques are memory debuggers and profilers.

4. Fine-Grained Memory Profiling

This section describes our pipeline of fine grained memory profil-
ing. The following sections coarsely follow our modular pipeline
visualized in fig. 1. In section 4.1 we explain how we extract mem-
ory traces that we use to simulate the L1 cache (section 4.2) fol-
lowed by the L2 cache (section 4.3). Finally, we use the information
from cache simulation in order to calculate allocation-wise cache
hit rates in section 4.4.

4.1. Address Extraction

Inspired by PPT-GPU-Mem [ABC*20] (shortly PPT in the fol-
lowing), we use NVBIT [VSNK19] for memory reference extrac-
tion during running-time of the applications. We instruct the bi-
nary instrumentation tool to extract all 32 addresses of threads
within a warp including their predicates (marking currently inactive
threads), the opcode of the memory instruction used for deriving
the number of bytes processed by the memory instruction and pro-
cessing hardware identifiers (SM and warp) from the GPU kernel.
Our profiler simultaneously streams that data to the host system for
further processing. We verified extracted memory traces by count-
ing the number of memory requests that have at least one active
predicate and comparing it against the profiled number of memory
requests of the official Nsight Compute profiler (see section 5.1). In
contrast to PPT, we keep the ordering of memory requests from the
memory trace, as our profiler is designed to be an on-line tool (i.e.
it should be used on the same device the software engineer working
on). However, re-scheduling for different GPU architectures can be
implemented easily in our modular pipeline by sorting the buffered
list of memory accesses.

Accesses to global memory can be directly used for subsequent
steps. An exception applies to accesses in the local memory space.
On the actual GPU architecture, local memory is strided into 4 B
segments such that each 32 bit word is referenced by consecutive
threads making coalescing more efficient [NVI22a]. The striding
requires splitting up memory accesses greater than 4 B. Addition-
ally, we found out that extracted local memory addresses are off-
sets within a special virtual memory area that do not differentiate

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

228



M. von Buelow et al. / Fine-Grained Memory Profiling of GPGPU Kernels

GPU Application Memory Request
Extraction

Coalescing &
LMem striding

L1 cache
simulation

L2 cache
simulation

Accumulation

Figure 1: The profiler’s modular pipeline. Our profiler is divided into the following five replacable modules. First, the binary instrumentation
collects memory references. Then, addresses are pre-processed given their address space, followed by the simulation of both cache levels
separately. Finally, our profiler accumulates this data for display.

between threads such that each thread seems to access the same
memory area from a naive perspective. We handled this by sub-
tracting the local memory base address b from each reference r
and re-calculating the actual memory address given the number of
warps per SM nw, the allocated local memory per thread L, the
thread index within a warp it , the warp index within the SM iw and
the SM index is as follows.

rnew = (is ·nw + iw) ·32 ·L+(⌊r/4⌋ ·32+ it) ·4+(r mod 4) (1)

Our memory extractor then uses said memory request list in or-
der to simulate the memory coalescing behavior of the GPU. We
found out that our reference GPU coalesces multiple memory ac-
cesses within a warp if they fall within the same 32 bit range; oth-
erwise they are handled sequentially. Similar to the previous step,
we reconstructed this coalescing behavior by comparing the num-
ber of memory transaction from the official profiler against the total
number of coalesced addresses of our simulator (also described in
section 5.1).

Given this flat list of memory transactions, our profiler can per-
form the actual cache simulations.

4.2. L1 cache

The L1 cache is very important for cache rate simulations as they
directly influence L2 cache rates: Only memory references that
miss the L1 cache are forwarded to the L2. Therefore, we aim to
use realistic models and parameters of our target architecture. As
we aim to model a NVIDIA Turing GPU, we consulted the work
of JIA, MAGGIONI, SMITH, and SCARPAZZA [JMSS19] which ap-
plied micro-benchmarking techniques onto said architecture. Most
importantly, they found out that the Turing L1 cache has a non-LRU
replacement policy, 32 B lines (L) arranged in four sets S and a to-
tal capacity C of 57 kB in its default configuration (i.e. no shared
memory used). Given these values, we can derive the associativity
A (i.e. the number of cache ways, in our case 456) of the L1 cache
as follows:

A =
C

L ·S (2)

Sets are organized slightly uncommon in the L1 cache. As it
evicts four consecutive cache lines at the same time once the
cache saturates, we rather call them sub-lines and define our cache
slightly different compared to a standard set-associative cache. We
assume a fully associative cache with 456 128 B lines that can be
loaded partially at a 32 B granularity. Our simulator then uses a 4 bit
tag per line in order to indicate if these sub-lines are present in the
cache or not.

We experimented with multiple cache replacement policies and
experienced that reuse distances (i.e. a naive LRU stack) overesti-
mate cache rates in the most cases, which confirms findings that it
is not LRU [JMSS19]. We use a tree-based pseudo LRU (PLRU)
[KJ10] implementation for the L1 cache, as it is likely to be used in
real hardware due to its high lookup efficiency in hardware that can
be implemented using cheap bit-wise operations and small addi-
tional memory footprint. We additionally found that a PLRU cache
results in the most accurate cache rate predictions for our set of
benchmark applications when compared against measured profiling
values from Nsight Compute, because it results in slightly smaller
hit rates than a standard LRU cache. Due to the non-uniform num-
ber of nodes (456 lines), the PLRU permutation tree remains non-
full. Thus, we were forced to build a left-complete binary tree
in breadth first order to generate an appropriate lookup-table for
PLRU state transitions. We speculate that the 7 kB discrepancy be-
tween the documented 64 kB and measured 57 kB is used for stor-
ing the cache state and tags inside the same memory hardware.

4.3. L2 cache

Normally, L1 cache misses result in L2 lookups. Despite that, there
are also other causes for a L2 lookup. Examples are atomic oper-
ations, that always bypass the L1 cache and global memory writes
write through the L1 cache therefore always affecting both layers
in order to ensure coherence [NVI22b]. Nevertheless, because the
local memory does not have to be consistent across SMs as it only
stores per-thread data, it uses a write-back mechanism between L1
and L2. Keeping these facts in mind, we use a system analogous to
PPT for the L2 cache. The L2 cache of the Turing architecture has
a documented capacity of 5.5 MB. Micro benchmarks reveal that
the Turing L2 is a 16-way set-associative LRU cache with 64 B
lines. We found that a standard LRU cache models matches the ac-
tual cache hit rates best. Our profiler calculates reuse distances for
each memory transaction independently for each set by allocating
the amount of splay trees equal to the number of sets and updating
only the one corresponding to the address. If the reuse distance is
smaller than the associativity, we assume a hit. This procedure is
much more efficient than using the stack distance cache model, be-
cause our simulator does not have to compute SDCM’s inefficient
binomial distributions and splay trees become flatter. Nevertheless,
it requires a slight amount of additional memory for storing these
multiple trees.

4.4. Accumulation

In previous steps, our profiler annotated each memory transaction if
it was a hit in the L1 or the L2 cache. Given these transaction-wise
cache hit assignments, our profiler is able to perform the desired
fine-grained allocation-wise accumulations as follows. Our profiler

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

229



M. von Buelow et al. / Fine-Grained Memory Profiling of GPGPU Kernels

groups all memory accesses given their corresponding memory al-
location and computes the conditional probability p(hit|i) that a
memory access is a hit given the allocation i from the number of
memory accesses ni within the allocation and the number of hits hi
as follows.

p(hit|i) = hi/ni (3)

For comparability against existing profilers, we can then com-
pute the whole-program (coarsely grained) hit rate p(hit) by apply-
ing the chain rule as follows. Note, that n is the total number of
memory transactions and equal to the sum of ni.

p(hit) = ∑
i

p(hit|i) · p(i), p(i) = ni/n (4)

Combining eqs. (3) and (4) shows that the calculations in our
memory model are analogous to those in standard profilers which
use internal hardware counters in order to account the total number
of hits h and divide them by the total number of issued memory
transactions n.

p(hit) = ∑
i

hi

ni
· ni

n
= ∑

i

hi

n
= h/n. (5)

As allocations are merely identified by their base address, which
varies between kernel calls, we implemented a further optional al-
location naming programming interface, that allows, given there is
access to the program source code, to bind names to allocated mem-
ory regions (i.e. to the base address). Our profiler is then able to
automatically show this optional extra information while display-
ing fine grained profiling values for each allocation. This helps the
programmer to assign cache hit rates to allocations and their us-
age in the source code. However, if allocations cannot be named
due to lack of access to the source code, allocations can mostly be
identified manually by their size and the number of read and write
requests to them.

5. Results

In this section, we evaluate our memory profiling simulator against
a state-of-the art memory model and actually measured values on a
wide range of benchmark applications (section 5.1). Then, we dis-
cuss fine-grained cache hit rates on a smaller set of more advanced
GPU programs in section 5.2.

5.1. Comparison of Coarsely Grained Hit Rates

In order to validate the correctness of our memory simulator, we
compare cache hit rates from our simulator (see eq. (4)) with those
from the PPT model and actually measured ones from NVIDIA
Nsight Compute on a NVIDIA RTX 2080 Ti GPU. Therefore, we
use a wide range of applications from a set of benchmarks. Poly-
Bench [GXS*12] is a benchmark including numerical algebra ap-
plications like matrix and vector multiplications (2mm, 3mm, atax,
gemm, gemver, gesummv, mvt, syr2k and syrk) and linear sys-
tems solvers (bicg and gramschmidt). It also includes statistics op-
erations (cor and cov) and stencils (adi, convolution2D, convolu-
tion3D, fdtd2D, jacobi1D and jacobi2D). The Rodinia benchmark
[CBM*09] consists of graph algorithms (b+tree, bfs, pathfinder),

applications from physical, biological and medical domains (cfd,
hotspot, hotspot3D, needle, heartwall and particlefilter), linear al-
gebra (gaussian and lud), traditional data mining (nn and stream-
cluster) and compression (dwt2d and huff). Pannotia [CBRS13]
focuses on graph algorithms (bc, color, mis, pagerank and sssp).
Finally, we also use the AlexNet, LSTM and ResNet neural net-
works from the Tango [KKS*19] benchmark in our comparison.
For a more detailed description on these benchmark applications,
we would like to refer to their works directly. We use standard con-
figurations for each (except for cov and cor, as memory traces be-
come extremely large) and, when applicable, the biggest included
input dataset. In contrast to the evaluation in the PPT paper, we de-
cided to include this huge and almost complete amount of applica-
tions from the benchmarks as we see it impossible to decide which
one to leave out. Benchmarks that perform well on our approach are
as important for our discussion as benchmarks that perform worse.

Each benchmark application may contain multiple kernels. As
we experienced immense heterogeneity on profiling values when
executing the same kernel on different data (see the BFS applica-
tion), we also separate these individual calls in our comparison in
cases where it makes a difference. This is also different to the com-
parison in the PPT paper, as they only include the first call to a
kernel in their comparison.

Memory Requests and Coalescing First, in order to reduce fun-
damental sources or inaccuracy, we compared the number of mem-
ory requests and transactions with actually measured values. Fortu-
nately, Nsight Compute has options to deliver ground truth values
for global and local memory space and read and write operations
separately. We found that the number of requests only differ by ap-
proximately 0.001 %, which confirms that our recording of memory
requests is correct. We assume that this extremely small derivation
remains from synchronization barriers that we experienced to issue
internal memory requests, that NVBIT does not capture. The num-
ber of transactions varies by approximately 0.28 %. We assume that
this further small deviation comes from rare side effects in hard-
ware that need be discovered in future work. As deviations appear
to be negligibly small, we conclude that the general idea of our co-
alescing model is correct and use the generated list of transactions
for further cache simulation.

L1 Cache Figure 2 shows the L1 and L2 cache hit rates of Poly-
Bench, Pannotia (fig. 2a), Rodinia and Tango (fig. 2b). For brevity,
we left out all kernel calls where our results, those of PPT and the
measured ones are approximately the same or when individual ker-
nel calls have duplicate results as they are less important for our
discussion. Raw cache hit rates are included in the supplemental
material.

Our L1 comparison clearly shows that our implementation as
well as PPT still performs very good on the matrix multiplications
(2mm and 3mm). Nevertheless, the diagram also reveals that our
L1 cache simulation outperforms PPT in multiple cases (gesummv,
gs3, adi, bc, b+tree, euler3d, lud3, alex1, ResNet and our ray tracing
implementations). PPT, however, seems to deliver better results for
mvt, syr2k, pagerank, backprop. Our implementation outperforms
PPT with an mean absolute percentage error (MAPE) of 3.73 %
compared to 9.01 % for PPT on our set of benchmark applications.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

230



M. von Buelow et al. / Fine-Grained Memory Profiling of GPGPU Kernels
co

r1
co

r2
co

r3
co

r4
co

v1
co

v2
co

v3
2m

m
1

2m
m

2
3m

m
1

3m
m

2
3m

m
3

at
ax

1
at

ax
2

bi
cg

1
bi

cg
2

do
itg

en
1

do
itg

en
2

ge
m

m
ge

m
ve

r1
ge

m
ve

r2
ge

m
ve

r3
ge

su
m

m
v

gs
1

gs
2

gs
3

m
vt

1
m

vt
2

sy
r2

k
sy

rk
ad

i1
ad

i2
ad

i3
ad

i4
co

nv
2D

co
nv

3D
fd

td
2D

ja
co

bi
1D

ja
co

bi
2D bc

1
bc

2
bc

3
bc

4
bc

5
bc

6
bc

7
bc

8
co

lo
r1

co
lo

r2
m

is1
m

is2
pa

ge
ra

nk
1

pa
ge

ra
nk

2
pa

ge
ra

nk
3

ss
sp

1
ss

sp
2

ss
sp

3
ss

sp
40

20

40

60

80

100

E
rr

or
(%

)

L1 cache ours PPT

co
r1

co
r2

co
r3

co
r4

co
v1

co
v2

co
v3

2m
m

1
2m

m
2

3m
m

1
3m

m
2

3m
m

3
at

ax
1

at
ax

2
bi

cg
1

bi
cg

2
do

itg
en

1
do

itg
en

2
ge

m
m

ge
m

ve
r1

ge
m

ve
r2

ge
m

ve
r3

ge
su

m
m

v
gs

1
gs

2
gs

3
m

vt
1

m
vt

2
sy

r2
k

sy
rk

ad
i1

ad
i2

ad
i3

ad
i4

co
nv

2D
co

nv
3D

fd
td

2D
ja

co
bi

1D
ja

co
bi

2D bc
1

bc
2

bc
3

bc
4

bc
5

bc
6

bc
7

bc
8

co
lo

r1
co

lo
r2

m
is1

m
is2

pa
ge

ra
nk

1
pa

ge
ra

nk
2

pa
ge

ra
nk

3
ss

sp
1

ss
sp

2
ss

sp
3

ss
sp

40

20

40

60

80

100

E
rr

or
(%

)

L2 cache

(a) PolyBench and Pannotia

D
rtDRr
tD Irt
D

M
rtD Sr
tD

D
rtBRr
tB Irt
B

M
rtB Sr
tB

D
rtHRr
tH Irt
H

M
rtH Sr
tH

bp
tre

e1
bp

tre
e2

bf
s1

bf
s2

bf
s3

bf
s4 cf
d

dw
t2

d1
dw

t2
d2

dw
t2

d3
dw

t2
d4

he
ar

tw
al

l
ho

tsp
ot

ho
tsp

ot
3D

hu
ff1

hu
ff2 lu
d1

lu
d2

lu
d3

nw
1

nw
2

pa
th

fin
de

r sc
ba

ck
pr

op
1

ba
ck

pr
op

2
A

le
xN

et
1

A
le

xN
et

2
A

le
xN

et
3

A
le

xN
et

4
LS

TM
Re

sN
et

1
Re

sN
et

2
Re

sN
et

3
Re

sN
et

4
Re

sN
et

50

20

40

60

80

100

E
rr

or
(%

)

L1 cache ours PPT

D
rtDRr
tD Irt
D

M
rtD Sr
tD

D
rtBRr
tB Irt
B

M
rtB Sr
tB

D
rtHRr
tH Irt
H

M
rtH Sr
tH

bp
tre

e1
bp

tre
e2

bf
s1

bf
s2

bf
s3

bf
s4 cf
d

dw
t2

d1
dw

t2
d2

dw
t2

d3
dw

t2
d4

he
ar

tw
al

l
ho

tsp
ot

ho
tsp

ot
3D

hu
ff1

hu
ff2 lu
d1

lu
d2

lu
d3

nw
1

nw
2

pa
th

fin
de

r sc
ba

ck
pr

op
1

ba
ck

pr
op

2
A

le
xN

et
1

A
le

xN
et

2
A

le
xN

et
3

A
le

xN
et

4
LS

TM
Re

sN
et

1
Re

sN
et

2
Re

sN
et

3
Re

sN
et

4
Re

sN
et

50

20

40

60

80

100

E
rr

or
(%

)

L2 cache

(b) Our ray tracer, Rodinia and Tango

Figure 2: Comparison of the absolute percentage error (APE) between measured cache hit rates and cache hit rates estimated using our
approach and PPT-GPU-Mem. Gray bars indicate that the profiler failed to process the target program.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

231



M. von Buelow et al. / Fine-Grained Memory Profiling of GPGPU Kernels

The execution of PPT failed with a segmentation fault on the sssp
benchmark, which we did not further analyze. There are also cases
where our implementation and PPT leads to inferior L1 hit rate
approximations at the same time, which indicates that our imple-
mentation still does not completely reflect the actual memory be-
haviour.

The table with absolute hit rates values in the supplemental ma-
terial reveals that PPT over-estimates cache hit rates in many cases.
This seems in the first place to be a particularly hard to explain
behaviour, as they assume a smaller L1 cache capacity (32 kB)
than our implementation (57 kB), probably because they assumed
the wrong default of the two available L1 capacity configurations
(32 kB or 64 kB). When we analyzed their official implementation,
we found that they replaced the stack distance cache model with
an approximation they claim to be compute-wise more efficient.
Unfortunately, their approximation includes a mistake that drasti-
cally over-estimates cache hit rates if stack distances are greater
than the cache associativity (i.e. misses). In the end, the incorrect
assumption on the L1 capacity compensates the wrongly imple-
mented SDCM approximation. Nevertheless, this mistake does not
affect their L2 cache rate simulation as their per-transaction hit de-
cision is based on bare reuse distances. We show a plot of their
approximation in our supplemental material and compare it against
the actual stack distance cache model. We assume that this imple-
mentation mistake makes PPT less robust and less explainable, de-
spite the fact that it still delivers surprisingly good approximations
when assuming half the cache capacity.

L2 Cache The general trend of L2 cache hit rate approximations–
for both PPT and our implementation—seems to be that the inac-
curacy increases. This is hardly surprising as the L2 cache relies
on misses from the L1 cache and therefore effectively accumulates
errors. This fact also becomes clear when looking at the MAPE,
which is 15.81 % for our simulator and 20.10 % for PPT. In more
detail, our simulator performs better for doitgen, conv2D/3D, bc,
color1, mis, pagerank1/3, sssp, our ray tracers, bfs3/4, heartwall,
hotspot, lud, nw, huff, dwt2d and ResNet. PPT, however, performs
better for cor, gemver, gesummv, adi, fdtd2D, jacobi1D/2D, color2,
pagerank2, bfs1/2, pathfinder, sc, backprop and LSTM.

Summarizing, we found our cache hit rate approximation tech-
nique to be improved significantly, especially for the L1 cache. For
our ray tracing implementations—which were the initial reason for
implementing our own simulator—our simulator improved signif-
icantly with a mean absolute percentage error of around 4 % for
the L1 cache compared to errors around 10 % for PPT, which ap-
plies also analogous for the L2 cache. Our model outperforms PPT,
because we use a model that is closer to the actual hardware and
uses documented and previously estimated parameters of caches
to model them. Our model does not make use of the SDCM ap-
proximation and rather uses implementations of the cache mecha-
nisms itself in order to estimate if a memory reference was a hit.
Additionally, we evaluate each step of our profiler separately—
inclusively memory reference extraction, coalescing and address
transformations—in order to ensure that our results have small
derivations.

(a) Dragon (b) Bunny (c) Hairball

Figure 3: Images from used meshes at the rendered perspective.

Run-time Performance Despite the comparison may be unfair,
we measured run-time performance of profiling our ray tracer on
the Dragon mesh and compare it against Nsight Compute and PPT
for a rough assessment of computational time requirements. The
running time varies between programs and a comparison mainly
depends on the amount of memory accesses extracted. Nsight Com-
pute suffers from multiple passes it executes for the same kernel but
can make use of hardware performance counters. On a 512 × 512
view of the Dragon, our pipeline (1.02 min) is more than 4 times
faster than PPT (4.75 min) but approximately 2 times slower than
Nsight Compute (0.47 min). Pagerank looks different, where our
implementation, as well as Nsight, takes 2 s and PPT 10 s. On the
bicg benchmark, Nsight only requires 2 s, ours 14 s and PPT 55 s.
We conclude, that we are approximately 4 times faster than PPT
and usually slower than Nsight, which is hard to beat due to its
use of internal hardware counters. However, Nsight Compute is not
able to show per-allocation hit rates.

In the following, we use our previously presented accurate mem-
ory model to further narrow it down to individual allocations, by
evaluating the outcome of eq. (3), instead of evaluating it per ker-
nel call as in eq. (4).

5.2. Fine-Grained Memory Profiles

We employ our fine-grained memory profiling onto our ray tracing
implementation, as they were the initial reason for our fine-grained
memory profiler and they contain a big set of actively used allo-
cations within one kernel call due to the nature of ray tracing. We
additionally shortly demonstrate our fine grained cache analysis on
the neural network ResNet.

The ray tracer itself is split up into five similar implementations
with different optimizations in order to allow comparison between
different scenarios. We call these different implementations config-
urations in the following. The basis configuration (default) forms
the while-while approach of AILA and LAINE [AL09] with per-
sistent threads and a SAH-based generated BVH stored in a lay-
out similar to the ray tracer of WALD, SLUSALLEK, BENTHIN,
and WAGNER [WSBW01]. The second one (random permutation)
applies a random memory permutation onto the mesh geometry
that is expected to be less efficient than the status quo, as mem-
ory coherency obviously decreases. The third configuration (ifif )
implements the analogous if-if work distribution, followed by re-
placing SAH with the median split strategy (median split) that is
also known to be less efficient in most cases. The final configu-
ration (sm-wise scanline) exploits the persistent thread approach

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

232



M. von Buelow et al. / Fine-Grained Memory Profiling of GPGPU Kernels

co
nn

im
ag

e

aa
bb

ge
om nr
m

bv
h

lm
em

0

20

40

60

80

100

H
it

ra
te

(%
)

L1 metrics

co
nn

im
ag

e

aa
bb

ge
om nr
m

bv
h

lm
em

L2 metrics

default random permutation ifif median split sm-wise scanline

(a) Dragon

im
ag

e

bv
h

aa
bb

ge
om co
nn nr
m

lm
em

0

20

40

60

80

100

H
it

ra
te

(%
)

L1 metrics

im
ag

e

bv
h

aa
bb

ge
om co
nn nr
m

lm
em

L2 metrics

(b) Bunny

im
ag

e

co
nn

ge
om nr
m

bv
h

aa
bb

lm
em

0

20

40

60

80

100

H
it

ra
te

(%
)

L1 metrics

im
ag

e

co
nn

ge
om nr
m

bv
h

aa
bb

lm
em

L2 metrics

(c) Hairball

Figure 4: Fine-grained profiling applied to our example tay tracer. Multiple metrics are superimposed in this diagram. Bars represent cache
hit rates. Red lines stand for the relative number of memory transactions and black lines (in all cases above the red line) represent the
coalescing efficiency.

by distribute works in a non-standard way that neighboring pixels
are processed by the same streaming multiprocessor, which we ex-
pect to perform better on on-chip caches like the L1 cache. We
execute this set of ray tracing configurations onto a set of indi-
vidual meshes. Precisely, onto the Dragon mesh from XYZRGB
(fig. 4a), containing approximately 12 million triangles, onto the
Bunny from the Stanford 3D scanning repository (fig. 4b), con-
taining less than 70 000 triangles, and finally on the Hairball from
NVIDIA Research (fig. 4c) with approximately three million tri-
angles. The position and orientation of the camera can be seen in
fig. 3.

Figure 4 shows our fine grained cache hit rate profiles on our
meshes. Our generated diagrams visualize three metrics at the same
time: cache hit rates for each allocation separately, the coalescing

efficiency (i.e. the laod/store efficiency) and the relative memory
traffic (i.e. the relative number of memory transactions). The latter
in order to demonstrate that some allocations may have a marginal
effect on the overall cache hit rate (see eq. (4)) and therefore also,
potentially, on the run-time performance. The frame buffer and ver-
tex normals are commonly such cases. Their memory traffic is far
below 5 % in all our experiments. This is hardly surprising, as they
are involved once per pixel. All other memory operations are inside
the BVH traversal loop making memory references more frequent.
The general trend is that the geometry of vertices receive most traf-
fic and approximately three times more than the faces. This is also
hardly surprising, as a single face (i.e. three vertex indices) is three
times smaller than its three corresponding vertices in our ray trac-
ing implementation. Despite their crucial importance for preventing

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

233



M. von Buelow et al. / Fine-Grained Memory Profiling of GPGPU Kernels
l1w

eig
hts

l1n
eu

ro
ns

l2n
eu

ro
ns

0

20

40

60

80

100

H
it

ra
te

(%
)

L1 metrics

l1w
eig

hts
l1n

eu
ro

ns
l2n

eu
ro

ns

L2 metrics

unoptimized optimized

Figure 5: Fine-grained profiling applied to the first kernel of
ResNet from the Tango benchmark “executeFirstLayerCUDA”.
Multiple metrics are superimposed in this diagram. Bars represent
cache hit rates. Red lines stand for the relative number of memory
transactions and black lines represent the coalescing efficiency.

faces to be accessed, AABBs seem to contribute less to the over-
all amount of memory references. For coalescing efficiency, we see
high values for each allocation, except for the normals, which, how-
ever, occur infrequently. Accesses to local memory have an propor-
tion of less than 10 % to the memory traffic. For the L2 cache, we
see a higher variation in the relative number of memory transac-
tions. This can be explained by their dependency on the L1 cache
performance that we described in section 4.3.

Random Vertex Permutation More interestingly, all compar-
isons show that the random vertex permutation configuration de-
creases hit rates on the mesh geometry as well as vertex nor-
mals. This confirms our expectation that this ray tracer configu-
ration affects caching on vertex-related allocations. Additionally,
the caching performance on the local memory and the BVH tree
decreases on all our testing datasets for this configuration.

Work Distribution Changing to the if-if work distribution has
negative caching implications on all allocations, which corre-
sponds to its slightly less efficiency [AL09]. The SM-wise scanline
scheduling shows the expected trend. L1 hit rates on all allocations
for all meshes as we increased SM-wise memory coherence. Nev-
ertheless, the memory coherence appears to decrease globally, as
caching performance decreases for the L2 cache.

Median Split We see an increased relative number of memory ac-
cesses to the mesh geometry and connectivity, especially for the
Hairball. At the same time, caching in the L1 cache tends to per-
form slightly worse than our default configuration. We explain
these inferior profiling values by the increased end-point overlap
[AKL13] for median-split-based BVHs.

ResNet Figure 5 shows our profiler on the kernel that computes the
first layer of ResNet as an example highlighting the potential of our
tool outside of graphics algorithms, such as ray tracing. Our fine-
grained profile reveals that caching on the input neurons is poor.
This affects the performance of that program drastically, as the in-
put neurons have the most memory traffic, which is also reflected in

the diagram. A first analysis on usage of the corresponding alloca-
tion indicated that its indexing might be an factor of inefficiency for
caching. We tried fixing this by swapping x and y coordinates—by
just swapping two characters in the source code—in thread index-
ing, which effectively only decides if work is assigned row-wise
of column-wise to a warp. Our memory profile then showed an in-
creased cache hit rate for the neurons. On the RTX 2080 Ti, we
measured a execution time of 2.99 ms on the same dataset as in our
global evaluation without our optimization. With our simple opti-
mization, we measure 1.35 ms.

6. Conclusion

Memory profiling is an important task in program optimization and
requires in-depth knowledge of the hardware domain. In this pa-
per we presented a fine-grained memory profiler that simulates the
whole memory flow and finally accumulates profiling values in a
way that the user retains information about the potential region in
the profiled GPU program by showing them separately for each al-
location.

In order to evaluate our memory profiler, we initially compared
it to the official general purpose CUDA profiler NVIDIA Nsight
Compute and a state-of-the-art memory simulator PPT-GPU-Mem.
Results show that our model archives a mean error of 3.73 % and
outperforms PPT by a factor of 2.4 for the L1 cache. L2 cache hit
rates can be approximated with an error of 15.81 % with our tool,
outperforming PPT by a factor of 1.3.

In a second step, we demonstrated our profilers capability of
allocation-wise hit rate estimation by applying it on a set of dif-
ferent configurations of a ray tracing implementation. We found
these results to correspond with initial assumptions on those con-
figurations. Additionally, we showed how we successfully used our
profiler to enhance the run-time performance of the first layer of
ResNet from the Tango benchmark.

Future Work and Limitations In future, we would like to further
improve our memory model to become even more accurate. Despite
our memory profiler can help identifying potential sources of inef-
ficiencies easier compared to bare whole-program cache hit rates,
caching on individual allocations is still not independent on those
and accesses to one may influence the cache rates of the other one
negatively.

Source Code The source code for this paper is available at
https://github.com/maxvonbuelow/profiner.

Acknowledgements

Part of the research in this paper was funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) –
project number 407 714 161. We thank the anonymous reviewers
whose comments helped improve this manuscript. Open Access
funding enabled and organized by Projekt DEAL.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

234

https://github.com/maxvonbuelow/profiner


M. von Buelow et al. / Fine-Grained Memory Profiling of GPGPU Kernels

References
[ABC*20] ARAFA, YEHIA, BADAWY, ABDEL-HAMEED, CHENNUPATI,

GOPINATH, et al. “Fast, accurate, and scalable memory modeling of
GPGPUs using reuse profiles”. Proceedings of the 34th ACM Interna-
tional Conference on Supercomputing. ICS ’20. ACM, June 2020. DOI:
10.1145/3392717.3392761.

[ACB*19] ARAFA, YEHIA, CHENNUPATI, GOPINATH, BARAI, ATANU,
et al. “GPUs Cache Performance Estimation using Reuse Distance Anal-
ysis”. 2019 IEEE 38th International Performance Computing and Com-
munications Conference (IPCCC). IEEE, Oct. 2019, 1–8. DOI: 10 .
1109/ipccc47392.2019.8958760.

[AHH89] AGARWAL, A., HENNESSY, J., and HOROWITZ, M. “An ana-
lytical cache model”. ACM Transactions on Computer Systems 7.2 (May
1989), 184–215. DOI: 10.1145/63404.63407.

[AKL13] AILA, TIMO, KARRAS, TERO, and LAINE, SAMULI. “On qual-
ity metrics of bounding volume hierarchies”. Proceedings of the 5th
High-Performance Graphics Conference on - HPG ’13. HPG ’13. ACM
Press, 2013. DOI: 10.1145/2492045.2492056.

[AL09] AILA, TIMO and LAINE, SAMULI. “Understanding the efficiency
of ray traversal on GPUs”. Proceedings of the 1st ACM conference on
High Performance Graphics - HPG ’09. HPG ’09. ACM Press, 2009.
DOI: 10.1145/1572769.1572792.

[BYF*09] BAKHODA, ALI, YUAN, GEORGE L., FUNG, WILSON W. L.,
et al. “Analyzing CUDA workloads using a detailed GPU simulator”.
2009 IEEE International Symposium on Performance Analysis of Sys-
tems and Software. IEEE, Apr. 2009, 163–174. DOI: 10 . 1109 /
ispass.2009.4919648.

[CBM*09] CHE, SHUAI, BOYER, MICHAEL, MENG, JIAYUAN, et al.
“Rodinia: A benchmark suite for heterogeneous computing”. 2009 IEEE
International Symposium on Workload Characterization (IISWC). IEEE,
Oct. 2009, 44–54. DOI: 10.1109/iiswc.2009.5306797.

[CBRS13] CHE, SHUAI, BECKMANN, BRADFORD M., REINHARDT,
STEVEN K., and SKADRON, KEVIN. “Pannotia: Understanding irregu-
lar GPGPU graph applications”. 2013 IEEE International Symposium on
Workload Characterization (IISWC). IEEE, Sept. 2013, 185–195. DOI:
10.1109/iiswc.2013.6704684.

[DZ03] DING, CHEN and ZHONG, YUTAO. “Predicting whole-program
locality through reuse distance analysis”. ACM SIGPLAN Notices 38.5
(May 2003), 245–257. DOI: 10.1145/780822.781159.

[Fly66] FLYNN, M.J. “Very high-speed computing systems”. Proceedings
of the IEEE 54.12 (1966), 1901–1909. DOI: 10.1109/proc.1966.
5273.

[GXS*12] GRAUER-GRAY, SCOTT, XU, LIFAN, SEARLES, ROBERT, et
al. “Auto-tuning a high-level language targeted to GPU codes”. 2012
Innovative Parallel Computing (InPar). IEEE, May 2012, 1–10. DOI:
10.1109/inpar.2012.6339595.

[JMSS19] JIA, ZHE, MAGGIONI, MARCO, SMITH, JEFFREY, and
SCARPAZZA, DANIELE PAOLO. “Dissecting the NVidia Turing T4 GPU
via Microbenchmarking”. (2019). DOI: 10.48550/ARXIV.1903.
07486. Pre-published.

[KJ10] KHAN, SAMIRA and JIMENEZ, DANIEL A. “Insertion policy se-
lection using Decision Tree Analysis”. 2010 IEEE International Confer-
ence on Computer Design. IEEE, Oct. 2010, 106–111. DOI: 10.1109/
iccd.2010.5647608.

[KKS*19] KARKI, AAJNA, KESHAVA, CHETHAN PALANGOTU, SHIV-
AKUMAR, SPOORTHI MYSORE, et al. “Detailed Characterization of
Deep Neural Networks on GPUs and FPGAs”. Proceedings of the 12th
Workshop on General Purpose Processing Using GPUs - GPGPU ’19.
GPGPU ’19. ACM Press, 2019. DOI: 10.1145/3300053.3319418.

[KSAR20] KHAIRY, MAHMOUD, SHEN, ZHESHENG, AAMODT, TOR
M., and ROGERS, TIMOTHY G. “Accel-Sim: An Extensible Simulation
Framework for Validated GPU Modeling”. 2020 ACM/IEEE 47th An-
nual International Symposium on Computer Architecture (ISCA). IEEE,
May 2020, 473–486. DOI: 10.1109/isca45697.2020.00047.

[MB90] MACDONALD, J. DAVID and BOOTH, KELLOGG S. “Heuristics
for ray tracing using space subdivision”. The Visual Computer 6.3 (May
1990), 153–166. DOI: 10.1007/bf01911006.

[MC17] MEI, XINXIN and CHU, XIAOWEN. “Dissecting GPU Memory
Hierarchy Through Microbenchmarking”. IEEE Transactions on Paral-
lel and Distributed Systems 28.1 (Jan. 2017), 72–86. DOI: 10.1109/
tpds.2016.2549523.

[NvdBCB14] NUGTEREN, CEDRIC, van den BRAAK, GERT-JAN, COR-
PORAAL, HENK, and BAL, HENRI. “A detailed GPU cache model
based on reuse distance theory”. 2014 IEEE 20th International Sympo-
sium on High Performance Computer Architecture (HPCA). IEEE, Feb.
2014, 37–48. DOI: 10.1109/hpca.2014.6835955.

[NVI22a] NVIDIA CORPORATION. CUDA Programming Guide. 2022.
URL: https : / / docs . nvidia . com / cuda / cuda - c -
programming-guide.

[NVI22b] NVIDIA CORPORATION. PTX: Parallel thread execution ISA.
2022. URL: https://docs.nvidia.com/cuda/parallel-
thread-execution.

[TYL11] TANG, TAO, YANG, XUEJUN, and LIN, YISONG. “Cache Miss
Analysis for GPU Programs Based on Stack Distance Profile”. 2011 31st
International Conference on Distributed Computing Systems. IEEE, June
2011, 623–634. DOI: 10.1109/icdcs.2011.16.

[VSM*18] VASIOU, ELENA, SHKURKO, KONSTANTIN, MALLETT, IAN,
et al. “A detailed study of ray tracing performance: render time and
energy cost”. The Visual Computer 34.6-8 (Apr. 2018), 875–885. DOI:
10.1007/s00371-018-1532-8.

[VSNK19] VILLA, ORESTE, STEPHENSON, MARK, NELLANS, DAVID,
and KECKLER, STEPHEN W. “NVBit. A Dynamic Binary Instrumen-
tation Framework for NVIDIA GPUs”. Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture. MICRO ’52.
ACM, Oct. 2019. DOI: 10.1145/3352460.3358307.

[WMZ22] WALD, INGO, MORRICAL, NATE, and ZELLMANN, STEFAN.
“A Memory Efficient Encoding for Ray Tracing Large Unstructured
Data”. IEEE Transactions on Visualization and Computer Graphics 28.1
(Jan. 2022), 583–592. DOI: 10.1109/tvcg.2021.3114869.

[WSBW01] WALD, INGO, SLUSALLEK, PHILIPP, BENTHIN, CARSTEN,
and WAGNER, MARKUS. “Interactive Rendering with Coherent Ray
Tracing”. Computer Graphics Forum 20.3 (Sept. 2001), 153–165. DOI:
10.1111/1467-8659.00508.

[WSWG13] WODNIOK, DOMINIK, SCHULZ, ANDRE, WIDMER, SVEN,
and GOESELE, MICHAEL. “Analysis of Cache Behavior and Perfor-
mance of Different BVH Memory Layouts for Tracing Incoherent Rays”.
Eurographics Symposium on Parallel Graphics and Visualization. The
Eurographics Association, 2013. DOI: 10.2312/EGPGV/EGPGV13/
057-064.

[WX16] WANG, DONGWEI and XIAO, WEIJUN. “A reuse distance based
performance analysis on GPU L1 data cache”. 2016 IEEE 35th In-
ternational Performance Computing and Communications Conference
(IPCCC). IEEE, Dec. 2016, 1–8. DOI: 10 . 1109 / pccc . 2016 .
7820638.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

235

https://doi.org/10.1145/3392717.3392761
https://doi.org/10.1109/ipccc47392.2019.8958760
https://doi.org/10.1109/ipccc47392.2019.8958760
https://doi.org/10.1145/63404.63407
https://doi.org/10.1145/2492045.2492056
https://doi.org/10.1145/1572769.1572792
https://doi.org/10.1109/ispass.2009.4919648
https://doi.org/10.1109/ispass.2009.4919648
https://doi.org/10.1109/iiswc.2009.5306797
https://doi.org/10.1109/iiswc.2013.6704684
https://doi.org/10.1145/780822.781159
https://doi.org/10.1109/proc.1966.5273
https://doi.org/10.1109/proc.1966.5273
https://doi.org/10.1109/inpar.2012.6339595
https://doi.org/10.48550/ARXIV.1903.07486
https://doi.org/10.48550/ARXIV.1903.07486
https://doi.org/10.1109/iccd.2010.5647608
https://doi.org/10.1109/iccd.2010.5647608
https://doi.org/10.1145/3300053.3319418
https://doi.org/10.1109/isca45697.2020.00047
https://doi.org/10.1007/bf01911006
https://doi.org/10.1109/tpds.2016.2549523
https://doi.org/10.1109/tpds.2016.2549523
https://doi.org/10.1109/hpca.2014.6835955
https://docs.nvidia.com/cuda/cuda-c-programming-guide
https://docs.nvidia.com/cuda/cuda-c-programming-guide
https://docs.nvidia.com/cuda/parallel-thread-execution
https://docs.nvidia.com/cuda/parallel-thread-execution
https://doi.org/10.1109/icdcs.2011.16
https://doi.org/10.1007/s00371-018-1532-8
https://doi.org/10.1145/3352460.3358307
https://doi.org/10.1109/tvcg.2021.3114869
https://doi.org/10.1111/1467-8659.00508
https://doi.org/10.2312/EGPGV/EGPGV13/057-064
https://doi.org/10.2312/EGPGV/EGPGV13/057-064
https://doi.org/10.1109/pccc.2016.7820638
https://doi.org/10.1109/pccc.2016.7820638

