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Figure 1: Comparison of average draw times in milliseconds between our direct isosurface rasterization approach (ours) and min-max
octree ray marching (oct), both at a rendering resolution of 3840×2160 pixels.
CT Head (0.19ours | 1.54oct ) Vertebra (0.26ours | 1.95oct ) Chameleon (1.26ours | 2.59oct ) Timeseries Supernova (0.29ours | 1.41oct )

Abstract
In this paper we propose a novel and efficient rasterization-based approach for direct rendering of isosurfaces. Our method
exploits the capabilities of task and mesh shader pipelines to identify subvolumes containing potentially visible isosurface ge-
ometry, and to efficiently extract primitives which are consumed on the fly by the rasterizer. As a result, our approach requires
little preprocessing and negligible additional memory. Direct isosurface rasterization is competitive in terms of rendering per-
formance when compared with ray-marching-based approaches, and significantly outperforms them for increasing resolution in
most situations. Since our approach is entirely rasterization based, it affords straightforward integration into existing rendering
pipelines, while allowing the use of modern graphics hardware features, such as multi-view stereo for efficient rendering of
stereoscopic image pairs for geometry-bound applications. Direct isosurface rasterization is suitable for applications where
isosurface geometry is highly variable, such as interactive analysis scenarios for static and dynamic data sets that require
frequent isovalue adjustment.
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1. Introduction

Isosurfaces are traditionally visualized using either direct or in-
direct rendering approaches. Direct isosurface visualization ap-
proaches are normally based on ray marching, and are referred to
as ‘direct’ because no intermediate representation of the isosurface
is created [EHK∗06,PSL∗98]. Conversely, indirect isosurface visu-
alization techniques most commonly use variants of the marching-
cubes technique [LC87] to extract an explicit isosurface representa-
tion from the volume dataset, which is subsequently rendered, often
with a standard triangle mesh rendering pass. This two-step process
requires significant memory bandwidth as well as additional mem-
ory for storing and accessing the isosurface representation.

In this paper, we present direct isosurface rasterization, an ap-
proach that avoids this memory and bandwidth overhead by lever-

aging the capabilities of task and mesh shading pipelines, a modern
graphics feature, to produce indexed triangles as graphics primi-
tives on the fly and have them directly consumed by the rasteriza-
tion hardware. We refer to this process of extracting and directly
consuming the geometry as transient isosurface extraction. We use
task shaders to identify isosurface-containing cells inside small vol-
ume blocks, and pass sets of these cells on to mesh shaders, which
extract the isosurface primitives and pass them on to the raster-
ization units. To complement the extraction and rendering stage,
we introduce a raster-occlusion-culling-based technique that uses a
similar approach, employing task shaders to identify volume blocks
that contain isosurface geometry, and using mesh shaders to effi-
ciently generate proxy geometry that is then rasterized to identify
the potentially visible set of blocks.
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Even though ray-marching-based approaches have become a de
facto standard for applications where isovalues need to be contin-
uously adjusted, their performance generally has a linear depen-
dence on the display resolution, which is ever increasing as dis-
play technologies advance. In contrast, rasterization units in mod-
ern GPUs are now so highly optimized that the cost of rasterizing
primitives is much less dependent on resolution. Our observation
is that both direct and indirect approaches need to access the same
volume cells in order to render the visible part of an isosurface. If
those cells can be identified and processed quickly, and primitives
directly streamed into the rasterizer, the cost of isosurface extrac-
tion might be compensated by fast rasterization. It is our hypothesis
that isosurface extraction and rasterization should be faster when
cells generate multiple fragments (cover multiple pixels), because
in these cases multiple rays would have to compute the isosurface
intersections in the same cell. Therefore, we believe that direct iso-
surface rasterization should outperform ray casting with increasing
display resolution for a given volume.

To validate our hypothesis, we effectively employ task and mesh
shading pipelines to create an efficient direct isosurface visualiza-
tion purely based on rasterization. Our contributions can be sum-
marized as follows:

• a novel and efficient pipeline design for direct isosurface raster-
ization that requires negligible preprocessing and only a small
amount of additional memory for auxiliary data structures;

• a lightweight two-level raster occlusion culling approach com-
plementing our isosurface rasterization approach.

Our evaluation shows that direct isosurface rasterization outper-
forms ray-marching approaches using min-max octrees in most sit-
uations.

2. Related Work

Our work is mainly influenced by research in the fields of interac-
tive indirect isosurface rendering, direct isosurface rendering, and
GPU-based occlusion culling. In the following section, we provide
an overview of work that is closely related to ours, and highlight
the features that distinguish our approach from previous work.

2.1. Interactive Indirect Isosurface Rendering

One of the first approaches that addresses indirect isosurface ren-
dering is the continuation method for isosurface polygonization
from Wyvill et al. [WCB86]. The approach is based on discretiza-
tion of 3D space into volumetric cells, followed by efficient iden-
tification of cells that are intersected by the isosurface. The subse-
quently introduced Marching Cubes (MC) algorithm [LC87] laid
the foundation for many further developments in the area of real-
time isosurface extraction from volumetric data. The algorithm’s
appeal lies in a simple approach that generates geometry from each
cubic cell intersected by the isosurface, by first determining which
cell corners lie inside the isosurface, and then generating vertices
and triangles representing the isosurface based on pre-computed
lookup tables. The algorithm lends itself well to implementation
on massively parallel hardware, and is therefore at the core of our
GPU-based isosurface extraction stage. For a comprehensive re-
view of MC algorithms up to the year 2006, we refer the reader

to the survey by Newman and Yi [NY06], and address only GPU-
based MC variations in this literature review.

The first widely available GPU-based implementation of the MC
algorithm was presented by NVIDIA [NVI22] as part of the CUDA
sample code base provided with the nvsdk. The authors identified
the necessity for two preprocessing passes: a stream compaction
pass that determines per-cell occupancy, and a subsequent stream
expansion pass to determine the number of triangles created per oc-
cupied cell. Although the preprocessing passes achieve efficient ex-
traction by avoiding excessive synchronization between extraction
threads, they are the most expensive processing stage, represent-
ing an opportunity for optimization in further works. The approach
does not scale well to larger volumes, since several additional GPU
buffers are involved that have linear memory requirements with re-
spect to the volume resolution.

Dyken et al. [DZTS08] developed a competitive approach to
isosurface extraction by using more efficient stream compaction
and expansion operations based on the HistoPyramid data struc-
ture introduced by Ziegler et al. [ZTTS06]. The HistoPyramid’s
hierarchical approach led to isosurface extraction times that were
reportedly faster than those achieved with the nvsdk implementa-
tion [LCDW16], but the amount of memory required to create the
HistoPyramids can exhaust the GPU memory similarly quickly to
the nvsdk technique [LCDW16].

To address this issue, Liu et al. [LCDW16] introduced the Paral-
lel Marching Blocks (PMB) algorithm. The approach performs in-
kernel stream compaction by detecting occupancy on a voxel-block
level, meaning that the GPU memory requirement for compaction
buffers is significantly reduced. The in-kernel stream compaction
operation is accelerated through implementation of a local prefix
sum algorithm similar to that used by Hughes et al. [HLJ∗13].
Furthermore, isosurface geometry is also extracted in a block-
based manner, allowing for the removal of duplicate vertices within
a block which effectively reduces the memory footprint of the
extracted isosurface. The authors reported isosurface extraction
on volumes that were 64× larger than those that could be han-
dled by the nvsdk and HistoPyramids approaches. Usher and Pas-
cucci [UP20] also follow a block-wise stream compaction and ex-
pansion approach to reduce the memory footprint of the isosurface
extracted from a very large volume.

In addition to variants of the MC algorithm, dual polygoniza-
tion approaches such as SurfaceNets [Gib98] or Dual Contour-
ing [JLSW02] allow for higher quality isosurface representations
since vertices may be positioned arbitrarily within a cell, instead of
being constrained to its edges. However, those algorithms come at
the expense of additional computation steps, such as the creation
of distance maps [Gib98] or the necessity to solve quadratic error
functions in order to find the optimal placement of the dual sur-
face’s vertices. In this paper, we opt to explore the more lightweight
isosurface extraction and rendering approach based on a variant of
MC, although a consideration of dual contouring approaches may
be worthwhile in further research.

In contrast to prior work, our approach requires no additional
memory for an explicit isosurface representation, because the ex-
tracted mesh is directly consumed by the rasterizer. Our work is
influenced by the PMB algorithm, in that we determine occupancy
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on a block level. We also implement a local prefix sum algorithm
for stream compaction, but avoid using atomic variables, to im-
prove extraction performance. Furthermore, in contrast to PMB,
we exploit view-dependent visibility information by computing the
potentially visible set of blocks in a GPU-driven occlusion culling
stage [KT14, LL20, LJSL21].

2.2. Direct Isosurface Rendering

The predominant technique used for direct visualization of single
or multiple isosurfaces is ray marching, also referred to as ray cast-
ing. For a comprehensive overview of isosurface ray marching and
basic acceleration techniques such as empty space skipping, we re-
fer the reader to the comprehensive introduction to real-time vol-
ume graphics by Engel et al. [EHK∗06]. We also intentionally omit
a discussion of work addressing out-of-core rendering of multi-
resolution volumes, since this is out of the scope of our current
work. For an in-depth review of GPU-driven visualization of large-
scale volumes, we refer the interested reader to the work of Beyer
et al. [BHP15].

Empty space skipping aims to reduce the number of times that
a ray samples the volume. Liu et al. [LCD09] achieve extremely
fine-grained empty space skipping by only marching rays through
active volume cells, which are efficiently located with a HistoPy-
ramid texture [ZTTS06] and rendered as point primitives to create
rays close to the isosurface. The authors accelerate their approach
by exploiting early-depth testing: a GPU feature allowing a frag-
ment’s interpolated z-coordinate to be compared with the current
depth buffer value at the corresponding location, after which the
fragment can be discarded if occluded, reducing shading calcula-
tions. This feature can be better exploited by rasterizing primitives
in a front-to-back order, increasing the number of fragments that are
discarded, which Liu et al. achieve through a CPU-based sorting of
volume slices. The authors later introduced the IsoBAS accelera-
tion structure [LCD15], yielding faster identification of active cells
and requiring less memory overhead. Jiang et al. [JRZ∗16] also
propose an acceleration structure that can efficiently locate active
cells for both direct and indirect visualization approaches, again
rendering active cells by ray marching. The aforementioned meth-
ods [LCD09, LCD15, JRZ∗16] can be considered hybrid object-
order and image-order approaches, meaning that they are depen-
dent on rendering resolution.

Sphere Tracing [Har96] and Segment Tracing [GGPP20] are
techniques that vary the distance between samples along a ray to
improve performance with respect to other ray casting-based ap-
proaches. However, Sphere Tracing requires signed distance func-
tions, which need to be derived from the original volume in a pre-
processing step. In addition, Galin et al. [GGPP20] explicitly state
that Segment Tracing works only for a particular class of hierar-
chical skeletal implicit surfaces, which means that both techniques
are not directly applicable to a wide range of volumes. Galin et al.
further state that their Segment Tracing approach is outperformed
by octrees with a depth of 7 or more, and that the additional mem-
ory required for auxiliary octree data is as low as 1 to 4 megabytes.
Regarding the memory requirements for the input volume itself, we
consider the memory overhead negligible and therefore deem min-
max octree ray casting to be a fitting approach for general acceler-

ated direct isosurface rendering. We compare our approach against
min-max octree ray casting in the evaluation section.

In the proposed approach, active cells are efficiently identified
and processed without the help of a large hierarchical auxiliary
structure, by leveraging task and mesh shaders to check cells within
potentially visible subvolumes, and dynamically allocate GPU re-
sources to active cells. By extracting the isosurface as a triangle
mesh instead of performing ray marching in active cells, we reduce
dependence on the rendering resolution.

2.3. GPU-based Occlusion Culling of Dynamic Scenes

In order to execute isosurface extraction on only the potential visi-
ble set (PVS) of voxel blocks, our pipeline includes a GPU-driven
occlusion culling stage. Historically, occlusion culling on the GPU
was facilitated by occlusion query objects [CCG∗07] that allowed
retrieval of visibility information after rasterization of proxy ob-
jects. However, effective use of this feature was rather involved,
and required careful use of spatial and temporal coherence, as
first shown by Bittner et al. [BWPP04], and later by Mattausch et
al. [MBW08].

Kubisch and Tavenrath [KT14] subsequently introduced raster
occlusion culling as the state-of-the-art approach to efficient vis-
ibility determination for general scenes. Raster occlusion culling
replaces expensive individual hardware occlusion queries with one
efficient proxy geometry rasterization pass, followed by a GPU-
driven stream compaction operation that creates a dense list of oc-
cupied subvolumes.

The approach usually outperforms those that process the depth
texture of a previously established occluder representation, such as
hierarchical occlusion maps [ZMHH97] and iterative depth warp-
ing [LKE18]. Recently, follow-up works have aimed to avoid ras-
terizing all leaf-level objects in the scene by applying the concept
of spatial coherence exploitation through hierarchical grouping of
objects [MBW08] to raster occlusion culling. These works include
Lee and Lee’s [LL20] proposal for an iterative version of raster oc-
clusion culling, which works on a select number of hierarchy lev-
els, and Lee et al.’s [LJSL21] introduction of a fully GPU-driven
hierarchical raster occlusion culling algorithm, which aims to re-
duce the overall rasterization overhead by performing rasterization
on a coarser level for group nodes, and refining the visibility results
through ray traversal down to the leaf level.

In this work, we propose a lightweight raster occlusion culling
pass that is a hybrid between basic raster occlusion culling as pre-
sented by Kubisch and Tavenrath [KT14] and hierarchical raster
occlusion culling as presented by Lee and Lee [LL20]. We re-
solve potential visibility only for fixed size blocks, but use a cus-
tom task and mesh shader pipeline to efficiently detect occupied
blocks, before creating proxy geometry for each one. We note that
Kubisch [Kub14] presents an excellent introduction to raster occlu-
sion culling using the of task and mesh shader pipeline.

Our culling approach is most similar to the probabilistic culling
method proposed by Ibrahim et al. [IRR∗22] for efficient particle
rendering using pipelines based on task and mesh shaders. How-
ever, in contrast to Ibrahim et al., we perform occlusion culling on
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only one of the two levels, and ensure that our visibility determina-
tion is conservative rather than probabilistic.

3. Efficient Direct Isosurface Rasterization

In our direct isosurface visualization technique we employ the task
and mesh shader pipeline to extract graphics primitives represent-
ing the isosurface ‘on the fly’ and have them directly consumed by
the rasterization hardware. In the extraction and rendering stage,
the task shader produces a compact list of isosurface-containing
cells inside visible blocks using the Marching Cubes algorithm,
and the mesh shader instances subsequently extract primitives from
those cells using the Marching Cubes cell classification, before
passing the primitives directly to the rasterization units (see Subsec-
tion 3.4). To avoid extracting isosurfaces in occluded regions, our
pipeline includes a novel raster occlusion culling [KT14, LJSL21]
approach to identify potentially visible blocks, detailed in Subsec-
tion 3.5. The occlusion culling stage also employs task and mesh
shaders, using task shaders to identify blocks containing the isosur-
face, and mesh shaders to produce proxy geometry that is rasterized
to determine the visibility of each block.

We hypothesize that utilizing the highly-optimized rasterization
hardware to render geometric primitives will compensate for the
cost of extracting the primitives, leading to better performance
than approaches based on ray marching as rendering resolution in-
creases.

Notes on Terminology. Although this description uses terminol-
ogy specific to NVIDIA’s hardware and software stack and the
OpenGL graphics API, our method should be applicable to sim-
ilar graphics cards from other manufacturers. For instance, the
method could be adapted for AMD hardware by replacing the term
warp with wavefront, and observing that wavefronts are executed
as larger workgroups with more than 32 threads. Similarly, our ap-
proach is easily mapped to other graphics APIs (e.g. Vulkan or Di-
rectX12) by replacing the term task shader by the term amplifica-
tion shader.

3.1. Task and Mesh Shaders

Task and mesh shaders [Kub18], introduced with the Turing gener-
ation of NVIDIA graphics hardware, are intended to provide graph-
ics programmers with more flexibility than the classic geometry
pipeline consisting of vertex, geometry and tessellation shaders.
The pipeline functions as follows: the programmer launches a num-
ber of task shaders, which can each emit a variable number of mesh
shaders. Mesh shaders can generate a variable number of geomet-
ric primitives, and pass them directly to the rasterization hardware.
Data can be passed from the task shader group to its emitted mesh
shader groups in a memory interface block.

Task and mesh shaders are similar to compute shaders, in that
they operate in workgroups comprised of multiple threads, with
each thread executing one invocation of the shader program. Like
compute shaders they have no predefined input and output, how-
ever they have limited output sizes to conform with optimal mem-
ory allocation schemes. In contrast to compute shaders, the size of

a workgroup is limited to 32 threads. Execution of the shader pro-
grams in workgroups allows for communication between threads in
the same group, meaning that parallel reductions can be efficiently
implemented for stream compaction and expansion operations. In
our pipeline, we use this property similarly to Kubisch [Kub14] to
create compact lists of occupied blocks, improving GPU utilization
for subsequent processing. Since mesh shaders are also executed in
groups, they support efficient implementation of typical compute
shader algorithms, such as the Marching Cubes algorithm, with
the crucial difference that the primitives extracted by mesh shader
workgroups can be directly consumed by the rasterizer.

The possibility to create a variable number of mesh shaders from
one task shader means that task and mesh shader pipelines are well
suited for implementation of algorithms that use tree expansion to
dynamically allocate computational resources to relevant tasks. We
use this feature to allocate workgroups that create geometry for oc-
cupied subvolumes.

3.2. Hierarchical Computation Structure

We exploit spatial coherence in the data volume by applying parts
of the pipeline on subvolumes with carefully chosen granularity.
We denote the dimensions of the volume as X ×Y ×Z voxels. Iso-
surface geometry is extracted by defining cells, each of which is a
cube with a voxel value at each vertex, and applying the Marching
Cubes cell classification [LC87] on each cell. Cells that produce
geometry are referred to as occupied cells. We define a block as
a subvolume comprised of U ×V ×W cells, where our experience
shows that U = 8,V = 8,W = 4 is a sensible setting which allows 8-
bit indexing of the 256 cells contained in a block. However, blocks
are only a virtual subdivision of the volume and do not require any
rearrangement of the data.

3.3. Preprocessing

The proposed approach requires the availability of the minimum
and maximum data values for each block, which are precom-
puted and stored with the volume [EHK∗06, LCDW16]. The min-
max grid is stored as a 2-channel volume texture, with resolution
X
U × Y

V × Z
W . The texture allows the occupancy of each block to be

determined with a single texture lookup, and is referenced during
the occlusion culling pass where the proxy geometry for occupied
regions of the volume is determined. The min-max grid could be
recomputed for smaller volumes on the fly, e.g. when streaming
time-varying data sets.

3.4. Transient Isosurface Extraction and Rendering of PVSx

In this subsection, we detail our approach to transient isosurface ex-
traction and rendering. We propose a task and mesh shader pipeline,
shown in Figure 4, consisting of a task shader that locates occupied
cells and assigns them to mesh shader workgroups, and a mesh
shader that performs transient triangle mesh extraction for a given
list of occupied cells. The geometry extracted by each mesh shader
instance is then directly passed on to the rasterizer.

Note that the following description of the task and mesh shader
pipeline refers to the first and third components in Figure 2, labelled
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Figure 2: Overview of our direct isosurface rasterization pipeline. The high-level design follows that of a typical raster occlusion culling
pipeline [Kub14, KT14] to extract and render triangle mesh data. In our case, we render the potentially visible parts of an isosurface from
volume Vcurr. For brevity, we use the term ’PVS’ in this illustration to refer to the indices of the potentially visible set of blocks, rather than
the blocks themselves. A detailed visual overview of the implementation of the transient isosurface extraction and rendering stages (a, cmp.
Subsection 3.4) as well as the lightweight raster occlusion culling for PVS determination pass (b, cmp. Subsection 3.5), is shown in Figures
4 and 5, respectively.
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Figure 3: Tree expansion example for sparsely occupied volume
presented in (a), showing task shader workgroups emitting mesh
shader workgroups (b). The memory interface block (see Listing 1)
which is shared between a task shader workgroup and its emitted
mesh shader workgroups provides mesh shader workgroups with a
list of occupied cells to process, increasing the chance of high warp
occupancy.

with (a), and that both passes work on mutually exclusive sets of
blocks depending on their visibility state in the current and previous
frame [KT14, LJSL21].

3.4.1. Task Shader: Cell Classification and Task Generation

Each task shader workgroup processes one block, for which it iden-
tifies occupied cells, creates a compact list of those occupied cells,
and emits mesh shader workgroups that will each process the cells
corresponding to their respective part of the list. This approach
makes effective use of the tree expansion feature of task and mesh
shader pipelines. Identifying occupied cells and then emitting mesh
shader workgroups which act only on occupied cells minimizes the
number of mesh shader invocations, which has a significant posi-
tive effect on performance.

Each task shader workgroup writes into a memory interface
block following the structure shown in Listing 1. A 32-bit index
denotes the block worked on by the task and mesh shader work-
groups. After the task shader workgroup has processed a block, the
dense_occupancy_index buffer contains a compact list of the oc-
cupied cells in that block. Each mesh shader workgroup works on
part of the list of occupied cells, starting from an offset contained
in the occupied_cell_list_o f f set buffer, with length contained in
the occupied_list_length buffer.

Listing 1: Extract and draw shader interface for 256 cells per block

taskNV o u t Task {
u i n t 3 2 _ t baseID ;
u i n t 8 _ t d e n s e _ o c c u p a n c y _ i n d e x [ 2 5 6 ] ;
u i n t 8 _ t o c c u p i e d _ c e l l _ l i s t _ o f f s e t [ 3 2 ] ;
u i n t 8 _ t o c c u p i e d _ l i s t _ l e n g t h [ 3 2 ] ;

} INTERFACE_TASK_MESH_EXTRACT_AND_DRAW;

We process cells in blocks of size 256 to enable indexing of all
cells within a block with a single 8-bit integer. This approach re-
duces the size of the interface block, which we found to improve
performance. Each thread in a mesh shader workgroup will process
a single cell, meaning that the maximum number of cells that each
mesh shader workgroup can process is 32. However, we found the
number of vertices produced by each workgroup to be a decisive
factor in achieving high performance. Empirically, we found that
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Transient Isosurface Extraction and Rendering of PVS
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Figure 4: Detail view of our ’Transient Isosurface Extraction and Rendering of PVS’ pass (compare Overview in Figure 2). Based on the
dense input volume and one of the two sets of PVS indices, PVSprev or PVScurr−prev, we efficiently identify sparse occupied cells within
our task shader workgroup (blue) and pass compactified cell lists on to the mesh shader stage (green), in which a workgroup extracts the
geometry of up to 32 sparsely distributed cells. The extracted geometry is then directly passed on to the rasterizer and subsequently shaded
in the fragment shader instances. Note that, depending on whether this stage is the first or third in the overview pipeline, the result may be a
rendering of the best occluders (using PVSprev) based on the last frame, or the complete image for the current frame (using PVScurr−prev).
For more details on the transient isosurface extraction we refer the reader to Subsection 3.4.

the locally optimal limit on the number of output vertices for our
test data sets was 96. Since the number of vertices extracted from a
cell varies between 3 and 12, assigning 32 cells to each mesh shader
workgroup would often result in the limit of 96 vertices being ex-
ceeded. Therefore, we assign a dynamic number of cells to each
mesh shader workgroup. The smallest number of cells processed
by each mesh shader workgroup is 8, considering that in the case
where every cell produces 4 disconnected triangles, giving 12 ver-
tices, one mesh shader workgroup could operate on 8 cells before
reaching the vertex limit. Accordingly, there is a maximum number
of 32 lists, since 256 cells in total / 8 cells per list = 32. This num-
ber is reflected in the array sizes of the occupied_cell_list_o f f set
and occupied_list_length buffers.

The process followed by the task shader can be divided into the
following steps:

1. Individual cell classification and vertex count generation
2. Stream compaction and task generation

Individual Cell Classification and Vertex Count Generation.
The task shader workgroup first uses the MC algorithm to deter-
mine whether each cell in the block is occupied, and if so, how
many vertices will be required to represent the isosurface inside the
cell. To process a block of 256 cells with 32 threads, each thread
works on several cells. Each thread in the workgroup samples the
voxels which are required to identify the state of all cells that it is
responsible for. Subsequently, each thread looks up the state of its
cells, stores the cells’ occupancy flags, and writes the number of
vertices that the cells would create into a shared memory buffer.

Note that the task shader stops executing the MC algorithm after
identifying the per-cell vertex count, because it requires the vertex
counts to determine which mesh shader workgroups will work on
which occupied cells , but does not require any further informa-
tion about the primitives extracted by MC. It may seem counter-
intuitive to stop the MC algorithm after determining the per-cell
vertex count, since it would be possible for the task shader to ex-
tract the required primitives, having already sampled the volume,
and send indexed vertex buffers to mesh shader instances for sub-
sequent rasterization. This, however, would drastically increase the

amount of interface block memory required, compared to our ap-
proach of sending 8-bit indices marking occupied cells, because
the interface block would require capacity for 12 vertices per cell.
Passing a large amount of memory between shader instances would
reduce performance notably.

Stream Compaction and Task Generation. The per-cell occu-
pancy calculated in the cell classification stage is used to perform
a reduction [BCF∗17] to obtain the offset of each occupied cell’s
index in the dense set of indices written into the interface block’s
dense_occupancy_index buffer. Since the reduction is performed
by 32 threads inside a workgroup, each group of 32 cells is pro-
cessed in successive iterations. From each iteration, a cell obtains a
local offset within its group of 32 cells. In order to calculate offsets
to the start of each group, the last thread in the workgroup shares
the total number of occupied cells within each group, allowing each
thread to calculate a global offset for all cells within a block (simi-
lar to Liu et al. [LCDW16]). In contrast to Liu et al., we are able to
omit expensive atomic operations, because offsets can be efficiently
shared among all threads through subgroupBroadcast-operations.

Next, a single thread traverses the occupied cell buffer and di-
vides the cells into lists that will each be processed by a differ-
ent mesh shader workgroup. The thread begins to build a list by
passing over the dense_occupancy_index buffer and accumulat-
ing the number of vertices that would be created for each oc-
cupied cell. As soon as the list comprises of 32 cells, or the
maximum number of 96 vertices would be exceeded, one list is
ended and a new one started. The start offset and the length for
each completed cell list are stored in the occupied_list_length and
occupied_cell_list_o f f set buffers respectively (see Listing 1). Fi-
nally, one thread writes the number of mesh shader workgroups
created into the gl_TaskCountNV output variable.

3.4.2. Mesh Shader: Transient Isosurface Extraction

Each mesh shader workgroup, consisting of 32 threads, uses its
gl_WorkGroupID to directly look up the the start offset and length
of the list of cells that it will operate on.

Each active thread determines the ID and location of its cell, and
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performs the MC algorithm to extract the vertices and indices that
represent the isosurface. We then use another efficient intra-warp
reduction to determine offsets that each thread uses to write in-
dices and projected vertices into the corresponding output arrays.
The generated vertices are evenly distributed across the entire warp
and projected cooperatively by all threads. One designated thread
writes the total primitive count produced by each mesh shader
workgroup. After the mesh shader workgroup has finished execu-
tion, the primitives are passed on to the rasterizer, where shading
can be computed by a standard fragment shader.

Considerations regarding unique vertex extraction across cells.
As our pipeline extracts vertices from occupied cells independently,
some vertices may be duplicated in the vertex buffer produced by
a mesh shader workgroup. Although it would be possible to de-
tect these cases and remove duplicated vertices, as shown by Liu et
al. [LCDW16], the potentially sparse nature of the occupied cells
within a block means that unique vertices are hard to identify with-
out additional analysis that may increase branch divergence.

3.5. Raster Occlusion Culling for Regular Volume Data

To achieve low draw times for volumes that exhibit high depth com-
plexity, we determine a potentially visible set (PVS) of blocks to
avoid extracting geometry that is not visible. This is especially rel-
evant for our object-order approach to isosurface extraction, in that
we benefit from reducing the number of task shader workgroups
that are launched to process blocks that will not contribute to the
displayed isosurface. We determine a PVS of blocks with a custom
occlusion culling pass that conceptually follows a raster occlusion
culling scheme [Kub14, KT14], shown in Figure 5.

3.5.1. Task Shader: Block-wise Stream Compaction

The raster occlusion culling stage follows a similar idea to the iso-
surface extraction stage, in that a sparsely-occupied set of subre-
gions is reduced to a dense list of occupied subregions in the task
shader, before primitives are extracted from occupied subregions
in the mesh shader. In this stage, the task shader analyzes a local-
ized group of 256 blocks, and creates mesh shader workgroups that
process sets of 32 occupied blocks. The occupancy of each block
can be determined by sampling the min-max texture at the corre-
sponding location, and determining if the isovalue lies between the
sampled minimum and maximum values. A dense list of occupied
blocks is then generated in the same manner as a dense list of occu-
pied cells is created in the isosurface extraction stage. Every mesh
shader workgroup emitted by one task shader workgroup will oper-
ate on 32 blocks, apart from the final workgroup which may oper-
ate on between 1 and 32 blocks. Since the mesh shader workgroups
operate on lists of fixed lengths, no list offset or length buffers are
required in the interface block (shown in Listing 2).

Listing 2: Raster occlusion culling shader interface for 256 blocks
per workgroup.

taskNV o u t Task {
u i n t 3 2 _ t baseID ;
u i n t 3 2 _ t num_occup ied_b locks ;
u i n t 8 _ t b l o c k _ o c c u p a n c y _ i n d e x [ 2 5 6 ] ;

} INTERFACE_TASK_MESH_RASTER_CULL ;

3.5.2. Mesh Shader: Proxy Geometry Creation

The mesh shader in the raster occlusion culling stage functions
similarly to that of the isosurface extraction stage (see Subsec-
tion 3.4.2). Each thread in the mesh shader workgroup computes an
offset into the block_occupancy_index array based on the thread
and workgroup indices, ensuring that the index is less than the
num_occupied_blocks variable. Each active thread creates proxy
geometry for one occupied block. In contrast to the implementa-
tion by Kubisch [Kub14], the proxy geometry for each block does
not comprise the three potentially visible sides of a cube, but a sin-
gle quad containing the bounding box of the block when projected
into screen space, with minimal z-coordinate of the block’s cor-
ners. This reduces the number of triangles created per occupied
block from 6 to 2, restricting the number of primitives created by
a mesh shader workgroup to 64 and the number of vertices cre-
ated to 128, instead of 32× 7 = 224 vertices corresponding to 3
visible cube faces. Rasterizing fewer primitives is also beneficial
because efficient raster occlusion culling implementations leverage
the representative fragment test [KTB∗18] extension, which allows
the rasterizer to terminate early-depth testing even earlier for ev-
ery primitive, if at least one fragment shader instance was invoked,
that is, when one fragment of the primitive is visible. Since this
extension cannot terminate early-depth testing for multiple asso-
ciated primitives, rasterizing fewer primitives to begin with greatly
increases the likelihood of early termination of the rasterization and
therefore leads to fewer buffer writes in the subsequent fragment
shader stage. Moreover, when using multi-view rendering features
to rasterize proxy geometry per-eye in a joint pass, generating one
quad per eye facilitates a more straightforward implementation. In
the case where all potentially visible sides of a cube would need to
be rendered, one would need to account for rendering more than 3
sides if the block is located between the viewer’s eyes on any of the
three cardinal axes.

After the vertex and index buffers for the blocks’ quad proxies
are written, the geometry is passed on to the rasterizer. As shown by
other techniques based on raster occlusion culling [KT14, LL20],
each fragment that passes the early depth test and representative
fragment test writes into a preallocated slot of a visibility buffer,
based on the implicit ID of each block. After the fragment shader
stage, we run a bit compactification kernel for the currently created
indices PV Scurr and subsequently build two sets of PVS data in a fi-
nal compute shader pass. The only difference between the compute
passes and the reference implementation of Kubisch [Kub14] is that
we create both PV Scurr, which is used in the next frame to render
the best occluders based on temporal coherence, and PV Scurr−prev,
which determines the blocks which became visible since the last
frame, in one common compute shader pass. A compute shader is
used here because larger block sizes can be launched for the PVS
compactification and output passes than if mesh shaders were used,
which allows better utilization of the streaming multiprocessors on
which the compute kernels are executed.

To ensure that our results can be reproduced, we provide a mini-
mal rendering framework and example implementing our proposed
technique, as well as the reference techniques, in both mono and
stereo modes as supplementary material accompanying this paper.
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Lightweight Raster Occlusion Culling for PVS Determination
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Figure 5: Detail view of our ’Lightweight Raster Occlusion Culling’ pass (compare overview in Figure 2). The task shader provides the mesh
shader with a compact list of occupied blocks. Proxy geometry for each block is created in the mesh shader to test block visibility. Visibility
flags are then to create compactify potentially visible block indices, as in [Kub14]. For details on our domain-specific extension of occlusion
culling for dense volume data, we refer the reader to Subsection 3.5.

4. Evaluation and Discussion

We compare the performance of our rendering pipeline against two
reference isosurface rendering approaches: a direct, ray-marching-
based isosurface visualization approach, and a ‘best-case’ indirect
isosurface visualization technique.

Ray-marching Reference. The ray-marching reference technique
is accelerated using a min-max octree to facilitate empty space
skipping. The min-max octree is constructed by creating an MIP
texture from the min-max texture used to determine block occu-
pancy in our pipeline (see Subsection 3.3). For straightforward
octree creation, we choose to construct the octree on a base level
with equal size along all three cardinal axes. The comparison with a
ray-marching technique is intended to assess whether our pipeline
can outperform direct isosurface visualization approaches when
faced with different rendering resolutions, volume sizes, and vol-
ume sparseness.

Optimized Mesh Reference. The comparison against an ideal in-
direct isosurface visualization technique serves to assess how close
our approach comes to the best possible performance. For this ref-
erence, we record only the time taken to render a highly-optimized
mesh representation of the isosurface. We extract vertex positions
and normals for the mesh representation with the same extraction
approach used in our pipeline, and write an explicit representation
of the geometry to GPU memory. Duplicate vertices are removed,
and the mesh is divided into meshlets. Rendering this reference
mesh, which does not consider time taken for geometry extraction
and occlusion culling, represents both the most efficient version of
a forward mesh renderer for an optimized mesh, and an infinitely
fast indirect isosurface extraction approach.

Occlusion Culling Granularity. To provide a fair comparison be-
tween our approach and the ray-marching reference, we perform
raster occlusion culling for our approach on the same granularity
as the leaf-level of the octree in the ray-marching reference; specif-
ically for regions comprised of 8×8×8 cells. Since our extraction
stage operate on blocks of 8×8×4 cells, we launch two task shader
workgroups for each potentially visible region.

Shading. The fragment shader implementation is identical for
both the rasterization-based approaches. Vertex normals, sampled

Name # Voxels Bit Depth Size in GB
CT Head 2563 8 0.02
Vertebra 5123 8 0.13

Chameleon 10243 16 2.00
Supernova 30×5123 32 15.30

Table 1: Test Volume Data Sets. In addition to the static volumes
CT Head, Vertebra and Chameleon, we evaluate our rendering ap-
proach with 30 time steps of the Supernova data set.

on the fly using the central difference method, are passed to the
fragment shader and used to perform Gooch Shading [GGSC98].
The ray-marching reference is entirely implemented in a fragment
shader, and computes the normals in the same way when an isosur-
face intersection is found, also to apply Gooch Shading.

Test System Specifications. Our test machine is equipped with a
NVIDIA RTX 3090 graphics card with 24 GB of video RAM, as
well as an Intel Core i9-9900X CPU running at 3.50 GHz, with 128
GB of RAM.

Software. All measurements were taken in an isosurface render-
ing library containing implementations of our direct isosurface
rendering approach, the min-max-octree isosurface ray-marching
approach, and an isosurface extraction, optimization and ren-
dering approach. All extraction and rendering passes are imple-
mented using a combination of C++, OpenGL, and its shading lan-
guage GLSL, with the corresponding extensions for task and mesh
shaders. The ray-marching approach uses three iterations of the bi-
nary search algorithm for isosurface refinement and a step size of
0.5 times the cell edge length. The isosurface extraction approach
uses Kapoulkine’s meshoptimizer C++ library [Kap22] to create
meshlets with at most 64 vertices after the potentially visible sur-
face is extracted, thereby following Kubisch’s [Kub18] recommen-
dation for default meshlet sizes.

4.1. Test Scenarios

We evaluate our pipeline in three different scenarios. The first sce-
nario (Subsection 4.1.1) compares the rendering performance of
our pipeline with that of the two aforementioned reference tech-
niques, under varying rendering resolutions for static viewpoints
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and static isovalues, using three volumetric data sets of increasing
size (see Table 1). Note that for straightforward implementation
of the octree-accelerated ray-marching approach, all volumes were
padded such that size in each dimension was a power of two.

In our second scenario (Subsection 4.1.2), we compare the ren-
dering performance of our approach against that ray-marching ref-
erence approach when a new time step of a temporally varying data
set is rendered every frame. Rendering resolution is fixed in this
scenario. We use the first 30 out of 60 time steps of the Super-
nova sequence, since those fit into the available graphics memory.
In addition to evaluating the behavior when rendering temporally-
varying data, we evaluate the performance of both approaches when
the isovalue is constantly varied, simulating a scenario where the
user adjusts the isovalue to explore the data set. The Chameleon
data set is used for this scenario, which is particularly interesting as
the occupancy of cells in the volume varies drastically for different
isovalues.

In our third scenario (Subsection 4.1.3), we compare and evalu-
ate the stereo rendering performance of all three implemented ren-
dering techniques. This scenario is intended to demonstrate that
rasterization-based techniques, such as our approach and the op-
timized mesh reference, enable us to make use of mesh shaders’
multi-viewport rendering capabilities [KBU∗17] to share a large
portion of the work for both eyes. In this section we prove that our
approach is better suited to multi-viewport rendering than the ray-
marching reference.

4.1.1. Rendering Resolution-dependent Performance

The comparison of our transient isosurface rendering approach
against the octree-accelerated ray-marching and indirect isosurface
rendering approaches is presented in Figure 6. Rendering perfor-
mance (draw time) is evaluated for a range of rendering resolutions.
In all cases, the volumes were positioned to fill the screen, such that
the number of pixels rendered directly corresponds to the number
of rays generated in the ray-marching-based implementation. The
isosurfaces remained completely within the camera’s viewing frus-
tra. The isovalues were chosen arbitrarily, but performance at other
isovalues for smaller data sets reflects the tendencies shown. We
perform an in-depth evaluation of the performance across different
isovalues for the largest test data set in Subsection 4.1.2.

Our approach outperforms the ray-marching reference approach
when rendering the reference data sets at most of the rendering
resolutions. The only exception is observed when rendering the
Chameleon data set, where the ray-marching approach is more ef-
ficient for low-to-medium resolutions. For the maximum test res-
olution of 3840 × 2160 pixels, we achieve an average speedup
over the ray-marching approach of 7.92CT Head , 7.64Vertebra and
2.05Chameleon, respectively.

The reference mesh approach always outperforms our approach,
by a factor of 1.61CT Head , 2.03Vertebra and 1.85Chameleon, respec-
tively. For the time-varying Supernova data set (compare Figure 7),
the reference approach is 2.1 times faster than ours. However, con-
sidering that the isosurface representation is heavily optimized in
this reference, we argue that our approach is competitive with both
offline optimization and indirect rendering scenarios, in which the
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(b) Vertebra, iso=0.2, 5123 voxels, 8 bit per voxel
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(c) Chameleon, iso=0.5, 10243 voxels, 16 bit per voxel
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Figure 6: Average draw time comparison for 3D volume data sets
under varying rendering resolution with an aspect ratio from 16:9.
Our approach (blue) clearly outperforms the octree ray-marching
method (red) even at the lowest resolutions for small volumes, inde-
pendently if the isosurface is rather dense (a) or sparse (b). For the
Chameleon data set, our approach is faster starting at 2.7 megapix-
els resolution. The reference mesh (dashed-green) renders approx-
imately 1.4 to 2.1 times faster across all of our data sets.
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time taken to extract the explicit isosurface representation would
need to be added to the presented rendering times.

In contrast to ray marching-based techniques, but similarly to
the reference mesh rasterization technique, our proposed approach
is hardly influenced by the rendering resolution. This is because
nearly all stages of our approach work in volume space and are
therefore not affected by the rendering resolution. The isosurface
rasterization stage, which is dependent on rendering resolution, ex-
ecutes only a lightweight fragment shader program implementing
Gooch Shading. More complex fragment shaders would lead to a
higher dependence on display resolution, affecting our technique
and the reference mesh approach.

4.1.2. Performance for Time-Varying Data

To investigate how temporal coherence affects rendering perfor-
mance, we evaluate the performance of all three approaches when
rendering isosurfaces from time-varying data sets (see Figure 7).
In contrast to the previous tests, the volume data, and therefore the
set of occupied cells, changes from one frame to the next, which we
expect to result in slightly decreased occlusion culling performance
for our approach. Despite this, a similar pattern to that shown by
the static test cases is revealed (see Figure 7a), in that our approach
still outperforms the ray-marching reference for almost all tested
resolutions, with a maximum speedup factor of 4.74 at a rendering
resolution of 3840×2160 pixels.

We also evaluate our approach in a scenario where the isovalue
is constantly varied, with the results shown in Figure 7b. Rendering
resolution is kept constant at 3840× 2160 pixels, but the isovalue
is varied from 0.2 to 0.9 over 5 seconds. At an isovalue of 0.4,
the skin starts to disappear and many high-frequent and noisy parts
of the underlying bone structure become visible. Thus, many more
cells containing isosurfaces need to be processed and rendered. Our
block-based occlusion culling is less effective when the isosurface
is noisy, reducing the performance of our approach to a level similar
to the octree ray-marching approach.

4.1.3. Stereoscopic Rendering Performance

We compare the monoscopic and stereoscopic rendering perfor-
mance of all three approaches using a standard stereoscopic view-
ing setup with an interpupillary distance of 6 cm. In stereoscopic
mode, we render each eye into a different layer of a two-layered
custom framebuffer with resolution 3840 × 2160. The geometry
passes in our approach and the optimized mesh reference are split
after the mesh shader stage, where we use the multi-view rendering
feature by writing primitives to one vertex array per view. Figure 8
shows the overhead incurred for stereoscopic rendering, compared
to monoscopic rendering. The octree ray-marching technique can-
not benefit from multi-view rendering, and so takes approximately
twice as long to render two views, as expected. For our approach,
the overhead for rendering two views creates is only 20 to 40%.

5. Conclusion and Future Work

This work presents a novel and efficient approach for direct ras-
terization of isosurfaces from scalar volumetric data sets. Our di-
rect rasterization approach is largely independent of rendering res-
olution, and outperforms approaches based on ray marching for
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(a) Supernova, iso=0.08, 5123 voxels, 32 bit per voxel × 30 time steps. Draw
times averaged across all steps for different rendering resolutions.
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(b) Chameleon rendered for a resolution of 3840× 2160 pixels for a contin-
uously changing isovalue from 0.2 to 0.9 over about 5 seconds. Starting from
iso=0.2, the superimposed renditions show the extracted isosurface in iso in-
crements of 0.2. The iso range around 0.4 is particularly challenging for our
approach, since the skin starts to disappear and many high-frequent and noisy
parts of the isosurface are rendered.

Figure 7: Draw time comparison for time-varying data. We repeat
the evaluation from Subsection 4.1.1 using 30 time steps of a time-
series (a) and exchange the active volume after each frame. We
furthermore use a static volume for which we smoothly vary the
isovalue in a given range after each frame (b).

increasing resolution. This is made possible by integrating an ef-
fective occlusion culling technique into the task and mesh shader
pipeline such that the extraction and rendering focuses on visible
parts of the isosurface. Our approach requires negligible prepro-
cessing and only a small amount of additional memory for auxil-
iary data structures because no explicit isosurface representation is
stored, which also minimizes bandwidth requirements with graph-
ics memory. Since the proposed technique is based on rasteriza-
tion of standard graphics primitives, it lends itself well to being
combined with multi-viewport rendering, where the transient iso-
surface extraction stage can be executed only once for both views
in cases where viewing perspectives are very similar, such as for
stereoscopic rendering scenarios.
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Figure 8: Comparison of draw time overhead for rendering at res-
olutions of stereoscopic vs monoscopic 3840 × 2160 pixels. Us-
ing multi-view rendering, stereoscopic rendering merely creates
an overhead of 19.2 to 36.8% for our proposed technique (blue)
and 11.8 to 46.2% for the reference mesh (green), whereas the ray-
marching approach (red) does not have any benefit since the rays
are entirely separate for both eyes and therefore takes twice the
time compared to monoscopic rendering.

Our implementation is currently limited to the extraction of
opaque isosurfaces. Efficient order-independent transparency tech-
niques, such as per-pixel linked lists [KSS17, SBF15] or moment-
based order-independent transparency [MKKP18] could be easily
used in combination with our technique, but their additional re-
source requirements scale linearly with the rendering resolution,
potentially losing the advantage over ray marching. In any case,
ray-marching approaches remain the method of choice for visual-
ization techniques based on volume compositing.

Our approach does not currently tackle output-sensitive render-
ing. However, it could be extended to select an appropriate octree
level for extraction of the isosurface geometry. To support continu-
ous level-of-detail isosurface rendering, it is worthwhile to explore
the combination of the fundamental idea of transient isosurface ex-
traction with dual contouring approaches [JLSW02], since related
work suggests its suitability for crack-free level-of-detail rendering
of implicit geometry. An alternative for applications with highly
varying level-of-detail requirements across the volume could be the
application of a hybrid technique, identifying regions of the volume
that would benefit from ray marching instead of transient isosur-
face extraction. Although switching to a ray-marching approach in
minification cases could be a solution in such situations, other ad-
vantages of our approach, such as support for multi-viewport ren-
dering, could not be exploited.

Although there is clearly room for further research in the field of
direct isosurface rasterization for volumetric data, this contribution
shows that direct rasterization of a geometry representation gener-
ated on-the-fly can outperform non-trivial ray-marching-based ap-
proaches even at moderately high resolutions. Therefore direct ras-

terization is an option to consider when no explicit geometry rep-
resentation is available, or when explicit geometry is expensive to
generate such as for procedural geometry and procedural 3D or 4D
volumes.
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