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Abstract
Drones became popular video capturing tools. Drone videos in the wild are first captured and then edited by humans to contain
aesthetically pleasing camera motions and scenes. Therefore, edited drone videos have extremely useful information for cine-
matography and for applications such as camera path planning to capture aesthetically pleasing shots. To design intelligent
camera path planners, learning drone camera motions from these edited videos is essential. However, first, this requires to
filter drone clips and extract their camera motions out of these edited videos that commonly contain both drone and non-drone
content. Moreover, existing video search engines return the whole edited video as a semantic search result and cannot return
only drone clips inside an edited video. To address this problem, we proposed the first approach that can automatically re-
trieve drone clips from an unlabeled video collection using high-level search queries, such as “drone clips captured outdoor in
daytime from rural places". The retrieved clips also contain camera motions, camera view, and 3D reconstruction of a scene
that can help develop intelligent camera path planners. To train our approach, we needed numerous examples of edited drone
videos. To this end, we introduced the first large-scale dataset composed of edited drone videos. This dataset is also used for
training and validating our drone video filtering algorithm. Both quantitative and qualitative evaluations have confirmed the
validity of our method.
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1. Introduction

Thanks to their ability to freely move in 3D space, drones are
opening new ways for acquiring videos. Over the last few years,
they became popular video capturing tools in various contexts
and therefore have been recently investigated in computer graph-
ics and related fields. Applications include automated drone cine-
matography [JRT∗15,RH16,NMD∗17,GSH18,GLC∗18,XYH∗18,
ASN∗20,GHN∗16,GH21,NAMD∗17,BBS∗21,GFTG16,HLY∗19,
JJG∗16, GH18], human motion capture [NOP∗18, ZLP∗18],
drone motion taxonomy [NMRB17], surveillance [SPO18], drone
pursuit [ÇTM18], detection/identification [CKL∗18, HLH17],
3D scanning [RSD∗17, SMGH18], safe landing zone detec-
tion [KSI∗19], disaster management [Res15], and journal-
ism [TC14].

In the computer graphics and video indexing literature, no ex-
isting studies focus on edited drone videos in the wild, although
they constitute the highest portion of drone videos on the Internet.
A drone video created using editing programs (i.e., an edited drone
video) is commonly composed of several clips, each of which is
defined by scene cuts. Each clip is different from other clips in that
edited video. For example, a clip can be a drone or non-drone clip
or can be captured indoors or outdoors, as shown in Figure 2.

Once videos are captured, video editing is a common pro-
cess [TBLA16, WYH∗19]. Edited drone videos are first captured
and then edited by humans to contain aesthetically pleasing drone
camera motions and scenes. Therefore, they have extremely useful
information for automated drone cinematography and for applica-
tions such as camera path planning to capture aesthetically pleasing
shots [JWW∗20,JCW∗21]. To design intelligent camera path plan-
ners, learning drone camera motions from these edited videos is
essential. To this end, we propose the first dataset that contains nec-
essary data for training intelligent drone path planners (i.e., drone
camera views and their corresponding camera paths). Construction
of such a dataset is extremely hard because it requires to 1) de-
compose the edited drone videos into their individual clips, 2) de-
tect drone clips among these individual clips that commonly con-
tain both drone and non-drone clips, and 3) finally extract camera
paths of the detected drone clips. Therefore, we focus on data con-
struction in this paper for the benefit of related fields that require
training of intelligent drone camera path planners.

None of the existing drone datasets contain edited drone videos.
The underlying reason is that the construction of such a dataset re-
quires a very time-consuming and cost-inefficient process of manu-
ally filtering drone video clips out of edited drone videos by defin-
ing cut times and clip types (i.e., drone vs. non-drone). Moreover,
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Figure 1: Representative frames of our DVCD18K dataset. Note the great diversity in terms of appearance, scene category, shot type, camera
orientation, and time, among others.

there is no method that can automatically distinguish the simple dif-
ference between a drone and non-drone video frame, nor a method
to filter drone clips out of a video collection. In addition, there is
no existing drone datasets to train a video filtering algorithm to re-
turn drone clips corresponding to a search query because none of
the datasets provide labels such as drone/non-drone or cut times,
required for training and evaluating a drone video clip filtering al-
gorithm. Existing video search engines such as YouTube also return
the whole edited video as a semantic search result and cannot return
only drone clips inside an edited video.

While there are some existing studies for action recognition in
drone videos, they are focused on surveillance or human activities.
In our random drone video samples, we measured that only 4.51%
of edited drone videos in the wild contain human faces and activ-
ities, and drones are mostly used to capture scenic aerial views.
Focusing on human activity detection in drone videos would result
in wasting a big percentage of drone videos shared on the Internet,
whose purpose is to capture aesthetically pleasing aerial scenes.

Most existing drone datasets are composed of non-edited raw
drone videos for object/human detection and tracking in aerial
shots, as shown in Table 1. These datasets do not consider the aes-
thetically pleasing aspects of drone videos due to their targeted ap-
plication such as object detection. Therefore, they cannot be used
to train intelligent drone path planners. To train intelligent drone
path planners, one requires information about drone camera paths
and its corresponding camera view to imitate the way expert drone
camera operators capture a scene. These path planners also require
a 3D reconstruction of a scene to avoid obstacles in their algorithm
design. Unfortunately, there is no drone dataset that focuses on ex-
tracting drone camera paths from videos.

One naive solution to detect drone clips and extract their camera
path data is to first decompose the video collection into its indi-
vidual clips using existing cut-detection methods (Section 4), and
then identify the drone clips using CNN models that are trained to
detect drone vs non-drone clips (Section 5). However, we observed
that flaws of existing video cut detection methods adversely impact
the precision of filtered drone clips.

To address the gaps mentioned above in the literature, we con-
tribute the followings:

• We introduce DVCD18K: a large-scale, annotated Drone Video
Clip Dataset (Section 3), which is the first dataset com-
posed of 44 hours (18K clips) of “edited drone videos" (Fig-
ure 1). Our dataset contains various annotations such as the
cut time, cut transition effect, clip category (drone/non-drone),
scene category (urban/rural/mixed), location(indoor/outdoor),
time (day/night/between), logo and text existence, as well as the
information about 3D path and 3D reconstruction for drone clips.
Our dataset is the first dataset containing drone camera motions,
drone camera view, and 3D reconstruction of a scene that can
help develop intelligent drone camera path planners.

• Leveraging our dataset, we proposed the first approach that fil-
ters and retrieves specific types of drone video clips from an un-
labeled video collection using high-level search queries, such as
“outdoor drone clips captured from rural places during the day"
(Section 6), which was impossible using existing drone datasets.
For this, we trained the first classifiers in the aerial video domain
to detect drone/non-drone, scene category (urban/rural/mixed),
location (indoor/outdoor), time (day/night/between), and logo
presence in aerial shots (Section 5), which was not possible us-
ing the labels of existing drone datasets or even ground video
datasets (e.g., for drone/non-drone, and urban/rural categories).

• To address flaws of existing video cut detection methods (Sec-
tion 4), we proposed our own drone content-aware cut detection
method (drone frame block detection) in Section 6.1. We quan-
titatively proved that our method improves the precision and du-
ration of filtered drone clips in comparison with four out-of-the-
box video cut-detection methods in detecting true drone clips
(Section 6.3).

• We developed the first method to automatically filter drone clips
with specific drone camera motion patterns such as drone shots
captured by circular or linear (backward/forward) camera paths
(Section 6.3), which confirms the validity of our extracted paths.
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Table 1: Summary of existing datasets.

Dataset name
No.

videos
No.
clips

Duration Purpose Content
Edited
videos

UG2 [SVB∗20] 629 629 32.7 hours visual enhancement and object detection captured by UAVs, gliders, and on-ground cameras No

Professional drone

human motion [HLY∗19]
92 92 38 minutes Learning to film from human motion videos 6 filming styles of human motions (e.g., walking) No

HighD [KBKE18] 60 60 16.5 hours safety validation of automated vehicles drone videos only captured on German highways No

UAVDT [DQY∗18] 100 100 44 minutes object detection and tracking captured at a number of locations in urban areas No

VisDrone [ZWB∗18] 263 263 1.7 hours object detection and tracking contains different cities in China No

Okutama-Action [BMS∗17] 43 43 43 minutes human action detection captured at a baseball field in Okutama, Japan No

CARPK [HLH17] 7 7 24 minutes object counting and object localizing contains 4 different parking lots No

UAV123 [MSG16] 123 123 59 minutes object detection and tracking captured mostly by low-altitude UAVs No

Stanford dataset [RSAS16] 60 60 4.9 hours trajectory forecasting and target tracking captured by static drones in Stanford campus No

Mini-drone [BKRE15] 38 38 13 minutes study of privacy in video surveillance captured in parking lots No

DVCD18K (ours) 991 18,551 44.3 hours
semantic drone video search to provide data
for training intelligent drone path planners

contains various edited videos, countries, locations,
low/high altitudes, time, scene types and labels

Yes

2. Review of existing datasets

In the following, we review existing drone video datasets while
focusing on the number of videos, clips, duration, scene types,
purpose, and annotations. The highD dataset [KBKE18] contains
drone videos captured only on German highways. It is composed of
60 video clips with a total duration of 16.5 hours, and the vehicles
are annotated with bounding boxes, vehicle class, driving direction,
and mean speed. The Okutama-Action dataset [BMS∗17] focuses
on human action detection and includes 43 video clips with a total
duration of about 43 minutes. These clips are captured by drones at
a baseball field located in Okutama, Japan, and each clip is anno-
tated with bounding boxes of people and labels of their correspond-
ing action. Videos in both the highD [KBKE18] and Okutama-
Action [BMS∗17] datasets are captured in only one specific kind
of location. The dataset from Huang et al. [HLY∗19] contains 92
video clips for a total duration of 38 minutes. The videos are la-
belled and grouped into 6 filming styles based on the camera mo-
tion but are limited to human motion scenes.

The VisDrone dataset [ZWB∗18] consists of 263 video clips
with a total duration of around 1.7 hours†. The videos are manu-
ally annotated with bounding boxes of targets of interests, such as
bicycles, cars, and pedestrians and are captured in different loca-
tions (different cities in China) and environments (urban and coun-
try). The UAV123 dataset [MSG16] contains 123 video clips with a
total duration of 59 minutes. The videos are mostly captured from
low-altitude UAVs and annotated with bounding boxes of targets of
interest such as bikes, birds, and boats. The UG2 dataset [SVB∗20]
contains 629 videos with a total duration of around 32.7 hours†

taken by UAVs and manned gliders, as well as videos taken on the
ground. The UG2 annotations provide bounding boxes establish-
ing object regions and classes for the purpose of object classifi-
cation, detection, tracking, and video enhancement. The UAVDT
dataset [DQY∗18] contains 100 video clips in urban environments

† The duration of annotated data was not available, so we calculated it from
the known number of frames assuming a framerate of 30FPS.

and has a total duration of 44 minutes†. This dataset is annotated
with bounding boxes for cars. The CARPK dataset [HLH17] com-
prises 7 video clips of drone views with a total duration of 24 min-
utes. The dataset focuses on car counting and provides annotations
of bounding boxes for cars. The Stanford drone dataset [RSAS16]
contains 60 video clips with a total duration of approximately 4.9
hours and is dedicated to trajectory forecasting and target tracking.
Targets of interest such as pedestrians, skateboarders, and bicyclists
are annotated with bounding boxes along with their class label and
trajectory. The video clips are captured only by static drones hov-
ering in the air. The mini-drone dataset [BKRE15] is dedicated to
the study of privacy in video surveillance. It provides 38 video clips
with a total duration of 13 minutes, and each vehicle and person are
annotated with bounding boxes.

Overall, the existing datasets are only composed of individual
raw clips (i.e., no edited videos), mostly have a relatively small
size both in terms of duration and number of clips, and/or have a
limited variety, for example in targeted application, camera altitude,
location, and scene type.

Summary and comparison: The complete summary of the ex-
isting drone video datasets is available in Table 1. Our dataset pro-
vides four major differences with respect to existing datasets: 1)
Our DVCD18K offers a significantly larger scale in terms of num-
ber of videos, number of clips, and duration. 2) It offers a great
variety of drone videos in terms of location, motion, appearance,
camera altitude, scene category, shot type, quality, and editing ef-
fect, as shown in Figure 1. 3) Instead of just individual raw videos,
it contains edited drone videos, for example with video cuts, video
effects, and combination of drone/non-drone clips. 4) It provides
various levels of annotation, such as manual ground truth informa-
tion on scene description, video editing, social platform metadata,
as well as computed annotation (e.g., camera path by SLAM and
3D scene reconstruction). Our dataset is the first large-scale, fully
annotated dataset of edited drone videos. As will be detailed in the
following, this brings new challenges, opportunities, and applica-
tions such as semantic drone video clip search to provide necessary
data for training intelligent drone path planners.
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3. A Comprehensive Dataset of Drone Videos

3.1. Overview of our DVCD18K dataset

Leveraging the great amount of data available on the Internet, we
automatically gather a large number of drone videos from websites.
In our early experiments, we were planning to use videos from
Youtube by searching for “drone videos" and similar queries, but
it returned a very high percentage of non-drone videos, for exam-
ple people talking about drones. To solve this issue, we privileged
video platforms dedicated to drone videos, and selected AIRVŪZ‡

“the world’s leading drone video sharing platform".

We annotated 991 drone videos randomly selected from the
video platform. These videos are at the core of our dataset, and
we used them as the source videos for the following annotation
work and video analysis. Annotators were asked to first decom-
pose each video into individual clips and then annotate each clip.
On average, for one hour of source video, it took 5 hours of man-
ual annotation and 9.3 hours of annotation computation, e.g., path
computation by SLAM. The annotation of the whole dataset took
around 630 hours, including 220 man-hours of manual annota-
tion and 410 hours of computed annotation. An illustration of our
dataset annotation is available in Figure 2, and details about the an-
notation are provided in Section 3.2 and 3.3. The dataset statistics
are provided in Section 3.4. The supplementary material contains
our dataset license, link, dataset documentation via “Datasheets for
Datasets" [GMV∗18] framework, and our codes.

3.2. Manual annotation

Overall procedure: Our dataset consists of 991 source videos, and
each of them is composed of a number of clips, which could be ei-
ther drone or non-drone. The goal is to identify all the drone video
clips and annotate them. For this, our overall procedure proceeds
as follows: given a source video, we first asked annotators to de-
compose it into clips by annotating the shot boundary times in the
form of start/end times. The annotators then identified which of the
resulting clips are captured by drones. Finally, for each identified
drone video clip, we asked the annotators for extra annotations such
as indoor/outdoor.

Procedure details: The annotators were provided with clear in-
structions about the labelling. In order to remove any potential con-
fusion, we gave the annotators descriptive requirements with rep-
resentative examples. To have a common annotation environment,
the annotators were told to use the same online player on AIRVŪZ
website and report the video clip time in seconds which is the pre-
cision granularity of the video player. Furthermore, for each clip
boundary, we asked the annotators to label the type of clip transi-
tion such as hard cut, fade-in/out, and zoom-in/out.

The main focus of our DVCD18K dataset is on drone video clips.
Originally, we were planning to separate our dataset clips into just
two classes: drone vs. non-drone. While it sounded intuitive, we
found out that it was not entirely satisfactory for two main reasons.
The first reason is motivated by the fact that our dataset could be
used for drone motion-based applications, such as automatic drone

‡ https://www.airvuz.com/

motion planning. However, the apparent drone motion could be af-
fected by video editing, such as the rewinding effect§. Therefore,
we decided to divide the drone clips into two subcategories: drone
and droneE, which respectively represents the clip without and with
video editing effects that can affect the drone camera path inter-
pretation. The second reason is from the observation that several
videos contain “strobed" content or series of rapidly flickering ex-
tremely short clips/images, typically consist of around 10-15 shots
that are shown for less than 0.5 seconds. This strobe effect is a
popular video editing technique for creating a sense of dynamism
and excitement in the video. However, in practice, when searching
videos over the Internet, users may not be interested in such ul-
tra short individual clips. Moreover, the most time-consuming an-
notation task is to identify the video cuts and report their times.
Therefore, we added a class named strobe, which contains the se-
ries instead of the individual clips of the series. In summary, the
annotators classified each clip of the dataset into one of the follow-
ing four categories:

• drone: drone clips without any video editing effects that may
affect the interpretation of the camera paths. This category in-
cludes fast forward and slow motion.

• droneE: drone clips with editing effects that may affect the inter-
pretation of the camera paths. This category includes rewinding
and video shakes.

• nondrone: clips not captured by drones. This category includes
hand-held videos, videos of people talking about drones, anima-
tions, and drawings.

• strobe: series of extremely short videos/images.

Subsequently, for each clip in the drone category, we asked the
annotators to provide the following information (collectively re-
ferred to as semantic annotation in the remainder of this chap-
ter): location (indoor or outdoor), time (daytime or nighttime or
in-between like sunrise and sunset), scene type (urban or rural or
mixed, i.e., mixture of rural and urban), whether it contains any
logo and text, as well as the start and end transition effect.

Sometimes, it is hard for humans to determine whether or not a
clip is captured by a drone. Consequently, we asked the annotators
to report a score from 1 (not sure at all) to 10 (perfectly sure) for
each drone and nondrone clip of the dataset as a confidence indicator.
We also provide this confidence score in the dataset. Note that we
annotate all drone clips regardless of their confidence scores.

Annotation validation: After annotation, we validated all the
annotated results. One way would be to ask a second set of anno-
tators to independently annotate the videos using the same proce-
dure as described above and then compare the annotation results.
However, the repeated process would be time consuming and not
necessarily effective. We found that the most time consuming an-
notation task is to identify when a video cut happens and report its
time. Therefore, in our annotation validation round, we first cut the
source videos into each individual video clip based on the cut time
information of the annotation sheet. These clips were then provided
to a second set of annotators, who were asked to indicate whether

§ Rewinding effect is a special effect in cinematography whereby the ac-
tion that is filmed is shown backwards or time-reversed.
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Figure 2: Illustration of our dataset annotation. Our dataset is provided in a .CSV file with annotated labels such as the transition effect, cut
time, location, scene type, drone/non-drone, logo and text existence as well as 3D path and 3D reconstruction for drone video clips.

or not the clip contained a cut as well as label semantic annota-
tion. Shot type and cut time information were validated for every
clip. Additional semantic information such as scene type was re-
annotated only for drone clips. If an error in cut time or conflicting
information was reported, corresponding clips were revised accord-
ing to the validation. This validation annotation was conducted in a
“blind-way": the annotators did not have access to the other set of
semantic annotations. If some annotations in the validation round
did not coincide with the original annotations, a third set of an-
notators checked the corresponding parts in the source video and
finalized the annotation.

3.3. Automatic annotation

Social platform metadata: The webpage of each video on the
AIRVŪZ website contains social platform metadata that we also
provide in our dataset. Metadata includes the number of views,
likes, and comments.

Camera path and 3D reconstruction: For each drone
video clip, we provide the 6D drone camera path (position
and orientation) computed by both ORB-SLAM2 [MT17] and
Metashape [Agi]. We also provide a 3D reconstruction of the scene
by Metashape. The 3D reconstruction is available as both a 3D
point cloud and a textured mesh. Representative results of the cam-
era path estimation and 3D reconstruction from drone video clips
are available in Figure 2 and Appendix 9.1. On average, it took 8.6
and 2.4 minutes to process 1 minute of input video at 640× 480
resolution by Metashape and ORB-SLAM2, respectively. In total,
it took around 320 and 90 hours of computation time for the path es-
timation and 3D reconstruction, respectively, for all the drone clips
of our dataset. See Appendix 9.1 for details.

3.4. Dataset statistics

Our DVCD18K dataset contains a total of 18,551 drone video clips
issued from 991 videos, and the total duration is approximately 44
hours (Figure 1). 85% duration of the clips belong to the drone cat-
egory, 3% to droneE, 10% to nondrone and 2% strobe. The duration
of each video spans from 17 seconds to 14.5 minutes with mean
= 2.7 minutes and median = 2.5 minutes, as shown in Figure 3(a).
It also shows that the great majority (81%) of the videos are less
than 4-minutes long, and 90% are between 43 and 327 seconds.

Figure 3(b) plots the relation between the video duration and the
number of clips. It shows that the number of clips has a dominant
linear trend with respect to the video duration. This tends to suggest
that video editors might decide the clip length independently of the
total video duration. Figure 3(c) plots the distributions of the drone
and non-drone clip duration. First, contrary to what we originally
expected, it shows that their distributions are similar. This tends
to indicate that video editors select clip length independently of the
drone or non-drone contents. Second, the duration of each drone video
clip spans from 1 to 281 seconds with mean = 7.53 seconds and me-
dian = 5 seconds. It also shows that the great majority (82.6%) of
the drone video clips are less than 10-second long, and 90% are be-
tween 1 and 21 seconds. Furthermore, we analyze the popularity of
videos based on their number of views, likes and comments. Fig-
ure 3(d) shows the distribution of the number of views. It shows that
most of the videos (77.5%) are seen less than 3,000 times while the
most top 4.8% popular ones are seen more than 9,500 times. See
Appendix 9.3 for the number of likes and comments.

(a) (b)

(c) (d)
Figure 3: (a): distribution of the video duration. (b): distribution
of the number of clips per video with respect to video duration. (c):
distribution of the duration of all the identified drone and non-drone
video clips. The Y axis represents the percentage of clips per cate-
gory normalized for each category. (d): distribution of the number
of views.
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4. Baseline evaluations of video cut detection

One naive solution to detect drone clips is to first decompose the
video collection into its individual clips via a cut detection method
and then detect drone clips among these individual clips. In this
section, we evaluate existing methods of video cut detection based
on our manual ground truth annotation of clip time boundaries. We
used the following methods for video cut detection:

ORB-SLAM2: In the context of stereo magnification, which en-
larges the baseline of views captured by a narrow-baseline stereo
camera, Zhou et al. [ZTF∗18] presented a method based on ORB-
SLAM2 [MT17] to automatically divide a video into individual
clips. We follow their strategy: we feed successive video frames
to ORB-SLAM2 to track the camera, consider the tracking failure
as a video cut, and resume the algorithm to detect the next video
cut. We use the default vocabulary file and camera calibration file.

Yahoo Hecate: Hecate is a video processing library developed
by Yahoo Research [SRVJ16]. Shot boundary detection is one of its
complementary functions and is achieved by computing the edge
change ratio between two consecutive frames. We use the default
parameter settings.

PySceneDetect: We evaluate the Python application
PySceneDetect [Cas18]. Among the various methods avail-
able, we select the advanced content-aware cut detection algorithm
and use the default hyperparameter setting.

ffprobe: We evaluate the shot boundary detection named ff-
probe [FFm18]. It detects scene changes using scene filters. We
set the ffprobe to report a cut when the estimated scene detection
score computed based on the absolute differences is greater than
a threshold. According to the ffprobe user manual, this threshold
should be between 0.3 and 0.5, and we set it to 0.3. Here, the lower
means more sensitive.

Evaluation: All cut detection methods were applied on the
whole videos, but the evaluation metrics were computed only on
drone video clips. Because we focus on drone clips, our annota-
tors just provide the start and end time for the consecutive non-
drone clips and do not provide manual ground truth of video cuts
in between. In our evaluations, we allowed a 1-second margin be-
tween the detected cut times and the ground truth. For example, if a
method detects a cut at 00:05, we would consider it as correct if its
time from the annotation sheet is 00:05±1s. The margins were al-
lowed because our ground truth manual annotations were reported
in seconds.

To evaluate the cut detection methods, we follow a procedure
similar to Krulikovska and Polec [KP12]. The results are available
in Table 2. Overall, the F-score in Table 2 shows that PySceneDe-
tect and ffprobe outperform the other two approaches and have
approximately similar performance, e.g., high correctly detected
cuts and high precision as well as low missed cuts and high recall.
Hecate has the highest falsely detected cuts and lowest precision
while ORB-SLAM2 has the highest missed cuts and lowest recall.
Hecate is overly sensitive to changes of frames and consequently
reported highest number of cuts 123,227 with the lowest precision.
ORB-SLAM2 has the highest cut detection precision followed by
ffprobe. While ORB-SLAM2 and ffprobe have higher precision in

Table 2: Evaluation of video cut detection methods. Correct stands
for correctly detected cuts, Missed for missed cuts, and False for
falsely detected cuts.

Precision Recall F-score Correct Missed False

Hecate [SRVJ16] 0.15 0.90 0.25 18,156 1,988 105,071

PySceneDetect [Cas18] 0.62 0.69 0.65 13,832 6,312 8,670

ffprobe 0.71 0.57 0.63 11,394 8,750 4,548

ORB-SLAM2 [MT17] 0.83 0.16 0.26 3,159 16,985 644

Figure 4: Representative failure case of cut detection when two
adjacent scenes are in similar color space.

comparison with others, based on the recall score, ffprobe substan-
tially outperforms ORB-SLAM2 by detecting a higher ratio of cor-
rect cuts among all ground truth cuts.

Failure cases: Representative examples of mis-cut detections
are shown in Figure 4. Our failure cases suggest that if a cut
happens between two sequential scenes which share similar color
space, PySceneDetect, ffprobe, and ORB-SLAM2 might not de-
tect the scene change. Hecate correctly detected some of these cuts
between consecutive frames with a similar color-space. However,
in Table 2, Hecate’s precision is the lowest while it has the high-
est recall score among all other methods. This means Hecate re-
ports many cuts with low precision and might detect all ground
truth cuts as well as many wrong cuts. Table 2 also shows that
the performance of the video cut detection methods are different
from each other, and all the methods have some flaws in decom-
posing the edited drone videos into its clips. This can adversely
impact the precision of filtered drone clips regardless of the cut de-
tection method employed.

5. Training CNN on DVCD18K dataset

Our goal is to develop a content-aware drone video filtering algo-
rithm for semantic search. To this end, leveraging our dataset an-
notations, we trained CNNs for five tasks (drone/non-drone, logo
presence, time information, scene type, and location classification),
evaluated their performance, and compared them to baseline meth-
ods. We use two types of CNN. The first type (named 2D CNN
in the following) is “conventional" CNN based on 2D convolu-
tional kernels to classify a single frame. The second type is (2+1)D
CNN [TWT∗18]: it accepts a set of frames as input and approx-
imates 3D spatio-temporal convolutions by 2D and 1D convolu-
tions. Overall, (2+1)D CNN is known to be more suitable for spa-
tiotemporal feature learning compared to 2D CNN [TWT∗18].
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Data preparation: Among the 991 source videos, we randomly
allocated 693 videos for training, 149 videos for validation, and 149
videos for testing. The duration of the training, validation, and test-
ing sets was 31.27 hours (70.7% of the whole dataset), 6.94 hours
(15.7%), and 6.04 hours (13.6%), respectively. We decompose the
videos into clips according to the annotated cut times. Because time
is written in unit of second during annotation, the first and last one
second may contain frames from another clip. Therefore, we ex-
clude them from each clip. To have balanced class distribution at
the clip level, we discard videos of the dominant class to make the
training, validation, and testing sets have the same number of clips
belonging to each class.

CNN details: We use the popular CNN architecture
DenseNet121 [HLvdMW17] pre-trained on ImageNet for 2D
CNN and the R(2+1)D [TWT∗18] architecture pre-trained on
Kinetics 400 [KCS∗17] for (2+1)D CNN. The input of the 2D
CNN is downsized to the resolution of 144x192. For the (2+1)D
CNN, the input is 16 consecutive frames, downsized to 112x112.
One fully connected layer is added to the last convolution layer.
We use sigmoid for binary classification and softmax for multi-
class classification. All the networks are trained using the Adam
optimizer [KB14], cross entropy loss, with a batch size of 10, for
5 epochs. We set the learning rate to 10−5 for 2D CNN and 10−6

for (2+1)D CNN.

Baseline methods: For baseline comparison, we used SVM with
nonlinear kernels on HOG features [FP12]. To compute HOG, we
use 10 × 10 window size, 10 × 10 block size, and 5 × 5 block
stride on 100 × 100 resolution images. In addition to SVM, for
indoor/outdoor classification, we also use the CNN-based scene
recognition approach, Places365-CNN [ZLK∗17] that returns a bi-
nary indoor/outdoor classification. We used the same training set
to train SVM and our CNN, and used the same test set to evaluate
SVM, Places365-CNN, and our CNNs. We did not intentionally re-
train Places365-CNN to evaluate its performance on unseen drone
shots and see how much it is generalizable for drone shots.

Evaluation results: The accuracy of each classification method
is reported in Table 3. Additional evaluations, including precision,
recall, and F-Score of our classifiers are available in Appendix 9.2.
We compared 2D CNN, (2+1)D CNN, and SVM classifiers for all
five tasks. Overall, CNNs outperform SVM by a substantial margin.
We additionally compared our indoor/outdoor CNN classifier to the
state-of-the-art Places365-CNN [ZLK∗17]. The result shows that
CNNs outperform Places365-CNN, even though Places365-CNN
is based on a deeper ResNet152 structure [HZRS16] and trained on
a larger dataset (1.8 million images) than ours (27,006 for training
and 6,483 for validation). We believe that the underlying reason for
the better performance of our networks is that they are trained on
drone videos while the original training set of Places365-CNN does
not contain any drone shots. This additionally motivates the need
for our drone dataset to gain the better performance in automatic
drone video classification.

In addition to the accuracy results, we computed and plotted the
ROC curves (Figure 5). Time information and scene type classi-
fiers have three categories. Therefore, they have three ROC curves
by considering each class as positive. For all five tasks, (2+1)D
CNN is the most outperforming method followed by 2D CNN and

Table 3: Classification accuracy results.

Type Method Accuracy
Clip category: drone/non-drone SVM 0.68

2D CNN 0.85
(2+1)D CNN 0.86

Logo: yes/no SVM 0.50
2D CNN 0.71

(2+1)D CNN 0.81
Time: day/night/between SVM 0.52

2D CNN 0.80
(2+1)D CNN 0.81

Scene type: urban/rural/mixed SVM 0.44
2D CNN 0.61

(2+1)D CNN 0.64
Location: indoor/outdoor SVM 0.82

2D CNN 0.88
(2+1)D CNN 0.89

Places365-CNN 0.84

Figure 5: ROC curves for classification of (a) drone/non-drone, (b)
indoor/outdoor, (c) time information, and (d) scene type. The black
diagonal line corresponds to random classification.

SVM. This can be explained by the fact that (2+1)D CNN is able
to leverage temporal information from multiple input frames while
2D CNN and SVM operate on single frames.

Failure cases: Representative mis-classification results by our
(2+1)D CNNs are shown in Figure 6. Images in (a) are mistakenly
predicted as indoors and outdoors, respectively. The error in the
left image might be due to the place where the video was captured.
Specifically, the inside of a cave looks like an indoor environment.
In the right image, the large area of outdoor environment captured
by an indoor drone might be interpreted as an outdoor scene. Im-
ages in (b) are misclassified as drone and non-drone: the large pres-
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Figure 6: Representative mis-classification results.

ence of sky in the left image captured by an airplane passenger and
the low altitude of the drone in the right image captured in a build-
ing might confuse the network. The left image in (c) belongs to the
mixed (between urban and rural) category. However, this is classi-
fied as a rural place due to the small fraction of the buildings in the
image. Similarly, the right image in (c) is mistakenly classified as
an urban area while it belongs to the mixed category. For the time
classifier, when a shot is captured during the day from a dark place
with low exposure to light, network might mistakenly classify the
time as night. In addition, sometimes during a sunset or sunrise, the
sky might look brighter (or darker) if the sunrise or sunset are about
to be started (or finished). This can also cause some mistakes in our
time classifier, as shown in Figure 6(d).

6. Automatic drone video collection filtering

As briefly mentioned in Section 3, a high percentage of Youtube
videos related to drones is composed of non-drone video clips. As a
quantitative evidence, we manually measured that 86.9% of the du-
ration of the top 100 Youtube videos with the search query “flying
drone" is composed of non-drone video clips, for example people
talking about drones in the video. To overcome this challenge and
facilitate the search of drone video clips, we present an approach
which operates on an unstructured collection of videos, for example
Youtube videos with the search query “flying drone", and automat-
ically returns clips captured by drones. This requires to automat-
ically decompose the videos into individual clips and identify the
drone clips. A representative example of Youtube video frames and
drone clips filtered by our algorithm is available in Figure 7. Our
algorithm is tuned to aggressively prune the input video collection
and conservatively extracts only the true drone shots. This is con-
ducted at the expense of leaving out some clips captured by drones
but for which our prediction has not gained sufficient confidence.
This process is sometimes called dataset distillation [AEWQ∗15],
and it is motivated by the use case where a user searches for some
correct videos instead of all potentially corrupted videos.

In addition to drone clip retrieval, our approach enables users
to search for drone video clips with high-level semantic search
queries, such as “outdoor drone clips captured from rural places
during the day". To this end, we employ our trained CNN to esti-
mate the captured time, location, and scene-type of drone videos.
See the dedicated labels for each drone clip in Figure 7.

We trained and developed our drone video filtering algorithm
using AIRVŪZ data. However, to make our experiment similar to
the real world production scenario case, we tested the validity of
our method on unseen YouTube videos and verified our filtering
method can generalize well on filtering unseen videos. To evalu-
ate our video filtering algorithm, we followed the standard evalu-
ations typically used for a distillation algorithm [AEWQ∗15] and
conducted five evaluations in Section 6.3.

6.1. Proposed approach

We now present our approach to retrieve drone video clips among
a video collection. In our initial experiments, we first decomposed
the video collection into individual clips via four out-of-the-box cut
detection methods (Section 4) and then identified the drone clips
by our drone/non-drone classification CNN (Section 5). The initial
results showed that the precision of this approach can be low or
different depending on various cut detection methods employed.
See Section 6.3 for more details. The underlying reason is that a
video cut method might mistakenly group drone/non-drone clips
together. For example, such a case may happen if two adjacent clips
are in similar colour space.

To make our algorithm robust and independent of defects in cut
detection methods, we propose a “reverse" approach in which we
first identify drone frames (frame-level drone classification) and
then pass them to a drone content-aware cut detection method
(drone frame block detection). The detail of these two steps are
as follows:

1) We classify each frame from the video collection using our
drone/non-drone CNN classifier (Section 5). Our algorithm clas-
sifies each frame based on its predicted probability of being a
drone frame, reported by the last layer of our CNN drone classi-
fier. When this probability is higher than a threshold (e.g., 0.8),
we decide it as a drone frame. We conservatively tune this thresh-
old to return the true drone frames for which our CNN gained
sufficient confidence.

2) We automatically detect series of consecutive drone frames and
consider them as a candidate set of drone video clips, as shown
in Figure 8. For each candidate drone video clip, we also com-
pute the mean and median values of the probabilities (of being
captured by a drone) of its frames. If both the mean and median
values are higher than a threshold (e.g., 0.9), we add the clip to
the final set of drone video clips. These two steps extract the true
drone video clips from a video collection in the wild.

For high-level semantic search, we conduct the following addi-
tional step:

3) For each identified drone clip, we employ our CNN (Section 5)
to predict additional labels such as time information, scene type
category, logo presence, and shot location. See Evaluation 3 in
Section 6.3 for more details.
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Figure 7: Representative example of Youtube video collection filtering. Given an input video collection, we automatically decompose the
videos into clips and classify them into drone vs. non-drone clips by our trained CNN. For each detected drone clip, we predict additional
labels such as time information, scene type category, existence of a logo, path category, and shot location (indoor/outdoor). This approach
can be used to automatically filter and retrieve specific types of drone video clips from an unlabeled video collection using high-level search
queries, such as “drone video shot outdoor in day time with an orbiting motion".

Figure 8: Representative example of automatic detection of con-
secutive drone frames with high drone probability as a candidate
drone video clip.

4) For each identified drone clip, we also compute the drone trajec-
tory using Metashape (Section 3.3). Moreover, we identify some
types of drone trajectories, for example the orbiting or linear
(forward/backward) path shapes. See Evaluation 5 in Section 6.3
for more details.

6.2. Evaluation procedure

We now conduct quantitative and qualitative evaluations of our dis-
tillation algorithm. The quantitative evaluation compared our esti-
mated CNN results with ground truth drone clips. For the evalua-
tions, we downloaded the first top 100 videos from Youtube with
the search query “flying drone", as shown in Figure 7. We ran
our approach to automatically identify the drone clips and com-

puted the labels such as scene type and time information. To ob-
tain ground truth, we asked annotators to manually extract the
drone clips by defining cut times, and annotate them by logo/non-
logo, scene type, time information, and location labels. Finally,
we computed the precision of our automatic approach by compar-
ing our CNN network results with the ground truth. To compute
the precision of our algorithm, we divided the number of “cor-
rectly predicted" drone clips by the total number of predictions.
A clip is considered “correctly predicted" when its Intersection
over Union (IoU) metric with respect to the ground truth drone
clip is higher than a threshold (e.g., 0.95). Intersection over Union
(IoU) metric is widely used [RTG∗19] as a basis to evaluate seg-
mentation [AMM∗18, COR∗16, LMB∗14, ZZP∗17], object detec-
tion [EVGW∗10,LMB∗14], and tracking [LTMR∗15] tasks. To ob-
tain IoU metric, we compute the intersection between the predicted
and ground truth drone clips (the duration of overlap between them)
divided by their union (the duration encompassed by both of them).

6.3. Evaluation results

The precision of our method is shown in Figure 9. It shows that
when we put a conservative threshold to detect drone frames (e.g.,
frames with a drone probability higher than 0.95), the precision of
the filtered drone clips is 1.
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Figure 9: Evaluating the trade-off between the distilled set preci-
sion and its duration.

[Evaluation 1] Size vs. quality of the filtered drone clips: To
demonstrate the trade-off between the distilled set size and the pre-
cision score of the obtained filtered drone clips, we compared the
ground truth annotations with our drone/non-drone CNN classifier
results. In our CNN classifier, if the probability of being a drone
frame is higher than a threshold (conservativeness metric), we con-
sider it as a drone frame. Using a higher value of the threshold
results in a more conservative video filtering in which our network
gained higher confidence in detecting true drone frames. We exam-
ined the conservativeness of our algorithm by considering different
probability threshold values in the range [0.5-1]. Figure 9 plots the
trade-off between size and precision. It shows that a more conserva-
tive setting allows for a nearly perfect, but smaller, distilled drone
video clip collection. This trade-off based on the conservativeness
metric provides a systematic way to tune the duration and preci-
sion of filtered clips. In addition, Figure 9 confirms that when tuned
conservatively, our automatic filtering algorithm is able to extract a
near perfect subset of true drone videos.

[Evaluation 2] Scaling to large distilled drone video clips: We
designed experiments to analyze the scaling behavior of our filter-
ing algorithm. To this end, we examined the precision and duration
of filtered videos as a function of the input video collection du-
ration. Starting with the full size of our 100 Youtube videos, we
generated different input video collection durations by randomly
selecting a set of videos. For each set of videos, we ran our algo-
rithm and measured the precision and duration of filtered videos.
Figure 10 shows that the duration of the filtered drone clips is ap-
proximately proportional to the duration of the input videos (left),
while the precision score remains nearly constant (right). This sug-
gests that a larger drone video clip set can be obtained, from a larger
input video collection size while the precision of the returned drone
clips remains similar. Because we randomly select sets of videos
for this experiment, in Figure 10, we show median, 0.25, and 0.75
quantile of the duration (left) and precision (right) of the filtered
clips, calculated over various input video sets.

[Evaluation 3] Semantic search: We developed an automatic
approach that enables a user to narrow down the search results
with high-level semantic search queries. To this end, first, we
apply a simple word segmentation of the query sentence. Then,
among the segmented words, we find words that correspond to the
classes/keywords of our classifiers (e.g., indoor/outdoor). Finally,
we search for consecutive drone frames for which our CNN predic-
tors gain sufficient confidence in them to correspond to detected
classes/keywords. For example, to extract “outdoor drone clips"

Figure 10: Scaling evaluation. Duration (left) and precision (right)
of filtered drone clips by increasing the input video collection du-
ration.

(detected classes/keywords: “outdoor" and “drone"), we search for
consecutive frames with high probability of being the both “out-
door" and “drone" frames in our CNN predictors. To evaluate the
precision of our semantic search results, we ran our approach to ex-
tract (a) “outdoor drone clips", (b) “drone clips captured during the
sunset/sunrise (between)", (c) “urban drone clips", (d) “non-logo
drone clips", (e) “outdoor non-logo drone clips captured from ur-
ban places during the day" and (f) “outdoor drone clips captured
from a mixed urban and rural place during the day", as shown in
Figure 12. We gained perfect precision of 1 by conservatively tun-
ing our approach.

The precision of our semantic drone video search is shown in
Figure 11. It confirms that our distillation approach gains perfect
precision of 1, if we tune it conservatively to return video clips for
which our CNN predictors gained high confidence in them to corre-
spond to the search queries (a) to (f). Moreover, our distilled video
results with search queries “outdoor drone video shot with (a) orbit-
ing motion, (b) linear (forward) and linear (backward)" are shown
in Figure 14. We gained perfect precision of 1 by conservatively
tuning our approach.

[Evaluation 4] Automatic drone video collection filtering via
initial cut detection: As mentioned in Section 6.1, we present a
distillation method which automatically filters video collections to
return true drone shots with its associated information such as time,
location, and scene type, as shown in Figure 7. In our early ex-
periments, we first decomposed the video collection into clips via
a cut detection method (Section 4). We used PySceneDetect, ff-
probe, Hecate, and ORB-SLAM2 to detect the cuts. Then, we lever-

Figure 11: Precision of semantic search results.
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Figure 12: Representative semantic search results with the search queries (a) to (f).

Figure 13: Precision (left) and duration (right) of filtered drone
clips associated with different methods employed.

aged our drone/non-drone CNN (Section 5) to detect true drone
clips among identified clips. For each identified clip, we compute
the mean probability of its frames to be a drone frame, and if it
is higher than a threshold, we return it as a distilled drone clip.
Figure 13 shows the precision of the distillation algorithm using
different cut detection methods. It confirms that the precision and
duration of returned distilled drone clips can differ and even be low
depending on various cut detection methods employed. To address
this problem and make our distillation approach robust to initial cut
detection methods, we return consequent frames with high proba-
bility of being drone frames as a distilled drone clip , as shown in
Figure 8. In this case, probability threshold defines whether each
frame can be considered as a drone frame, and then we search for
consequent drone frames. As shown by the blue line in Figure 13,
our method leads to a higher precision in the majority of probabil-
ity thresholds. It also returns longer duration of distilled drone clips
with high precision. See the precision and duration of filtered drone
clips at probability thresholds higher than 0.8 in Figure 13.

[Evaluation 5] Drone path shape: In the context of Youtube
video filtering based on the drone camera path shape, we identify
some types of drone trajectories, for example the orbiting or lin-
ear (forward/backward) path shapes. To identify these path shapes,
we use RANSAC to fit a circle and a line for each drone cam-
era path computed by Metashape. By comparing the percentage
of RANSAC inliers¶ for the best fitted circle and line, we define

¶ RANSAC inliers are path points that fit the RANSAC model, i.e., dis-

whether the camera path is more similar to the circular or linear
path. If the percentage of inliers for both fitted circle and line are
less than a threshold (80%), we define it as a non-categorized path.
We also put a threshold on the circular path coverage in such a
way that the circular path arc should include at least 50% of the fit-
ted circle. Similarly, the linear path length is handled by enforcing
that the linear path length must be higher than a threshold. For the
linear paths, we also compute the moving direction to determine
if the camera moved forward or backward. To this end, we com-
pute the angle between the camera view vector and the vector from
the initial point to the end point on the path for each path point.
Then, if the majority of these angles is lower (respectively higher)
than 90◦, we consider the camera direction as forward (respectively
backward). Our distilled video results based on the drone camera
path shape and with search queries “outdoor drone video shot with
(a) orbiting motion, (b) linear (forward) and linear (backward)" are
shown in Figure 14. We gained perfect precision of 1 by conserva-
tively tuning our approach.

Figure 14: Representative results of video clip semantic search
among Youtube videos. For each result, we indicate the semantic
search keywords and show some frames of the filtered clips as well
as the 3D reconstruction and drone path.
tances between the points and fitted circle (or line) are less than a threshold.
For a circular path, we define this threshold based on the fitted circle radius
(e.g., 1% of the fitted circle radius), while we use a constant threshold for a
linear path.
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7. Future work

We used our dataset for video cut detection (Section 4), classi-
fication of drone vs. non-drone, scene type (rural/mixed/urban),
time information (day/between/night), location (indoor/outdoor),
and logo vs. non-logo presence in drone videos (Section 5), and
semantic drone video search (Section 6). Because of the provided
annotations in our dataset, one can leverage our dataset for the fol-
lowing tasks:

Drone path planning: Our dataset contains drone video clips
with their corresponding drone camera paths. One can leverage this
data to train deep learning models to generate drone paths, given
drone camera views. In addition, because our dataset contains var-
ious drone shots, one can analyze drone camera paths to detect
global patterns and shot styles used in drone cinematography. Our
compilation of the largest dataset provides drone camera paths of
edited videos, captured by human camera operators and edited to
contain aesthetically pleasing drone shots and camera motions.

Popularity prediction of drone videos: The popularity of a
drone video is affected by many factors, such as aesthetical aspects,
content type, camera motion pattern, and video storytelling. While
several methods have been presented for aesthetic assessment and
popularity prediction [HGS19,THP∗17], they are designed for gen-
eral image/video content. Because our dataset contains social plat-
form metadata such as number of likes and views for each video,
an interesting direction for future work is to investigate new deep
learning based approaches specifically dedicated to automatic pop-
ularity prediction of drone shots.

Music recommendation for drone videos: In contrast to other
datasets designed for specific tasks [KBKE18,BMS∗17,DQY∗18],
our dataset contains diverse high-quality professional edited drone
videos. These videos have both visual and audio data in which the
overlaid music is selected by the video editor, for example to ac-
company the video storytelling and dramatize the video content. An
interesting direction is to leverage the audio-visual data, for exam-
ple to automatically suggest a musical piece for a given drone shot.

Recommendation of video transition effects: Because we an-
notate video transition effects between consecutive video clips, one
can use our dataset to train deep learning models to recommend a
video transition effect, commonly preferred by video editors con-
sidering content of consecutive video clips.

Improving drone video classification: In the context of drone
video analysis, we used our CNN to classify drone clips based on
drone/non-drone, indoor/outdoor, scene type, and time information.
Our CNN results show that there is room for classification improve-
ment. An interesting approach is to explicitly include motion infor-
mation to the network, for example in the form of optical flow,
in addition to the visual content. To improve the generalization of
CNN classifiers outside the training set, Peterson et al. [PBGR19]
proposed to use the human uncertainty in annotating the data. A di-
rection worthwhile to explore is to use soft labels provided through
human confusion as a replacement for one-hot label encodings. For
example, in our case, first, different annotators sometimes had dif-
ferent perception for scene type (urban/rural/mixed) class of a given
frame. Second, in our dataset, we provide a confidence score for
clip categories (drone/non-drone) as an indicator of the annotators

confidence in the validity of labels (Section 3.1). One could use
these perceptual uncertainties to train with full label distributions
and make more robust classifiers.

8. Conclusion

The first step toward learning automated drone cinematography
from videos in the wild is to filter drone clips and extract their cam-
era motions out of these videos that commonly contain both drone
and non-drone content. In this paper, we proposed the first method
that can automatically retrieve drone clips from an unlabeled video
collection using high-level search query, such as “drone video shot
outdoor in day time". The retrieved clips also contain camera mo-
tions, camera view, and 3D reconstruction of a scene that can help
develop intelligent camera path planners. We conducted five qual-
itative and quantitative evaluations and showed the validity of our
drone video distillation algorithm. We showed that our method has
a mechanism to only return true drone clips with perfect precision
of 1, and can be scaled to create large distilled drone video clip
datasets with high precision. We examined the validity of our ex-
tracted drone path shapes by successfully filtering drone clips with
specific drone camera motions.

In addition, we have proposed DVCD18K, a novel, large-scale,
annotated dataset composed of more than 18,000 drone video clips,
which leads to a total amount of more than 44 hours of edited
drone videos. Our annotations include various levels of informa-
tion such as clip category (drone/non-drone), scene description, lo-
cation, video editing information, social platform metadata, and 3D
camera path among many others. The compiled clips offer a great
variety in terms of location, appearance, drone camera motion,
scene category, shot type, quality, and editing effect. Our dataset is
the first large-scale, fully annotated dataset of edited drone videos
that contains aesthetically pleasing camera motions and views to
develop intelligent drone path planners. We hope that our dataset
will contribute to the development of algorithms for automated
drone cinematography and drone video analysis.
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9. Appendix

9.1. Path computation time

Our dataset contains time consuming automatic annotations such as
the path computation and 3D reconstruction with Metashape and
ORB-SLAM2. Figure 16 shows the automatic path computation
time with (a) Metashape and (b) ORB-SLAM2. See Section 3.3 for
more details. Figure 16-left plots the tendency between the duration
of input video clips and path computation. It shows a highly linear
tendency for ORB-SLAM2, and overall, the longer clip duration
requires the longer path computation time. Figure 16-right demon-
strates the approximately linear tendency between the cumulative
duration of input video clips with respect to the cumulative path
computation time. On average, it took 9.3 hours to annotate one
hour of source video for automatic annotation. The automatic an-
notation of the whole dataset took 410 hours of computation (320
hours for Metashape and 90 hours for ORB-SLAM2). Figure 15
shows representative results of the path computation and 3D recon-
struction with Metashape.

9.2. CNN supplementary

In Section 5, we only reported the accuracies of our classifiers.
However, the classification accuracy alone is not sufficient to
judge the effectiveness of a classifier. Here, we provide the pre-
cision, recall, and F-score for the classification of drone/non-
drone, logo/non-logo, shot location, time information, and scene
type by different approaches such as SVM, 2D CNN, (2+1)D
CNN [TWT∗18], and Places365-CNN [ZLK∗17]. Because the
scene type and time information have multiple classes and there-
fore are not subject to a binary classification, we separately com-
pute the precision, recall, and F-score for each class. To this end, we
consider one class (e.g., night) as a positive class and others (e.g.,
day and between) as a negative class. See the evaluation metrics
of the night class in Table 4. For the final evaluation, we compute
the mean value of the precision, recall, and F-score for every class.
Specifically, as an example, the final F-score of the time informa-
tion classifier using SVM is computed by averaging out the SVM
day/between/night F-scores in Table 4. Finally, Table 5 shows the
precision, recall, and F-score for all of our classifiers. F-score can
provide an improved measure of the performance of a classifier by
using both precision and recall. Based on the F-score in Table 5,
for all five tasks, (2+1)D CNN is the most outperforming method
followed by 2D CNN and SVM. This can be explained by the fact
that (2+1)D CNN is able to leverage temporal information from
multiple input frames while 2D CNN and SVM operate on single
frames. When running our experiments on one to two GTX 1080Ti
GPUs, the training time of each experiment took less than a day.

9.3. Social data

Figure 17 shows the social data, i.e., the number of likes (left) and
comments (right). 80% of videos received less than 41 likes and 32
comments. 5% of videos received more than 66 likes and 52 com-
ments. Mean, median, min, and max values for the number of likes
and comments are (29, 25, 2, 229) and (22, 19, 0, 107), respectively.
The top 10th and 90th percentiles are (52, 10) and (43, 6) for likes
and comments, respectively.
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Figure 15: Representative results of the path computation and 3D reconstruction with Metashape.

Figure 16: Computation time of automatic annotations by (a)
Metashape and (b) ORB-SLAM2. (left): A scattered plot of a ten-
dency between input clip duration and path computation time.
(right): The tendency between the cumulative input duration and
the cumulative path computation time is approximately linear.

Figure 17: Distribution of the number of likes (left) and comments
(right).

Table 4: Evaluation metrics for the classification of time informa-
tion and scene type for each class and by different approaches.

Type Method Precision Recall F-score

Time: day/night/between

SVM
day 0.42 0.28 0.34

between 0.73 0.57 0.64
night 0.42 0.89 0.57

2D CNN
day 0.75 0.83 0.79

between 0.81 0.73 0.77
night 0.89 0.89 0.89

(2+1)D CNN
day 0.72 0.83 0.79

between 0.90 0.66 0.76
night 0.90 0.96 0.93

Scene type: urban/rural/mixed

SVM
rural 0.45 0.18 0.26

mixed 0.43 0.91 0.58
urban 0.62 0.13 0.22

2D CNN
rural 0.64 0.70 0.67

mixed 0.56 0.50 0.53
urban 0.64 0.65 0.64

(2+1)D CNN
rural 0.68 0.80 0.74

mixed 0.62 0.44 0.52
urban 0.63 0.74 0.68

Table 5: Evaluation metrics for our classifiers. ∗ denotes that we
compute the mean value of the precision, recall, and F-Score for
the multi-label classifications.

Type Method Precision Recall F-score
Clip category: drone/non-drone SVM 0.67 0.67 0.68

2D CNN 0.90 0.78 0.84
(2+1)D CNN 0.86 0.87 0.86

Logo: yes/no SVM 0.52 0.55 0.53
2D CNN 0.73 0.75 0.74

(2+1)D CNN 0.79 0.87 0.83
Location: indoor/outdoor SVM 0.86 0.64 0.73

2D CNN 0.79 0.93 0.85
(2+1)D CNN 0.81 0.93 0.87

Places365-CNN 0.71 0.97 0.82
Time∗: day/night/between SVM 0.52 0.58 0.52

2D CNN 0.82 0.82 0.82
(2+1)D CNN 0.84 0.82 0.83

Scene type∗: urban/rural/mixed SVM 0.5 0.41 0.35
2D CNN 0.61 0.62 0.61

(2+1)D CNN 0.64 0.66 0.65
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