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1. Analysis on Motion Compensation Network

1.1. Implementation Detail of Motion Compensation Module

The motion compensation network estimates motion between the
features f̂ n

t and f̂ n
t−1, which are the modulated structure features

resulting from a motion layer. Inspired by the correlation layer of
FlowNet [DFI∗15], the network first constructs a matching cost
volume based on the cosine similarity between the features. Specif-
ically, given structure-injected features f̂ n

t and f̂ n
t−1, the cosine sim-

ilarity between the two features at x1 in f̂ n
t and x2 in f̂ n

t−1 is defined
as:

cn(x1,x2) = 〈 f̂ n
t (x1), f̂ n

t−1(x2)〉. (1)

For computational efficiency, we only compute a partial cost vol-
ume with a limited search window. Given a maximum displacement
D between two spatial locations x1 and x2, we compute a matching
cost volume Cn : Rw×h×(2D+1)2

, where (2D+ 1)2 represents the
number of correlations stacked along the channel dimension for
every spatial location. Specifically, Cn is defined as:

Cn = {cn(x,x+d)|x ∈ [1,w]× [1,h],d ∈ [−D,D]× [−D,D]}. (2)

Then, we apply argmax to Cn along the channel dimension to find
the best matches to convert them into 2D displacement map W n

as done in [JSZk15]. Finally, we warp f N
t−1 and obtain a motion-

compensated feature map f̃ N,n
t−1 = f N

t−1(x+W n).

The computational cost of computing Cn with D = 10 in our im-
plementation is equivalent to that of a single convolution layer with
21×21 kernels, while it does not include any learnable parameters.

1.2. Effect of Maximum Displacement D

The maximum displacement D determines the search window size
for our motion compensation network when feature matching is ap-
plied between temporal features (Sec. 1.1). Consequently, a larger
D leads the network to cover a large motion presented between
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Datasets
PSNR/SSIM of our 2-stacked model with different D
D = 5 10 20 30

DVD [SDW∗17] 30.22/0.921 30.33/0.923 30.33/0.923 30.32/0.922
GoPro [NKL17] 28.59/0.909 28.74/0.911 28.76/0.911 28.77/0.910
Total time (ms) 45 53 110 222
MC time (ms) 5 15 55 131

Table 1: Effect of maximum displacement D. We compare mod-
els1 trained with different D, and measure deblurring accuracy on
the DVD and GoPro datasets. MC time indicates the running time
taken by motion compensation networksM1 andM2.

2-stack 4-stack 10-stack

w/o
skipping

PSNR/SSIM 30.33/0.923 30.76/0.928 31.09/0.933
Total time (ms) 68 119 290
MC time (ms) 30 60 152

w/
skipping

PSNR/SSIM 30.33/0.923 30.73/0.929 31.07/0.933
Total time (ms) 54 84 171
MC time (ms) 15 16 19

Table 2: Effect of feature matching skipping. We measure deblur-
ring accuracy (PSNR/SSIM) on the DVD dataset [SDW∗17] for n-
stacked models† with and without feature matching skipping. MC
time indicates the running time of motion compensation networks.

frames, but it also increases the running time of the model. Ta-
ble 1 compares the performances with different values of D, where
both deblurring quality and computational time increases with D.
The results show that, for models with D > 10, improvements in
deblurring quality are marginal while increases in computational
time are significant. We choose D = 10 for our final models, which
show much better deblurring quality compared to the model with
D = 5, while the running time of motion compensation is still fast.

1.3. Faster Motion Compensation with Feature Matching
Skipping

Although the computational overhead of our motion compensation
network is small, it can be a burden if we stack a number of multi-
task units. We can effectively resolve this problem by skipping the

1 Note that the models are trained for 300K iterations.
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feature matching operation in some stacks (e.g., n > 1). Specifi-
cally, we may use the motion pre-computed in an early stack for
later stacks. As the feature matching operation occupies most com-
putations for motion estimation, we can save quite a large com-
putations by skipping the operation. Moreover, reusing the pre-
computed motion still effectively boosts the deblurring quality, as
our motion compensation network can produce moderate motion
estimation results from early stacks (Figs 6e and 6f in the main
paper).

Table 2 validates the effect of skipping feature matching on mod-
els stacked with different numbers of multi-task units. Models with-
out the skipping scheme perform correlation-based feature match-
ing for every stack, while models with the skipping scheme reuse
the motion computed by the feature matching operation in the first
stack for the rest of the stacks. As shown in the table, compared
to the models that re-compute a motion in every stack, the models
skipping feature matching operations show slightly lower deblur-
ring quality but record significantly reduced running time.

1.4. Deeper Analysis on Structure Injection

In our structure injection scheme, instead of using only the sim-
ple addition of detail and structural features, we further process
the features with the motion layer for a more effective fusion of
those features. A question may naturally follow whether the motion
layer is an essential component in the structure injection scheme.
To answer the question, we conduct an additional ablation study on
our final model with components comprising the structure injection
scheme, the addition operation between the detail-level and struc-
tural feature maps, and the motion layer that combines the feature
maps (Table 4). Note that, in the table, the model in the last row is
the same final model used in the ablation study (Sec. 4.2.2) of the
main paper.

In Table 4, using the motion layer without the addition opera-
tion of structural features (the second row of the table) does not
have any effect other than slightly increasing the model size. On the
other hand, the addition of detail and structural features (the third
row) brings a significant increase in the deblurring quality while
retaining the motion compensation quality. When the motion layer
is attached (the last row), the deblurring quality further increases,
thanks to the motion layer making the multi-task detail network
more effectively focus on learning detail features by fully injecting
the structural information into detail features.

2. More Results

Comparison on the REDS dataset In the main paper, we quan-
titatively compared our models with previous ones on the DVD
dataset [SDW∗17] and GoPro dataset [NKL17]. In this section, we
provide an additional comparison on the REDS dataset [NBH∗19].
Specifically, we compare our n-stacked models with previous video
deblurring methods EST [ZYZB20] and PVD [SLL∗21] trained
with the REDS dataset. For the previous models, as the authors do
not provide the model trained on the dataset, we trained the models
with the code provided by the authors to reproduce the same quan-
titative results reported by the authors. For our models, we trained
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Figure 1: Comparison on deblurring efficiency. Our models are
indicated in orange circles, each of which is stacked with a different
number of multi-task units.

each model using the training set provided in the dataset, with the
same training strategy described in Sec. 4.1 in the main paper.

Table 3 shows quantitative results. Note that ESTL denotes the
model with larger parameters compared to the EST model used
in the comparisons on the DVD dataset [SDW∗17] and GoPro
dataset [NKL17] (Tables 3 and 4 in the main paper, respectively).
As the table indicates, compared to ESTL, our 4-stacked model
shows better deblurring quality with a smaller model size and faster
computation time. Compared to PVD, our 4-stacked model re-
ports comparable deblurring quality even with much smaller model
size and faster running time. Our 10-stacked model and the larger
model (Ours10

L ) outperform PVDL by a large margin but still have
a smaller model size and faster inference time, validating the effec-
tiveness of our approach.

Fig. 1 visualizes Table 3. The diagram shows the similar ten-
dency to the cases trained with the DVD [SDW∗17] and Go-
Pro [NKL17] datasets (Figs. 1a and 1b of the main paper), where
each of our model variants shows a much faster running time com-
pared to previous methods with similar deblurring quality.

Application: Object Detection Thanks to the flexibility of our
architecture, our network can cover from environments where high
deblurring quality is desired to environments demanding for low-
computation power. For the latter case, our lightweight real-time
model can be leveraged to pre-process videos to improve higher-
level vision tasks such as object detection for autonomous driving,
where real-time processing is highly demanded.

Fig. 2 qualitatively shows the object detection results, for which
we used our 2- and 10-stack models to deblur video frames of the
GoPro dataset and applied object detection [RF18] to the deblurred
frames. Although the 10-stack model showed better deblurring re-
sults compared to the 2-stack model, the 2-stack model is enough
to improve the object detection quality, despite its real-time speed.

Additional Qualitative Results In the main paper, we qualita-
tively compared our models with previous methods on the DVD
dataset [SDW∗17], GoPro dataset [NKL17], and real-world blurred
videos [CWL12]. In this section, we provide qualitative results on
the REDS dataset [NBH∗19] (Figs. 3 and 4). We also addition-
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ESTL
•

[ZYZB20]
PVD•

[SLL∗21]
PVDL

•

[SLL∗21]
Oursn (n: # of stacks) Oursn

hp Oursn
L

n = 1 2 4• 10• 2 10•

PSNR 31.48 31.99 32.33 30.32 31.28 31.87 32.86 31.25 33.55
SSIM 0.922 0.927 0.932 0.901 0.917 0.926 0.940 0.916 0.948

Params (M) 2.47 10.51 23.36 0.54 1.04 2.04 5.03 1.04 13.80
Time (ms) 132 238 585 33 53 86 171 33 416

Table 3: Quantitative evaluation on the REDS dataset [NBH∗19]. The colored dots denote models showing similar deblurring qualities in
PSNR, where each of our models yields an upper bound PSNR at a much faster running time.

30.30 fps 5.62 fps

(a) Ib
t (b) Ours2

hp (c) Ours10 (d) IGT
t

Figure 2: Object detection results. Deblurred results of our (a) 2-stack and (b) 10-stack models improve the performance of the object
detection task. Our real-time 2-stack model shows a comparable detection quality to that of the 10-stack model and can be useful when
real-time processing is required (e.g., object detection for autonomous driving).

Structure injection Deblurring quality
Motion compensation

accuracy
addition motion layer PSNR SSIM PSNR SSIM

29.84 0.915 27.24 0.862
X 29.84 0.916 27.24 0.862

X 30.26 0.921 26.20 0.891
X X 30.30 0.923 27.25 0.864

Table 4: Additional ablation study on our model with structure in-
jection. Our structure injection consists of an addition operation
of detail/structure features, and motion layer. The model in the last
row is our final model, the same final model reported in the last row
of Table 2 in the main paper.

ally show qualitative results on the DVD dataset (Fig. 5), GoPro
dataset [NKL17] (Fig. 6), and real-world blurred videos (Fig. 7).

3. Detailed Network Architecture

Table 5 shows our network architecture in detail. Each multi-task
unit (MTU in the table) consists of three main components: multi-
task detail network Fn, deblurring network Dn, and motion com-
pensation networkMn, where n is the index of a multi-task unit.

The multi-task detail network Fn is a lightweight encoder-
decoder network based on the U-Net architecture [RFB15]. The
encoder is composed of a convolution layer followed by two down-
sampling convolution layers with stride two. The decoder has two
up-sampling deconvolution layers followed by a convolution layer.
The encoder and decoder are connected by skip-connections at
the same levels. Between the encoder and decoder, the network
has four residual blocks. The deblurring network Dn consists of
a single convolution layer dubbed as a deblur layer followed by
an element-wise summation operator connected with a long skip
connection carrying Ib

t for the residual detail learning. The motion
compensation network Mn consists of a single convolution layer

dubbed as a motion layer followed by a motion compensation mod-
ule having no learnable parameters.
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Figure 3: Qualitative comparison on the REDS dataset [NBH∗19]. Cropped images visualize regions in the green box of two consecutive
frames.
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Figure 4: Additional qualitative comparison on the REDS dataset [NBH∗19].
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(g) CVD [PBT20] (h) PVD [SLL∗21] (i) Ours2
hp (j) Ours10 (k) Ours10

L (l) GT

Figure 5: Additional qualitative comparison on the DVD dataset [SDW∗17].
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Figure 6: Additional qualitative comparison on the GoPro dataset [NKL17].
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Figure 7: Additional qualitative comparison on real-world blurred videos [CWL12].
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Overall network architecture
input type act output k c s p #

Ib
t conv relu f b

t 3 26 1 1 1
[Ib

t−2 · I
b
t−1 · I

b
t+1 · I

b
t+2 · I

r
t−1] conv relu ft−1 3 26 1 1 1

[ f b
t · ft−1] if n = 1 else [ f n−1

t · f̃ N,n−1
t−1 ] MTUn - [ f n

t · f̃ N,n
t−1] - 52 - - N-

1
[ f b

t · ft−1] if n = 1 else [ f n−1
t · f̃ N,n−1

t−1 ] MTUN - Ir
n - 3 - - 1

Multi-tasking unit MTUn

input type act output k c s p #

[ f b
t · ft−1] if n = 1 else [ f n−1

t · f̃ N,n−1
t−1 ] Fn - f n

t - - - - 1
f n
t , f b

t , f N
t−1 Mn - [ f n

t · f̃ N,n
t−1] - - - - 1

[ f n
t · f̃ N,n

t−1] Dn - Ir,n
t - - - - 1

Multi-task detail network Fn

input type act output k c s p #

[ f b
t · ft−1] if n = 1 else [ f n−1

t · f̃ N,n−1
t−1 ] conv relu conv1 5 26 1 1 1

conv1 conv relu conv2 3 26 2 1 1
conv2 conv relu res0 3 26 2 1 1
res0 identity - skip - - - - -
res0 conv relu res1−1 3 52 1 1

8res1−1 conv relu res1−2 3 52 1 1
res1−2, res0 sum - res0 - - - -

res0, skip sum - res - - - - 1
res deconv relu deconv1 4 26 2 1 1

deconv1, conv2 sum - deconv1 - - - - 1
deconv1 deconv relu deconv2 4 26 2 1 1

deconv2, conv1 sum - f n
t - - - - 1

Motion compensation networkMn

input type act output k c s p #

f n
t , f b

t sum - sum0 - - - -
sum0 conv relu f̂ n

t 5 52 4 1 1
f̂ n
t , f̂ n

t−1, f N
t−1 MC - [ f n

t · f̃ N,n
t−1] - - - -

Deblurring network Dn

input type act output k c s p #

[ f n
t · f̃ N,n

t ] conv - Ires,n
t 3 3 1 1 1

Ires,n
t , Ib

t sum - Ir,n
t - - - - 1

Table 5: Detailed network architectures. MTUn stands for the n-th multi-task unit in the N-stacked MTUs, and MC means the motion
compensation module. In the columns, input, type, act, output, k, c, s, p and # denote the input, type, activation function, output,
kernel size, out-channels, stride, padding, and repeating number of a layer, respectively. For the layer types, we have conv, deconv, identity,
and sum, which denote convolution, deconvolution, identity, and element-wise summation layers, respectively. [·] indicates the concatenation
operation in the channel direction.
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