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Abstract
We propose a novel unsupervised learning approach for computing correspondences between non-rigid 3D shapes. The core
idea is that we integrate a novel structural constraint into the deep functional map pipeline, a recently dominant learning
framework for shape correspondence, via a powerful spectral manifold wavelet transform (SMWT). As SMWT is isometrically
invariant operator and can analyze features from multiple frequency bands, we use the multiscale SMWT results of the learned
features as function preservation constraints to optimize the functional map by assuming each frequency-band information
of the descriptors should be correspondingly preserved by the functional map. Such a strategy allows extracting significantly
more deep feature information than existing approaches which only use the learned descriptors to estimate the functional map.
And our formula strongly ensure the isometric properties of the underlying map. We also prove that our computation of the
functional map amounts to filtering processes only referring to matrix multiplication. Then, we leverage the alignment errors
of intrinsic embedding between shapes as a loss function and solve it in an unsupervised way using the Sinkhorn algorithm.
Finally, we utilize DiffusionNet as a feature extractor to ensure that discretization-resistant and directional shape features are
produced. Experiments on multiple challenging datasets prove that our method can achieve state-of-the-art correspondence
quality. Furthermore, our method yields significant improvements in robustness to shape discretization and generalization
across the different datasets. The source code and trained models will be available at https://github.com/HJ-Xu/
WTFM-Layer.

CCS Concepts
• Computing methodologies → Shape analysis; Matching;

1. Introduction

Shape correspondence is the core of many applications in computer
vision and graphics (augmented/virtual reality). Many different so-
lutions for this problem have been proposed over the years. Clas-
sical methods mostly rely on handcrafted characteristics and con-
centrate on using the geometric information of the input surfaces to
build the correspondence [STDS14,SOG09,ASC11]. However, for
some complex tasks, finding handcrafted geometric features with
high quality is not easy, as they require more professional knowl-
edge.

With the great successes of machine learning, it is a trend to ap-
ply data-driven neural networks to obtain more generalized features
for shape correspondence. The most impactive learning approaches
proposed in recent years are deep functional maps, pioneered by
FMNet [LRR∗17] and with plenty of follow-ups works [DSO20,

† Corresponding author: qinsli.cg@foxmail.com (Q.Li).

RSO19, HLR∗19, ALC20, ETLTC20, SO20, DCO22]. These works
combine the learnable local feature extractors with the axiomatic
functional map framework [OBCS∗12], which is an important
breakthrough in learning correspondence. More recently, new ap-
proaches have focused on unsupervised learning because high-
quality labeled data is difficult to obtain. The representative of such
approaches include weakly supervised [SO20] and unsupervised
works [RSO19, HLR∗19, ALC20, ETLTC20, DCO22].

Although unsupervised deep functional maps discussed above
have achieved remarkable successes, they still have shortcomings
when dealing with isometrically deformed shapes. The estimation
of the functional maps mainly relies on the descriptor preservation
constraints (e.g. [HLR∗19, ALC20, RSO19, ETLTC20]), the lack
of regularization makes the solutions of the functional map very
sensitive to inconsistencies in the computed descriptors, and in-
sufficiently encode the structural properties of the functional map,
which leads to an overall loss of robustness and accuracy.
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(a) Source (b) Without our WTFM (c) Ours

Figure 1: Our approach extracts richer shape features via the spec-
tral manifold wavelet transform, which strongly enforces the iso-
metric constraint in the deep functional map framework. This leads
to practical improvements on point-wise maps and functional maps
compared with the previous commonly used module, which only
considers descriptor preservation. We show the point-wise map by
texture transferring. All the experiment settings for (b) and (c) are
the same, except the computing functional map layer.

Contribution: We build a novel map extraction layer, called
the wavelet transform functional map (WTFM) layer, based on the
spectral manifold wavelet transform (SMWT). Rather than previ-
ous methods only using the learned descriptors as function preser-
vation constraints for the functional map, our WTFM layer de-
mands multiscale SMWT results of the learned descriptor should
be correspondingly preserved by the functional map. As SMWT
is isometrically invariant and able to analyze features from mul-
tiple frequency bands, this strategy allows the exploit of more
underlying information of the descriptors to strongly guarantee
the isometrics of the underlying pointwise mapping, and signifi-
cantly improved network generalization performance (see Sec.5.2).
Note that since no additional terms are used to regulate the over-
all structural properties of the map and the WTFM layer is com-
putationally concise, this leads to no additional time loss from it
(see Sec.5.2). Further, we embedded WTFM layers in previous
work [LRR∗17, HLR∗19], which can significantly improve their
performance (see Sec.5.4). Second, we propose a novel and effi-
cient unsupervised deep functional map framework that is based
on the WTFM layer. our pipeline only needs to use a simple un-
supervised loss function. Third, [LQSX21] is a state-of-the-art ax-
iomatic method based on functional map framework using spec-
tral manifold wavelet functions. We observe [LQSX21] is a special
case of our method in theory when the input features are aligned
indicator functions of a pair of shapes. Finally, a variety of exper-
iments demonstrate that we can obtain state-of-the-art results on
multiple datasets in terms of correspondence quality and general-
ization across different datasets.

2. Related Work

The problem of shape correspondence have been studied exten-
sively in recent years. In the following of this section, we review the
approaches most related to our work, focusing on learning-based,
and especially unsupervised techniques. A detailed introduction is
referred to a recent survey [Sah20].

2.1. Axiomatic functional maps

The functional map was first proposed in [OBCS∗12]. This frame-
work determines a functional map operator that maps between the
spaces of square-integrable functions on the respective shapes, then
a high-quality pointwise correspondence can be recovered from
mapping special functions. The most attractive property of the
functional map is that, finding correspondence boils down to the
determination of a small functional map matrix, which encodes
relations between basis functions defined on the shapes. There-
fore, many studies try to formulate powerful constraints such as
preservation of geometric quantities (e.g., descriptors) combined
with commutativity to optimize the structural properties of the
functional maps [OBCS∗12]. Later, follow-up research have been
extended to partial shapes [RCB∗17, LRB∗16], refined pointwise
maps [RMC17], direction-preserving maps [RPWO18], and itera-
tively spectral upsampling maps [MRR∗19], as well as maps com-
bined with the matrix scaling schemes from computational optimal
transport [PRM∗21] and with extrinsic shape alignment [ELC20].
Despite great successes achieved by these axiomatic methods, their
performances still heavily depend on the quality of the inputting
handcrafted descriptor and most of them make restrictive assump-
tions about the discretization, topology, or deformation of the con-
sidered shapes.

2.2. Learning correspondence

The difficulties of the axiomatic methods mentioned above perhaps
could be solved by deep learning technology, motivated by its great
successes in the field of image analysis and many others. Therefore,
lots of efforts have been paid to combing deep learning technology
with axiomatic functional maps. They roughly fall into two cate-
gories, supervised and unsupervised learning.

2.2.1. Supervised learning

The combination of learnable feature extractor with traditional
functional maps method was pioneered by [LRR∗17]. Their ar-
chitecture used seven residual multi-layer perceptron (MLP) layers
to optimize the nonlinear transformation of the SHOT descriptor
[STDS14] to obtain a map as close as possible to the given ground-
truth. [DSO20] extracted shape features directly from vertex coor-
dinates of shapes through the network and added regular term con-
straints to the functional maps to obtain more effective correspond-
ing. We also note that there also exist other supervised learning
methods that learn correspondences without functional map repre-
sentation. [GFK∗18] proposed a scheme of generating models to
calculate the correspondence of specific types of shapes. The main
idea is to learn how to deform a template of a specific class of ob-
jects, such as a template of a person. However, such methods tend
to require a large amount of training data and may not be robust to
join relationships.

There are other researches to design local convolutional op-
erators to extract shape features and build convolutional neural
networks to compute shape correspondence [MBBV15, BMRB16,
MBM∗17, FELWM18, LLHL20, WRY∗20, GWC∗20, LLC∗22].
They cast the shape correspondence into a classification problem
and train the network using a cross-entropy loss function. But
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cross-entropy loss can not capture shape geometry compared with
deep functional maps. And some methods, such as [FELWM18,
LLHL20] significantly overfit to a particular resolution or even a
particular triangulation.

In addition, these methods discussed above are supervised neural
networks, which require high-quality labeled data. In fact, acquir-
ing these labeled data is often quite challenging. Therefore, it is a
natural way to explore unsupervised learning approaches which use
little labels or no labels at all during the training stage.

2.2.2. Weakly\Unsupervised learning

Unsupervised learning seems to be more practical because of its
training without using data labels. Existing unsupervised meth-
ods [RSO19, HLR∗19, ALC20] all followed the pipeline proposed
in [LRR∗17], while proposing different unsupervised loss func-
tions. [HLR∗19] and [ALC20] used unsupervised loss functions
based on geodesic distance and heat kernels respectively. Unfortu-
nately, the geodesic distance matrix has costly storage and low cal-
culation efficiency. [RSO19] used what they called a spectral unsu-
pervised loss function which aggregated several structural penalties
on the functional map. However, these constraints are still insuffi-
cient to encode the properties of the maps, which leads to over-
all drops in robustness and performance. Utilizing the loss func-
tion of [RSO19], [SO20] designed a weakly supervised learning
framework that used manually aligned vertex coordinates instead
of SHOT descriptor [STDS14] as the input of the network, ob-
tained by PointNet++ [QYSG17]. More recently, [ETLTC20] pro-
posed to replace the functional maps layer with a multi-scale cor-
respondence refinement layer based on optimal transport at the
cost of efficiency. [APO21] presented an approach for addressing
partial-to-partial non-rigid shape matching, using the Diffusion-
Net [SACO22] as the feature extraction module. [DCO22] used
complex functional maps [DCMO22] with functional maps to con-
struct an unsupervised network framework that can make their ap-
proach orientation-aware.

However, despite great efforts, networks’ robustness to shape
discretization and generalization to cross datasets is still a problem
that needs to be solved. [DCMO22] tries to do this, but the method
requires that the input mesh is manifold.

2.3. Multiscale spectral manifold wavelets preservation

Recently, a state-of-the-art axiomatic approach [LQSX21] has in-
troduced spectral manifold wavelet into shape correspondence
tasks. Spectral manifold wavelets inherit most of the powerful
properties of the classical wavelets, such as space-frequency lo-
cality, multiscale characteristics, etc, and can be computed effi-
ciently. [LQSX21] aims to directly align the multiscale spectral
manifold wavelets (SMW) on the shape pair and achieve signif-
icant improvements in terms of accuracy and computational effi-
ciency on the shape correspondence task. But this approach still
heavily relies on axiomatic descriptors, and an iterative approach is
needed to further refine the results in its pipeline. Therefore, it is
unclear how to incorporate SMW into a learning framework while
maintaining accuracy and efficiency.

3. Foundation

We intend to build an accurate and efficient unsupervised learning
approach for shape correspondence, which integrates the powerful
tool SMWT into the pipeline of the deep functional map frame-
work. To make the paper self-contained, in this section, we briefly
review the general framework of the learning-based functional
maps and the basic knowledge of the SMWT and the wavelets.

3.1. Deep functional maps

We first review the basic pipeline of the deep functional map. Given
the source and target shapes M and N with n1 and n2 vertices
respectively, then

1. Compute the discrete LBOs [MDSB03] of the shapes M and N
and their eigendecomposition. Formulate their first k eigenvec-
tors as the matrices ΦM and ΦN respectively.

2. Given a pair of shape features FM ∈ Rn1×p and GN ∈ Rn2×p

as input, existing frameworks typically train a Siamese net-
works F that share parameters to get descriptors, where
F(FM) : Rn1×p −→ Rn1×q, F(GN ) : Rn2×p −→ Rn2×q.
Then the learned descriptors are further projected onto the
bases ΦM and ΦN . Store their coefficients as the columns of
the matrices F̂ and Ĝ. The optimal functional map C ∈ Rk×k is
computed as:

min
C

∥∥∥CF̂− Ĝ
∥∥∥+αEreg(C), (1)

The first part of Eq. (1) is for the preservation of descriptor func-
tions, and the second part acts as a regularizer that adds geo-
metric constraints to it. Then, the pointwise maps matrix P is
restored by the obtained C.

3. Finally, the parameters of network F are optimized by minimiz-
ing the training loss.

The above process is the general process of learning-based meth-
ods. Because the solution process is usually non-differentiable after
adding the regular term, existing work [HLR∗19, RSO19] gener-
ally uses only the first part of Eq. (1). [DSO20] tries to integrate
the second part of Eq. (1) and construct a differentiable method to
optimize it, but this brings additional computational complexity.

3.2. Multiscale spectral manifold wavelets (SMW)

SMW was first introduced in [HVG11], which is a successful exten-
sion of wavelet theory from regular (Euclidean) to irregular (graph
or manifold) spaces. SMW can effectively characterize the multi-
scale neighborhood topology of the points and equip them with var-
ious excellent geometric properties [HVG11, LVDV13, LHL∗21].
And SMW exhibits good localization properties both in the spatial
and spectral domain and inherits LBO’s isometric invariant proper-
ties. Please refer to [HVG11] for details.

Given a spectral filter g(·), a smooth and compactly supported
real-valued function, the SMW at point y with scale s is defined as:

ψs,y(x) = ∑
i≥1

g(sλi)φi (y)φi (x) . (2)

Here, s is a hyperparameter, {λi}i≥1 and {φi}i≥1 are the eigen-
values and the eigenvectors of the LBOs. The SMW with smaller
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Figure 2: Overview of our network. Given two shapes on M and N , the descriptors F and G are obtained by the feature extraction module,
and then an optimal functional maps C is obtained using our WTFM block and converted into a pointwise matrix P. Finally, we use an
unsupervised loss function to train the network.

scale s can capture the local geometric features around their lo-
cated points, while a larger parameter s allows the SMW to spread
farther on the shape that encode overall information of a neighbor-
hood with a larger radius. More importantly, as constructed based
on the eigenvalues and eigenfunctions of the LBOs (see Eq.(2)) ,
the SMW naturally inherits the property of isometric deformation
invariance. Such property plays an important role in the field of
non-rigid shape analysis. For example, [LQSX21] utilizes the iso-
metric invariant property of SMW and uses the aligned multiscale
SMW as functional conservation constraints on the functional map
framework to recover an isometric map.

3.3. Multiscale spectral manifold wavelets transform (SMWT)

Given a function f defined on M, its SMWT is defined by the inner
product of f and the corresponding SMW, i.e.,

W f (s,y)=⟨ f ,ψs,y⟩M= ∑
i≥1

g(sλi) f̂ (i)φi(y), (3)

where f̂ (i) = ⟨ f ,φi⟩M. According to spectral analysis, parameter
s controls the frequency bands passed.

Due to the isometric invariance of SMW, we claim the SMWT
results W f (s,y) of a given function f is isometric invariant if f is
isometric invariant. In essence, the multiscale SMWT of function f
is to extract different frequency-bands information of function f .

We have totally different policies for wavelet usage compared
with [LQSX21]. We apply the spectral manifold wavelet trans-
form (SMWT) to the learned descriptors and use the SMWT re-
sults to regularize the structural properties of the functional map.
The SMWT is a powerful tool that can analyze signals defined on
shapes from multi frequency bands and allows to capture of more
deep signal features, which obtain satisfactory results without com-
plex regularization.

4. Methodology

In this section, we describe our approach in detail. Specifically, like
Fig. 2, our approach consists of three main components. The first

component is the feature extraction module in Sec.4.1. The sec-
ond component, we call it as WTFM layer in Sec.4.2, and the final
component is the loss function for unsupervised learning in Sec.4.3.
Next, we describe the design of each component in the follwing.

4.1. Feature extractor

As mentioned above and shown in Fig. 2, our first module is the
feature extraction module. Its structure is a shared weight Siamese
network used to extract the features of source and target shapes. We
hope that the features extracted by this module can be insensitive
to deformation and robust to shape discretization.

Based on the above requirements, we use DiffusionNet
[SACO22] as the feature extraction module rather than relying on
the SHOT descriptor as before [ETLTC20]. Based on its oriented
gradient blocks, DiffusionNet can adaptively extract features from
shapes with different deformations or different resolutions. The ef-
fectiveness of this module for learning shape correspondence has
been verified in DUO-FMNet [DCMO22], but not sufficient(see
Sec. 5.2).

To further improve performance, we introduce SMWT into the
deep functional framework and construct a differentiable pipeline
to improve shape correspondence performance in terms of corre-
spondence quality and generalizatoin across different datasets.

4.2. The wavelet transform functional map (WTFM) layer

Most of existing works estimate the functional maps by solving
an optimization problem min

C

∥∥∥CF̂− Ĝ
∥∥∥, added with certain regu-

lar terms or structural penalties in loss function. However, recent
constraints on the structure of C still seem to be over completed,
such as multi conditions including orthogonality and commutativ-
ity, etc., or perhaps fail to guarantee the isometric invariance of the
underlying maps.

For this problem, we try to add constraints to descriptors to op-
timize the functional map matrix C. Inspired by the powerful abil-
ities of the SMWT that can extract more deep signal information
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via filtering and their isometric invariance property, we intend to
demand that the multiscale SMWT results of the input descriptor
functions should be correspondingly preserved by the functional
maps, rather than only using the learned descriptors as preservation
constraints in previous methods. Note that, significantly different
to [LQSX21] which directly aligns the multi-scale wavelet func-
tions on the two shapes, our process is filtering to the learned fea-
ture descriptors (as mentioned in Sec.3.2) by SMWT and using the
results to estimate the functional map.

Given the learned feature matrices F and G of shapes M and N
respectively. Each colunm of F and G are corresponding functions
between shapes M and N . We first perform SMWT to learned fea-
tures. According to Eq.(3), the SMWT results of learned features
can be represented as following matrices,

WM,s = ΦMg(sΛM)Φ†
MF,∀s,

WN ,s = ΦN g(sΛN )Φ†
N G,∀s.

Here, the matrices ΛM=diag
(

λ
M
1 ,λM

2 , ...,λM
k

)
and

ΛN=diag
(

λ
N
1 ,λN

2 , ...,λN
k

)
contain the first k eigenvalues

of the LBOs of M and N respectively, and every column of the
matrices ΦM and ΦN represent the corresponding eigenvectors of
the LBOs. † denotes the Moore-Penrose pseudo-inverse and satisfy
Φ
†
Φ = I, where I is identity matrix. As discussed in Sec.3.2, the

isometric properties of the LBOs can be perfectly inherited by
the SMW. Thus, the matrix WM,s which can be treated as the
filtering results of the original features, will be preserved well
on the shape N by an isometric functional map. Inspired by this
conclusion, we intend to use WM,s and WN ,s as the new features
for the subsequent operations, which will effectively guarantee the
isometric invariance of the maps. To this end, we first get their
coefficients matrices under the bases ΦM and ΦN by following
projection

ŴM,s = Φ
†
MWM,s = g(sΛM)Φ†

MF,∀s,

ŴN ,s = Φ
†
N WN ,s = g(sΛN )Φ†

N G,∀s. (4)

Next, we hope to find a functional map C that satisfies the fol-
lowing optimization problem

min
C ∑

s

∥∥CŴM,s−ŴN ,s
∥∥. (5)

Note that, we use multi-discrete values of the scale parameter
s ∈ S = {s1,s2, ...} in our objective function. This means each
frequency-band information of the inputs is required to be pre-
served by the functional map, which allows to sufficiently guar-
antee the isometric deformation invariance of the map.

Then, we discuss the solution of Eq.(5). Substituting Eq.(4) into
Eq.(5) and letting F̂ =Φ

†
MF and Ĝ =Φ

†
N G, the objective function

in Eq.(5) can be represented as

min
C ∑

si

∥∥∥Cg(siΛM) F̂−g(siΛN )Ĝ
∥∥∥. (6)

Eq.(6) is still linear and actually has a analytical solution, if we
let

Cg(siΛM) F̂ = g(siΛN )Ĝ,∀si ∈ S. (7)

However, solving the system of linear equations of Eq.(7) di-
rectly is unstable and costly, we intend to find a more efficient com-
puting strategy.

To this end, we multiply both sides of Eq.(7) with F̂T and(
F̂F̂T

)−1
, then Eq.(7) becomes

Cg(siΛM) = g(siΛN )ĜF̂T
(

F̂F̂T
)−1

,∀si ∈ S

Finally, we multiply both sides of above equation by g(siΛM)
again, and we get

Cg(siΛM)2 = g(siΛN )ĜF̂T
(

F̂F̂T
)−1

g(siΛM),∀si ∈ S

Note that, the above derivation just refers to one single scale. In
order to get enough structural information of the map, we aggregate
the features of all scales, by performing the same operation for all
scales and summing up the results. Particularly, when using a set
of filters satisfy Parseval tight frame [LVDV13], i.e., g(·) satisfy
∑si

g(siΛM)2 = I, we will get

C = ∑
si

g(siΛN )ĜF̂T
(

F̂F̂T
)−1

g(siΛM). (8)

Eq.(8) can be implemented in Pytorch. It allows us to estimate
the isometric functional maps robustly with differentiability. We
call this whole process WTFM Layer.

Our work is closely related to the approach of [LQSX21], a
current state-of-the-art axiomatic correspondence method resorting
to the SMW instead of SMWT in our WTFM Layer. These two
works are built upon the spectral graph(manifold) theory first in-
troduced in [HVG11]. From Sec.3.2 and Sec.3.3, we know SMW
and SMWT are different concepts. And we observe [LQSX21] is a
special case of our method, when learned features F and G in Eq.(6)
are aligned indicator functions. The derivations are as follows.

Unlike our use of imposing SMWT on features, [LQSX21] aims
to directly align the multiscale SMW on the shape pair. Their strat-
egy can be expressed as the following optimization problem:

min
C ∑

si

∥∥∥Cg(siΛM)ΦM
†−g(siΛN )Φ

†
N PT

∥∥∥ , (9)

where P is a giving permutation matrix to encode the point-wise
correspondence from shape M to N . The solution to the above
equation is:

C = ∑
si

g(siΛN )Φ†
N PT

ΦMg(siΛM).

We consider the special case of our objective function in Eq.(6).
Supposing the learned features F of shape M are indicator func-
tions. For each column of F, the function value is 1 in the column
index, otherwise 0. So in this special case, the learned features F
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can be represented as an identity matrix I. Then giving the point-
wise correspondence matrix P, the learned features G in shape N
satisfy G = IPT as correspondence functions. Then we project the
learned features onto the bases ΦM and ΦN and computed the
coefficients F̂ = Φ

†
MF = Φ

†
M and Ĝ = Φ

†
N G = Φ

†
N PT. If we

substitute the coefficients into our objective functions in Eq.(6), the
result formula is equivalent to Eq.(9).

4.3. Loss function

The final module of the deep functional map framework is to de-
sign the loss function for training the neural network. One strat-
egy of designing loss functions is to directly penalize the func-
tion map C. Like GeomFMNet [DSO20] compared the optimized
functional map C with groundtruth Cgt in a supervised manner,
SURFMNet [RSO19] designed an unsupervised loss that enforced
the desired structural properties on the optimized functional map
C, such as its bijectivity, orthonormality, etc. Another strategy is
converting C to a soft correspondence matrix P ∈ Rn1×n2 , where
P =

∣∣∣ΦMCΦ
†
N

∣∣∣
∥·∥

, then penalizing the distortion based on it. FM-

Net [LRR∗17] computed a probability-weighted geodesic distance
from the groundtruth, while UnsupFMNet [HLR∗19] designed an
unsupervised loss via geodesic distance distortion of predicted P.

For simplicity, we leverage the alignment errors of intrinsic em-
bedding between shapes as a loss function,

loss = min
P

∥∥∥ΦMCT −PΦN

∥∥∥2

F
. (10)

The objective function in Eq.(10) is often used to convert a func-
tional map to a point-wise map and solve it efficiently with the near-
est neighbor search algorithm. However, it is not differentiable and
thus prohibitive in the training stage of neural networks. Therefore,
we reformulate Eq.(10) as an entropy regularized optimal trans-
port [Cut13], which can be solved by the Sinkhorn algorithm in an
unsupervised way [ETLTC20]. The Sinkhorn algorithm is differen-
tial, so the network can be trained without any labeled data.

5. Experiments and Results

Implementation details. Our method is implemented with Pytorch
v1.11 and Python 3.8. Offline training is run on an i7-6800K CPU
+ NVIDIA GeForce GTX 1080Ti GPU.

In our experiments, the same as [DCMO22], we use 120-
dimension WKS [ASC11] descriptors as inputs, and the Adam
[KB15] optimizer with an initial learning rate of 0.001 for all train-
ing. For each shape, the first 50 eigenvalues and eigenfunctions
of the LBOs are precomputed. See the 5.2 for more discussion
about the parameter settings. We choose the Meyer wavelet sat-
isfying Parseval tigh frame with adaptive bandwidth [LVDV13] as
our filters, and the number of the discrete scale parameter s is set
to 5. Correspondence quality is evaluated by the mean geodesic er-
ror [KLF11].

Datasets. We tested on several datasets to fully validate
the effectiveness of our approach: the remeshed versions of
FAUST(F_r) and SCAPE(S_r) [DSO20], the remeshed versions of
TOSCA(T_r), the anisotropic remeshed versions of FAUST(F_a)
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Figure 3: Comparison of convergence speed without and with
WTFM in the computing functional map block. The training loss
evolution shows that our WTFM layer helps drastically with the
convergence speed and is more stable during training stage.

(a) F_r (b) F_a

Figure 4: Demonstration of shapes from remeshed FAUST (F_r)
and anisotropic remeshed FAUST (F_a), respectively. The vertices
of the shape from F_r are evenly distributed over the surface. But
the shape from F_a has a denser number of vertices on the left than
on the right.

and SCAPE(S_a) [DCMO22], as-well-as non-isometric datasets
SMAL [DCMO22]. Existing methods can deal with F_r and S_r
datasets, and fitting experiments on these two datasets are not
enough to test the performance of the method. Therefore, we only
test the generalization on F_r and S_r. F_a and S_a are anisotropic
remeshed datasets in which the shapes have completely different
numbers of vertices and connections on the left and right sides. The
tests on anisotropic remeshed datasets can verify the robustness of
the approach to mesh discretization.
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Train on-Test on

Method F_r-F_a S_r-S_a F_r-S_a S_r-F_a F_r-S_r S_r-F_r

BCICP [RPWO18] 8.5 14.0 - - - -
ZoomOut [MRR∗19] 8.7 15.0 - - - -
MWP [LQSX21] 6.8 6.5 - - - -

FMNet [LRR∗17] 32.0 18.0 35.0 39.0 21.0 27.0
GeomFMNet(WKS) [DSO20] 2.6 2.3 3.8 8.4 3.8 9.9

UnsupFMNet [HLR∗19] 28.0 29.0 33.0 36.0 22.0 29.0
DeepShells [ETLTC20] 12.0 10.0 5.7 15.0 5.7 2.7
DUO-FMNet [DCO22] 3.0 2.7 4.2 3.1 4.2 2.7
Ours 2.5 2.5 2.7 2.8 2.7 2.2

Table 1: Results on remeshed FAUST and SCAPE. The matching error is evalutated by mean geodesic errors (×102). F-S means that the
network parameters are trained on the FAUST while tested on the SCAPE, and vice versa.

5.1. Results

5.1.1. Evaluation on human dataset

Benchmark test. We tested different versions of the FAUST and
SCAPE datasets. As mentioned above, the scheme of training and
testing in remeshed FAUST datasets or remeshed SCAPE datasets
at the same time has been unable to effectively distinguish the
performance of the method. Therefor, We set up training on the
remeshed version of the dataset and testing on the anisotropic ver-
sion of the dataset, i.e., F_r to F_a and S_r to S_a.

We compare our method to several state-of-the-art methods,
where the first, second and third category respectively includes var-
ious axiomatic methods, supervised and unsupervised deep func-
tional maps. From the results reported in Table 1, For discrete struc-
turally inconsistent datasets F_a and S_a, [ETLTC20, HLR∗19]
cannot obtain satisfactory results due to the limitation of the in-
put descriptor SHOT. Our proposed WTFM layer can encode the
isometric deformation invariant properties of the underlying map
and effectively characterize the shape geometric information, even
though our approach has the same feature extraction modules and
inputs as DUO-FMNet, our approach can still achieve better corre-
spondence results than DUO-FMNet.

Cross-dataset generalization. The performance of generaliza-
tion across datasets has been the focus of attention, and here, we
set up four sets of experiments to evaluate the performance of our
method in generalization across datasets, i.e., training on F_r and
testing on S_r and S_a, and vice versa. As shown in Table 1, similar
to our approach, both GeomFMNet(WKS) and DUO-FMNet use
WKS as input and DiffusionNet as a feature extractor, our approach
can extract robust features, even for previously invisible poses and
different mesh discretizations, Our approach is able to achieve bet-
ter generalization than existing methods.

5.1.2. Evaluation on TOSCA dataset

The remeshed TOSCA dataset constitutes shapes from 8 categories
(cats, dogs, wolves, horses, centaurs, gorillas, male and female hu-
mans). It is a challenging dataset As shown in Table 2, we obtain
the best results that comparing both unsupervised learning-based

Method / Dataset TOSCA_r

BCICP [RPWO18] 6.1
ZoomOut [MRR∗19] 6.6
MWP [LQSX21] 3.0

Unsup-FMNet [HLR∗19] 26.0
Deepshell [ETLTC20] 8.1
DUO-FMNet [DCO22] 19.0
Ours 2.4

Table 2: Shape matching on remeshed TOSCA [BBK08] dataset
from [RPWO18]. Numbers in the table are the mean geodesic er-
rors (×102).

and axiom-based methods. In particular, DUO-FMNet requires that
the input mesh must be manifold without borders. Direct training
on the TOSCA dataset using the publicly official code will fail
(loss=nan), we set n_cfmap = 0 as authors’ suggestion.

Method / Dataset SMAL_r

BCICP [RPWO18] 19.0
ZoomOut [MRR∗19] 35.0
SmoothShells [ELC20] 28.0
MWP [LQSX21] 18.0

Unsup-FMNet [HLR∗19] 35.0
DeepShells [ETLTC20] 25.0
DUO-FMNet [DCO22] 4.8
Ours 4.6

Table 3: Non-isometric shape matching on remeshed SMAL
[ZKJB17] dataset from [DCO22]. Numbers in the table are the
mean geodesic errors (×102).

5.1.3. Non-isometric shape matching

To further test the performance of our method, we test on the
remeshed version of SMAL [ZKJB17] dataset from [DCO22].
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Figure 5: Demonstration of shape correspondence on the remeshed
SMAL dataset. The left-most column is the source shape in the front
and back views, respectively. Others are the correspondence results
of our methods visualized by color transferring.

This dataset is quite challenging because it contains animal shapes
from different species, most of which are non-isometric deforma-
tions. This dataset contains 49 shapes. According to the split of
[DCMO22], we divided the data set into 32 training models and
17 test models. This dataset is mostly a non-isometric deformation
shapes, therefore, this test sets the scale number s = 1.

The results are shown in Table 3 and Figure 5, where our method
achieves the best correspondence results even for different class of
shapes. This provides the possibility to further explore our method
for non-isometric matching.

Train on-Test on

Method F_r-F_a S_r-S_a F_r-S_a S_r-F_a

None 8.8 16.0 19.0 20.0
WTFM 2.5 2.5 2.7 2.8

Table 4: Ablation experiments for evaluating the effectiveness of
WTFM layer. Where None means using WKS+DiffusionNet and
WTFM means using WKS+DiffusionNet+WTFM. Numbers in the
table are the mean geodesic errors (×102).

5.2. Ablation Experiments

WTFM. In this section, the same parameters are used for all tests.
In order to more fully verify the effectiveness of WTFM, we con-
ducted comparative experiments on anisotropic data sets. As can
be seen from Table 4, using only DiffusionNet in an unsupervised
framework is not able to handle anisotropic datasets effectively, and
adding the WTFM layer can significantly improve the performance.
In addition, Fig. 3 shows the effect of adding WTFM or not on
the convergence speed by visualization. Our method has converged
when the number of iterations reaches 1000, i.e., the network passes
1000 pairs of shapes. The method without adding the WTFM layer
does not approach convergence until 2500 iterations.

In addition, we evaluated the impact of WTFM layer on the com-
putational efficiency, as shown in Table 5, since the operations in
the WTFM layer are small matrix multiplications, there is almost
no additional time consumption when using it.

Method Times( minutes)

None 6.30
WTFM 6.31

Table 5: Time(minutes) consumed to run an epoch under the same
conditions.

5.3. Parameter Analysis

The number of wavelet scales. This will discuss the setting of the
number of the scale parameters s. In subsequent discussions, N f
is used to represent the number of the scale parameters for conve-
nience. In Fig. 6, we show the corresponding performances with
setting N f from 1 to 8. Here we can see that with the increase
of N f , the corresponding accuracy is also improved, but this im-
provement has a supremum. When N f achieves 5, if it continues to
increase, the corresponding accuracy will oscillate within a certain
range. This is a reasonable situation. Our method is equivalent to
decomposing the signal to different frequency bands for filtering
and combining the results in all the filtered frequency bands. When
there are too many frequency bands, information redundancy will
be generated. Thus we set the number of the scale parameters N to
5. It is worth noting that when N = 1, our method will degenerate
to the general solving of least squares.
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Figure 6: The effect of using different numbers of discrete scale
parameters N f on the results is compared by visualization. The
matching error is evaluated by mean geodesic errors (×102). All
results in the figure are trained on F_r tested on F_a

Train on-Test on

The num. of eig.fun. F_r-F_a S_r-S_a F_r-S_a S_r-F_a

30 3.4 3.5 5.1 4.5
50 2.5 2.5 2.7 2.8
70 2.4 2.7 4.1 3.9

Table 6: Experiments of evaluating the rationality of the num-
bers of eigenfunctions we select. Numbers in the table are the mean
geodesic errors (×102).
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(a) Source (b) UnsupFMNet (c) UnsupFMNet+WTFM (d) FMNet (e) FMNet+WTFM

Figure 7: Visualized correspondences between a pair of shapes from the remeshed SCAPE dataset via color transfer. We show the compar-
isons between FMNet [LRR∗17] and UnsupFMNet [HLR∗19] before and after replacing WTFM Layer, using WTFM layer can achieve less
distortion.

The number of eigenfunctions In this section, we discuss the
selection of the numbers of the eigenfunctions used in this paper.
We selected the first 30, the first 50 and the first 70 eigenfunctions
respectively. Usually fewer LBOs eigenfunctions are favorable for
generalization, but too few LBOs eigenfunctions are not favorable
for feature retention. As shown in Table 6, the optimal results are
achieved when we set the LBOs feature function to select the first
50.

Train on-Test on

Method FAUST SCAPE F - S S - F

FMNet [LRR∗17] 5.1 6.2 21.0 27.0
FMNet+WTFM 2.9 2.6 9.8 18.8

UnsupFMNet [HLR∗19] 10.0 16.0 22.0 29.0
UnsupFMNet+WTFM 4.3 4.2 10.0 12.0

Table 7: The WTFM layer proposed in this paper can be used as a
flexible plug-in, for FMNet or UnsupFMNet, giving rise to great
performance improvements. Numbers in the table are the mean
geodesic errors (×10−2).

5.4. WTFM Layer Universality

This section shows the corresponding precision improvements
brought by embedding our proposed WTFM Layer as a "plug-in"
into other works. As shown in Table 7, since our WTFM Layer
can encode the isometric deformation invariant attributes of the un-
derlying map, we can embed the WTFM Layer as a flexible mod-
ule into the previous works like FMNet [LRR∗17] and UnsupFM-
Net [HLR∗19], making their performances improved. Fig. 7 visual-
izes the correspondences between a pair of models before and after
using WTFM Layer via color transfer.

6. Conclusion and Future Work

We propose an unsupervised method to compute correspondences
between deformable shapes. The key of this method is to use the

multiscale SMWT results of the learned features as function preser-
vation constraints to optimize the functional map. A variety of ex-
periments show that our method outperforms the current state-of-
the-art methods in terms of accuracy and generalization across dif-
ferent datasets.

Our approach still has limitations. We build it on the assump-
tions of isometric deformation invariance of the shapes. Although
we can deal with shapes with non-isometric deformation to some
extent, such as the shapes in SMAL, it still cannot address the large
non-isometric deformation. For our method and the existing works
(like [LRR∗17, HLR∗19, RSO19, ETLTC20, DSO20, SO20] etc),
basis selection is fundamental to performance. However, due to the
limitation of Laplacian eigenbasis, the existing works fail to deal
with large non-isometric deformation well. In the future, we will
try to construct a learnable Laplacian eigenbasis to solve this prob-
lem. Then, we also can try to construct a learnable wavelet filter to
further improve our performance.
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