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Figure 1: Examples of Mix And Match Interactions. Given the input motion (yellow) of one character, different reactive motions (purple) can
be generated by specifying the interaction labels.

Abstract

Synthesizing multi-character interactions is a challenging task due to the complex and varied interactions between the char-
acters. In particular, precise spatiotemporal alignment between characters is required in generating close interactions such as
dancing and fighting. Existing work in generating multi-character interactions focuses on generating a single type of reactive
motion for a given sequence which results in a lack of variety of the resultant motions. In this paper, we propose a novel way to
create realistic human reactive motions which are not presented in the given dataset by mixing and matching different types of
close interactions. We propose a Conditional Hierarchical Generative Adversarial Network with Multi-Hot Class Embedding
to generate the Mix and Match reactive motions of the follower from a given motion sequence of the leader. Experiments are
conducted on both noisy (depth-based) and high-quality (MoCap-based) interaction datasets. The quantitative and qualitative
results show that our approach outperforms the state-of-the-art methods on the given datasets. We also provide an augmented
dataset with realistic reactive motions to stimulate future research in this area.

CCS Concepts
e Computing methodologies — Motion capture; Machine learning; Motion processing; Animation;

1. Introduction

Animating virtual human-like characters has been playing an im-
T Corresponding author: e.ho@northumbria.ac.uk portant role in a wide range of applications, including computer
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games, CGI/3D anime movies, virtual reality, etc. Character anima-
tion was traditionally a labour-intensive task as it requires extensive
manual intervention from experienced animators to generate high-
quality animations. With the advancement of motion acquisition
technology, pre-recorded human motions are more accessible and
can be used for animating virtual characters to semi-automate the
animation production pipeline. However, a significant amount of
manual intervention and post-processing is still required to remove
artefacts caused by noise, marker swaps, and marker occlusions in
the captured motions [PHMP19].

Although encouraging results are demonstrated by using
data-driven and deep learning techniques [HSK16, LZCVDP20,
SZ7ZK21] in animating virtual characters in recent years, most
of the existing work focuses on generating single-character or
character-object interactions. On the other hand, generating multi-
character (two or more characters) interactions is less researched in
the literature. Synthesizing close interactions, such as dancing and
hugging, between multi-character is a challenging research prob-
lem since the motions of the characters have to be precisely aligned
spatially and temporally to avoid artefacts such as interpenetration
of body parts while preserving the contextual meaning in the in-
teraction (such as the contact at the hands in high-five). To better
support animators in generating a wide variety of two-character in-
teractions efficient with a high degree of controllability, we propose
a method for Interaction Mix and Match in this research. Specifi-
cally, given the motion of a single character as an input, our method
enables the synthesis of 1) diverse reactive motions by adjusting the
scale of input label from the training data, and 2) new interactions
types by mixing the interaction types informed by the multi-class
label embeddings.

An intuitive solution will be combining individually captured
motions [SKY07, SKSY08, KHLO5] and editing the interaction
according to additional constraints given by the users. However,
careful design of the motion editing algorithms (such as [HKT10,
HKO09]) and parameter tuning are required to avoid interpenetra-
tion of body parts. Synthesizing a virtual partner/opponent from the
user’s movement has been explored in VR dancing [HCKL13] and
sword fighting [DVLP20]. While the aforementioned approaches
can generate the reactive motion (i.e. motion reacts to the human
user) of the virtual character interactively, the reaction is highly
similar to the pre-recorded motions in the dataset and results in a
lack of variety in the synthesized interactions. On the other hand,
modelling two-character interaction using Recurrent Neural Net-
works (RNNs) [KBM*20] have demonstrated encouraging results
in predicting the future movements. The key insight is to model the
correlation between the motions of the two characters by a 2-stream
cross-conditioned network [WXXF22]. Although these approaches
model interactions effectively for recognition and prediction tasks,
they are less desirable for animation synthesis due to the low con-
trollability of the resultant motions. Aristidou et al. [AYA*22] re-
cently proposed a music-driven approach for synthesizing dancing
motion including partnered dance (e.g. Salsa). Although this work
shares similar interests as ours in generating close interactions with
high-level control, [AYA*22] is specifically designed for dancing
while our proposed method can be applied to synthesizing differ-
ent kinds of leader-follower interactions.

The most relevant research to our work is the GAN-based inter-
action synthesis framework proposed by Men et al. [MSHL22]. To
the best of our knowledge, [MSHL22] is the most recent method
that generates the reactive motion of the follower according to the
input motion of the leader. [MSHL22] considered a seq2seq reac-
tive motion generator and adversarially rectify the synthesized mo-
tion with a binary and a multi-class discriminator. However, with
no label information guided, their model can only produce a fixed
reactive pattern learned from the input motion data and fails to cre-
ate a mixture of reactions.

In this paper, we introduce a novel concept of using multi-hot
class embedding in a conditional GAN to generate higher quality
reactive motions with a larger degree of controllability over recent
research [MSHL22]. The main goal of this work is to enable Inter-
action Mix and Match which is illustrated in Figure 1. For interac-
tion mix, we aim to create reactions that combine different types of
reactive styles directed by the multi-label indicator. By modifying
the multi-hot class embedding, we can synthesize different reactive
motions which are not presented in the motion datasets. For inter-
action match, we aim to create a single type of reactive motion in
response to the input motion of the other character. By adjusting the
numeric scale of the label indicator, our trained reaction generator
can also create different levels of reactive variations.

Experimental results indicate that the interactions synthesized
by our proposed method outperformed the state-of-the-art reaction
synthesis model [MSHL22] as well as the baselines qualitatively
and quantitatively. Numerically, lower Average Frame Distance
(AFD) and Fréchet Inception Distance (FID) were obtained using
our method which indicates our synthesized motions better resem-
ble the original data. Qualitatively, our generated reaction has bet-
ter synthesis quality with natural movements and flexible reactive
styles. The synthesized reactions also show an improved represen-
tation space with clearer classification boundaries compared with
non-label guided generations. We further demonstrate the positive
impact of using our synthesized motions to improve the robustness
of interaction recognition models through data augmentation.

1.1. Contributions

The contributions of this work can be summarized as follows:

e We proposed a new framework for generating diverse reaction
given an input action using Conditional Hierarchical GAN

e We proposed using Multi-Hot Class Embedding to enable users
to specify the action class to enhance controllability

e A new synthetic 2-character close interactions dataset will be
available to stimulate the research in this area

2. Related Work

In this section, we will first review the related research in synthesiz-
ing multi-person interactions, which is roughly divided into algo-
rithmic (Section 2.1) and data-driven (Section 2.2) approaches. The
action-based motion synthesis approaches will then be reviewed in
Section 2.3.
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2.1. Algorithmic Interaction Synthesis

Synthesizing close interactions with two or multiple characters
such as dancing and wrestling has been a challenging task in char-
acter animation. Early work in this area combines individually cap-
tured kickboxing motions to create two-character fighting scenes
by constructing an action level motion graph [SKYO07]. By fur-
ther obtaining the potential future actions between the characters
through game tree expansion, the best actions are selected by the
min-max algorithm. Such close interaction patterns can be pre-
computed and stored as Interaction Patches [SKSYO0S8] for syn-
thesizing new multi-character scenes by concatenating different
patches. To simulate hit-and-react interactions, momentum-based
inverse kinematics [KHLOS] is proposed to edit pre-recorded mo-
tions according to the strength of the external perturbation and the
point of contact on the body.

Another stream of research mainly focuses on synthesizing
motions, such as wrestling, which are difficult to be captured
even if the motions are captured individually. Ho and Komura
[HKO7b] proposed using tangle and Gauss Linking Integral (GLI)
to model the entangling body parts in close interactions. Such a
topologically-based pose representation can be used for synthesiz-
ing tangling or detangling body parts by increasing or decreasing
the magnitude of the GLI value accordingly. The topological ap-
proach is further combined with Rapidly-exploring random trees
(RRT) [HKO7a] to synthesize interactions such as carrying and pig-
gybacking, as well as extending to Topology Coordinates [HK09]
for synthesizing human-human and human-object close interac-
tions by linearly interpolating key poses in the topology-based co-
ordinate system.

To further provide animators with the flexibility to generate a
wide range of close interactions, Interaction Mesh [HKT10] is pro-
posed to preserve the spatial relations (i.e relative distances) be-
tween the character and its surroundings (including other characters
and objects [HS13]) for motion adaption and motion retargeting.
A volumetric mesh is constructed by applying Delaunay Tetrahe-
dralization on a 3D point cloud sampled from the key locations on
the character(s) and the object(s). By minimizing the deformation
of the mesh during motion adaptation, the spatial relations between
the character(s) and objects can be maintained. Aura Mesh [JKL18]
is proposed to capture and preserve the spatial relations at skin-
level when retargeting close interactions. Naghizadeh and Cosker
[NC19] proposed giving higher priority to local connections over
global ones in Interaction Mesh to enable large-scale transforma-
tion in multi-character motion retargeting. Kim et al. [KSK21] re-
cently proposed using As-Rigid-As-Possible (ARAP) deformation
on the pose graph for retargeting multiple characters. By avoiding
computationally expensive spacetime optimization, multi-character
motions can be retargeted interactively.

While the aforementioned approaches can effectively synthesize
and edit close interactions, careful design of the interaction repre-
sentations and parameter tuning are required which result in diffi-
culties in generating large-scale close interactions efficiently.
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2.2. Data-driven Interaction Synthesis

With the availability of interaction datasets [YHC*12, SYHS20,
WXXF22, CCFB17], data-driven approaches are becoming more
popular. By retrieving pre-recorded interactions, virtual part-
ner/opponent can be synthesized based on the user’s motion in
dancing [HCKL13] and sword fighting [DVLP20] in VR. Kundu et
al. [KBM™*20] proposed using Cross-Conditioned Recurrent Net-
works for synthesizing human-human interactions. Specifically,
given the observations (i.e pose sequence) of each character, two
recurrent neural networks are used for predicting the motion of
a character using another character’s motion as input. Wen et
al. [WXXF22] also proposed a 2-stream network with cross-
interaction attention (XIA) module for predicting the motion based
on the previous movements of the interacting characters. Huang et
al. [HFKB15] generated reactive motion with maximum-entropy
inverse optimal control (ME-IOC). However, their model can only
sample the reaction from the training dataset. The most relevant
work is the interaction synthesis framework proposed by Men et
al. [MSHL22] in which a GAN-based model is used for generat-
ing the reactive motion of a character in response to the motion of
another character given as input. By having an addition discrimina-
tor to predict the interaction class, the GAN-based model generates
motions with better quality by taking into account the class infor-
mation.

Data-driven approaches showed promising results in synthe-
sizing high-quality interaction with minimal human intervention.
However, the existing work lacks the controllability required by
animators. Our proposed method addresses this problem by prov-
ing users with a high-level control (i.e. action label) to generate the
desired close interactions easily.

2.3. Action-level Motion Synthesis

Synthesizing animation based on high-level controls such as
‘walk’, ‘run’ and ‘jump’ has been an active research area in char-
acter animation. Such an intuitive control is similar to instructing
actors and actresses by the director in the real world. Arikan et
al. [AFO03] proposed an optimization-based method to select rel-
evant poses from the database to construct the resultant motion ac-
cording to the input annotations (i.e. actions) while satisfying spa-
tiotemporal constraints (such as reaching a particular location at a
particular frame). A recent work proposed by Lee et al. [LMLL21]
focuses on using reinforcement learning to synthesize time-critical
motions from interactive character control including high-level ac-
tion labels. Specifically, the teacher policy is first learned to achieve
the tasks in optimal ways and then the time-critical student policy
is followed to improve the responsiveness of the interactive con-
trol. Battan et al. [BAR*21] synthesize motion from the input label
and give an initial set of frames using a 2-stage approach on an
encoder-decoder architecture. In particular, the first stage predicts
a sparse set of keyframes for the whole motion while the second
stage generates the dense motion trajectories from the output of the
first stage.

Action-conditional generative models have also formed a
popular stream for motion synthesis in recent years. Guo et
al. [GZW™20] proposed a Lie Algebra based Variational Auto-
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Encoder (VAE) framework to generate motions according to the in-
put action label. Petrovich et al. [PBV21] proposed a Transformer-
based conditional VAE for 3D motion synthesis. The authors fur-
ther demonstrated the effectiveness of using the learned sequence-
level latent space for denoising noisy input such as the 3D pose
sequence estimated from monocular video.

While the aforementioned action-conditioned approaches have
been widely used in synthesizing single-person motions, less atten-
tion has been paid to synthesizing multi-person interactions using
high-level controls. The recent MUGL [MGS22] adopted the Gaus-
sian Mixture VAE (GMVAE) [DMG* 16] which can generate single
and multi-person 3D motions directly from an action label. How-
ever, the method does not 1) generate the reactive motion according
to the input motion and 2) support the generation of motion from
multi-class labels to further increase the diversity.

3. Methodology

In this section, we propose an end-to-end framework to synthesize
stylized reactive motion informed by multi-hot action labelling.
The goal of our model is to synthesize reactive patterns given an
input action and its label indicator. For interaction mix, we aim to
generate reactions that combine different classes of reactive styles
directed by the multi-label indicator. For example, when given an
input action of kicking, the user can specify the reactive motion
to be hugging while avoiding. For interaction match, we aim to
generate the reactive motion corresponding to the interaction type
and motion of the input. With the generative nature of our model,
diverse interaction variations can be created. The overview of the
proposed framework can be found in Figure 2. The generator is
formed by a seq2seq attentive network with the label embedding
that learns the class-specific patterns, thus creating the controllable
reactions when given the multi-hot labelling during inference. The
multi-class discriminator with multi-layer sequential encoding is to
generate high-quality reactive patterns and improves the represen-
tation space for reaction extrapolation.

3.1. Class Embedding

‘We propose a multi-hot class indicator to control the pattern of the
generated reactive motion. Class encoding, which is usually mod-
elled as a one-hot vector, is frequently adopted in conditional GAN-
based models [MO14] to control the generator that only generates
a certain class of samples. Here, we extend the one-hot encoding to
multi-hot scenarios that softened the constrain to be multi-labelled.
More specifically, for example, “1" is a positive label that the re-
active motion is expected to perform, “0" is a neutral label while
“-1" is a negative label that avoids generating the corresponding re-
action. Theoretically, the multi-hot labelling can also be extended
to floating-point numbers to show the continuous effect of content
change in the generated motion. With the Multi-Hot Class Embed-
ding, users can specify the reactive motion that combines the char-
acteristics of different reactive styles.

Given an input action for character A denoted as X* = {x}__|,
we separately model its skeleton hierarchy to encode the spatial
features. To better analyze the input action, we consider a hierar-
chical encoder to model the spatial dynamics for each of the five

body parts as well as the whole body, which results in six body
structures, as illustrated in Figure 2. This is because modelling the
actions within a group of joints can better learn the spatial correla-
tions than modelling the whole body structure at once. For example,
arm motions are more informative than other body parts in the up-
per body movements in interactions such as shaking hands. Instead
of attaching the label information to each body slice, we only con-
catenate with the label embedding with the whole skeleton. This
is to avoid the abuse of class labelling which may lead to an over-
fitted generation. The one-hot labelling during training is defined
by:

e ={ o 156 M)

Here, C is the corresponding class label for the input action XA,
Before feeding to the generator, each of the five body part and
the label-concatenated whole body skeleton is further encoded by a
fully-connected layer respectively to encode the structural feature.

During inference, the interaction label can either be one-hot en-
coding or multi-hot encoding to realize interaction mix by com-
bining different types of reactive motion. An example is shown
in the upper-left corner of Figure 2. The multi-hot inference with
one-hot training also ensures an extrapolative representation space
(as shown in Figure 6) that a multi-pattern reactive motion can be
blended to satisfy the specialized reactive conditions.

3.2. Generator Backbone

To generate realistic reactive motion, we utilize the conditional
GAN with a multi-class discriminator to improve the quality of
the synthesized class-informed reaction. Men et al. [MSHL22] de-
signed two discriminators of a binary and a multi-class discrimi-
nator that cooperate to create realistic motion reactive to the input
motion. In contrast, we discard the binary discriminator to distin-
guish real or fake generated motion to better train the GAN network
with high variation in the generative model, which helps alleviate
the mode collapse [SGZ*16] so that the reactive motions are less
likely to be reduced to the same patterns.

Our generator G is formed by an attentive Long Short-Term
Memory (LSTM)-based sequence-to-sequence (seq2seq) architec-
ture. The encoder consists of one-layer bidirectional LSTM (Bi-
LSTM) [ZZHY15] for each of the six body structures to model
the temporal dynamics. The six output hidden states of the encoder
are concatenated and fed into the decoder which is formed by a
single-layer bidirectional LSTM to create the reactive motion. A
frame-level attention mechanism is further introduced to enhance
the connectivity between the encoder and the decoder, such that the
model can recognize the most informative frames from input A and
present similar importance to the reactive B. Assume that the con-
catenated hidden state of the encoder at frame # is /; and fi; is the
hidden state for the decoder, the seq2seq attention learns a contex-
tual embedding ¢, for decoder that allocates information from all
steps in the encoded states::

= Z O(te,t)hy. 2)
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Figure 2: The overview of the proposed framework. The call-out box on the left shows the label embedding and the body partition embedding
of the input character. We then illustrate the attentive-based seq2seq architecture of our reactive motion generator in the middle. On the right
hand side, the multi-class discriminator formed by Bi-LSTM layers is used for improving the quality of the synthesized reaction.

where §(z,t) is the attention weight that evaluates the correspon-
dence between the state /;, at current encoder step #. and the previ-
ous decoder state /;_;:

Ote,t) = o1 (W102(Walhy, 3 1)), 3)

where W; and W, are the learnable parameters to increase capability
of the seq2seq attention, and 6} and 62 are softmax and tanh activa-
tion functions, respectively. Here, we consider a global seq2seq at-
tention where all timestamps of the encoder are included. However,
itis also feasible to a local embedding where only partial input mo-
tion is observed for online predicting. The contextual embedding c;
is updated along with the hidden state at every time step, which sets
up a prompt reaction by assigning step-wise significance to the de-
coder. Since the performance length of the input action of character
A and the generated reaction for character B should be equal as in
real-world interaction, 7, is the same as 7 in our seq2seq model.
Furthermore, we connect a fully-connected layer to the end of the
attentive Bi-LSTM decoder to reconstruct the reactive pose at every
frame ¢.

3.3. The Multi-class Discriminator

We propose a multi-class discriminator that recognizes which in-
teraction type the synthesized reactive motion X belongs to. The
class-wise discriminator can help increase diversity in the reac-
tive patterns to cater for different types of input action. The ar-
chitecture of the multi-class discriminator is presented on the right
hand side of Figure 2. Besides the n classes of the reactive labels
yi,i = 1,...,n, we also include an extra fidelity label y,; to com-
pensate for the functionality of a binary discriminator. To this end,
the reaction to be judged will belong to either one of the real types
of interaction class y; or a fake class y;; 1.

Instead of feeding in the interaction with motions from both

© 2022 The Author(s)
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characters A and B, the discriminator only recognizes the reac-
tive motion for B to justify the discrimination of different reac-
tive patterns. It reduces the dependency for the discriminator on
the extracted features from input action A and avoids generating
collapsed results [CLJ*16,SGZ*16].

Specifically, our multi-class discriminator D consists of two-
layer bidirectional LSTMs to classify the synthesized reactive mo-
tion from both the forward and backward movements. Compared
to a single-directional LSTM, a discriminator using Bi-LSTM can
extract high-level semantic features that significantly improve the
performance for sequential classification. The hidden output at ev-
ery time step is concatenated and embedded into a fully-connected
layer with softmax activation to output the class probability.

3.4. Loss Function

During training, the synthesized reactive motion corresponding to
B’s motion X is expected to be as close as possible to X8 with
the L; norm to contrast their intensity similarities. The generated
X3 is also expected to be classified as the same class of X4, The
corresponding adversarial loss for the proposed conditional GAN
is defined as:

Lecan = —Exyglogp(ylx,y <N+1)
T Ery~glogp(ylr,y=N+1) )
+ Bxynpplogp(ylx,y <N +1),
where pp represents the real distributions of the character B’s mo-

tion, y is the class label, and p(y|x) stands for the probability of x
being recognized as the synthesized interaction class.

Besides the L| and Logan loss, we also adopt the continuity loss
Lc and bone loss Ly, introduced from [YXN*17] and [MSHL22] to
preserve the motion consistency and the bone length nature. Here,
we set the weight of the continuity loss to 1 instead of 0.01 used in
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[MSHL22] and resulted in better motion quality as demonstrated in
the accompanying video demos. The overall loss function follows
a min-max optimization scheme:

IIIGinmlé)IXL:CGAN-i-}\.b,Cb +ALe+A Ly, (@)

4. Experimental Settings

In this section, the settings of the experiments will be presented.
We first introduce the datasets used in this work in Section 4.1.
The corresponding experimental protocols, such as data split, are
explained in Section 4.2. Finally, the implementation details will
be given in Section 4.3.

4.1. Datasets
4.1.1. SBU Two-person Interaction Dataset

The SBU dataset [YHC™12] contains eight classes of two-person
interactions, including approaching, departing, pushing, kicking,
punching, exchanging objects, hugging, and shaking hands. The
approaching and departing interactions are excluded in our ex-
periments since their reactive motions are standing still without
meaningful movements. The interactions were captured using the
Microsoft Kinect (depth-based sensor) and the 3D skeletal motions
are provided. There are 7 subjects participated in the data collection
with 197 motion sequences being used in total, and each character
is represented by the locations of 15 joints in each frame.

4.1.2. Character-Character (2C) Dataset

The 2C dataset [SYHS20] contains high-quality kickboxing mo-
tions which are captured using an optical MoCap system. It con-
tains 2 classes of two-person interactions, i.e., kicking and punch-
ing with diverse reactive patterns such as avoiding or being hit. 44
motions are used in the model and each character is represented by
20 joints in each frame. The joint information of the two characters
is represented by 3D angular values with a skeleton hierarchy.

4.2. Dataset Settings

Same as [MSHL22], we perform leave-on-subject-out cross-
validation on the SBU dataset. For 2C, we pre-process it by con-
verting the joint angles into joint positions with forward kinematics
(FK). We also normalize its skeleton by a scaling factor of 100 for
both training and evaluation. The train:test ratio in 2C is 3:1. The
3D joint positions for both datasets are made relative to the root
joint of character A, and the global root translation and rotation
about the upward vector (i.e. y-axis) at the root joint of character A
are removed as data standardization.

4.3. Implementation Details

The code base is built upon Keras platform, running on a PC with
AMD Ryzen 7 3700x 8-Core Processor 4.4GHz, 64GB Memory
and Nvidia RTX 2080 Ti Graphics card. RMSprop with a learning
rate of 0.01 is used as the optimizer. There are 80 and 200 LSTM
Neurons for each spatial slice and 480 and 1200 for the attentive
layer for SBU and 2C, respectively. A batch size of 16 was used for

both datasets, and we train 1600 epochs and 2000 epochs on SBU
and 2C, respectively. For the weights of the network Loss, we set
Ap =0.01, Ac = 1, A; = 1. Since we emphasize the continuity loss
to create motions of better quality, a higher weight is given to it to
encourage more smooth joint trajectories to be produced.

5. Experimental Results

Extensive experiments have been conducted to evaluate the effec-
tiveness of our proposed method. Firstly, we evaluate the quality
of the motion synthesized by our method quantitatively and qual-
itatively in Section 5.1. Secondly, we visualize the learned latent
space in Section 5.2 to demonstrate how our method facilitates
the synthesis of two-character interactions with high-level controls.
Thirdly, we justify the design of our proposed framework by con-
ducting an ablation study in Section 5.3. Finally, we demonstrate
another application of our proposed method as a data augmentation
approach to improving the robustness of interaction recognition
models by providing a wider variety of synthesized training data
in Section 5.4. We also compare our results with those obtained
using the implementation of the state-of-the-art reaction synthesis
model [MSHL22] provided by the authors to highlight the superior
performance of our method.

5.1. Motion Synthesis

In this section, the quantitative and qualitative evaluations of the
results generated by our methods and the baselines are presented in
the following subsections.

5.1.1. Quantitative Analysis

For quantitative evaluation, we adopted the deterministic metric
Average Frame Distance (AFD) to compare the synthesized skele-
tal motion with the ground truth in terms of geometric similarity:

1 /
AFD = Y [l — x| 6)

where xf;, and x? are the synthesized and ground truth skeletal
pose at time ¢, respectively, and 1 <t < T. The AFD on differ-
ent interaction classes on the SBU dataset is shown in Table 1. We
compare our model with the traditional machine learning meth-
ods including Nearest Neighbour (NN), Hidden Mixture Model
(HMM), Discrete Markov Decision Process [KZBH12], kernel-
based reinforcement learning [HK14], maximum-entropy inverse
optimal control [HFKB15], and the recent deep-learning based
method [MSHL22]. The results show that our method outper-
formed all existing methods by achieving the lowest AFD in all
6 classes. Furthermore, our results show a more consistent perfor-
mance across different class with a small range of AFD (0.32-0.50)
while a large range of AFD (0.44-0.72) is obtained by the state of
the art [MSHL22].

In addition to AFD, we further compute the Fréchet Inception
Distance (FID) to measure the difference in the distribution be-
tween the synthesized and original motions in the SBU and 2C
datasets. The results are presented in Table 2 and 3. Again, our
method outperformed [MSHL?22] by archiving a lower FID in all

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



Aman Goel, Qianhui Men, and Edmond S. L. Ho / Interaction Mix and Match 333

AFD ()
Action NN | HMM | [KZBHI2] | [HK14] | [HFKBI5] | [MSHL22] | OURS
Kick 081 | 092 0.65 0.92 0.67 0.53 0.50
Push 051 | 0.60 045 0.61 0.48 0.52 043
Shake hand | 0.48 | 141 0.42 0.54 0.42 0.44 0.40
Hug 061 | 0.67 0.48 0.81 047 0.72 0.42
Ex. obj. 063 | 3.84 0.53 0.74 0.54 045 0.40
Punch 056 | 0.66 0.48 0.66 0.52 045 0.32

Table 1: The AFD of different actions in the SBU dataset. Our
method achieves the lowest AFD for all types of interactions.

classes on both the SBU and 2C datasets. This indicates the motions
synthesized using our method can consistently better resemble the
motion quality as in the original motions in different datasets.

FID (1)
Method Kick | Push | Shake hand | Hug | Ex.obj. | Punch
[MSHL22] | 10.8 | 20.8 23.8 29.5 16.7 11.2
OURS 93 | 16.8 15.1 19.3 11.7 10.8

Table 2: The FID of different actions in the SBU dataset. Our
method achieves a lower FID in all interaction classes.

FID (})
Method Kick | Punch
[MSHL22] | 194.2 | 148.1
OURS 164.2 | 1224

Table 3: The FID of different actions in the 2C dataset. Our method
achieves a lower FID in both kick and punch classes.

5.1.2. Qualitative Analysis

To assess the visual quality of the interactions synthesized by our
method, readers are referred to the accompanying video demo. In
this section, we will qualitatively evaluate the synthesized motions
in different experimental settings.

5.1.2.1. Interaction Match - Comparing with Ground Truth
Data We first demonstrate the resemblance of data from the SBU
dataset and the results are illustrated in Figure 3. Specifically, we
employ a leave-one-subject-out cross-validation approach to train
our model. At the inference stage, the input motion (colored in
blue) alongside the ground truth interaction label is used for gen-
erating the reactive motion (colored in green). It can be seen that
the synthesized reactive motions resemble the corresponding inter-
actions as in the ground truth data (colored in red). Since our pro-
posed method is based on a generative model, some variations are
introduced to the reactive motions when compared with the ground
truth data. For example, the leg movements of Kick (Figure 3(a))
and Exchange Objects (Figure 3(e)) are different from their cor-
responding ground truth motions. Nevertheless, the context of the
interactions is correctly preserved.

We further demonstrate the capability and the generality of
our proposed method by generating reactive motions on the high-
quality 2C dataset. Examples of the synthesized motions are illus-
trated in Figure 4. Similar to the results obtained in the SBU dataset,
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Figure 3: Examples of real and synthesized reactive motion of the
six interaction classes in the SBU dataset. Given the input motion
(blue) and the interaction label, the reactive motion (green) can be

synthesized. The ground truth reactive motion (red) is also included
for comparison.

our method can resemble the interactions in the 2C dataset while
introducing some variations to the synthesized reactive motions.

5.1.2.2. Interaction Mix With the multi-hot embedding in our
proposed framework, users can control the reactive motions to be
synthesized by specifying the interaction labels as a multi-hot vec-
tor. Some examples generated from the SBU dataset are shown in
Figure 5. It can be seen that the generations show hybrid reactive
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(d) Punch Sample Two

Figure 4: Examples of real and synthesized reactive motion of kicking and punching interaction in the 2C dataset, respectively. Given the
input motion (blue) and the interaction label, the reactive motion (green) can be synthesized. The ground truth reactive motion (red) is also

included for comparison.

patterns. For example, we set the labels of shaking hands and hug-
ging to be positive to generate the reaction in (a). We observe that
the synthesized character B is getting close to character A mean-
while ready to shake hands (as shown in the last few frame stamps).
In (b), the generated motion for character B is shaking hands with
A while laying back to avoid being pushed.

5.2. Analysis of the Latent Space

To analyze the quality of the latent space learned, the t-SNE of
the embedding space is illustrated in Figure 6. Specifically, we
take the embedding of the reactive interaction generated, just af-
ter the concatenation of the Conditional Hierarchical Bi-LSTM
outputs and run t-SNE (t-distributed stochastic neighbor embed-

ding). Again, we follow the protocol to have a leave-one-subject-
out cross-validation in this experiment.

The results indicate that most of the interaction classes formed
clusters which show a low degree of inter-class similarity. In partic-
ular, 4 out of 6 classes, including Exchange Objects, Shake Hands,
Hug and Kick are not overlapping with the other classes. Although
there is an overlapping between the regions covered by the clusters
of the Punch and Push classes, it can be seen that the movements
of the character who punches or pushes the other are very similar in
terms of the skeletal motions. The corresponding reactive motions
are also similar in those two classes. Furthermore, the samples of
the Push are essentially outside the cluster of Punch. This highlight
the effectiveness of the learning of the latent space for representing
different types of interactions. In addition to separating different
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(b) Getting pushed and shaking hands (green) while pushing (blue), with the Multi-hot labels Pushed(+1) and Shaking Hands(+1)
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(d) Getting hit and pushed back (green) while punching (blue), with the Multi-hot label Punching(-1)

Figure 5: Examples of Interaction Mix (a and b) and Match (c and d) on the SBU dataset along with their Multi-hot Labels. The input and

the synthesized reaction are colored blue and green, respectively.

types of interactions, Figure 6 also highlights our latent space can
effectively capture the similarity between different classes. For ex-
ample, Shake Hand and Exchange Object are more similar as well
as the Punch and Push pair discussed above.

‘We further compare the t-SNE of the embedding space obtained
using [MSHL22] in Figure 7. It can be seen that samples from dif-
ferent interaction types are mixed together in the latent space. We
argue that a more well-constructed latent space not only informing
the user about which interaction types are more suitable for Inter-
action Mix based on their similarity, but also facilitates the extrap-
olation of different types of interaction with the multi-hot label in
Interaction Mix.

5.3. Ablation Study

In this section, we justify the design of different components in our
proposed framework by conducting an ablation study. The results
are presented in Table 4 and 5 for the SBU and 2C datasets, respec-
tively.

From the results in Table 4, our proposed network without the
bone loss (L) achieved the lowest AFD across all 6 classes. The
complete version of our framework achieved the lowest AFD in the
Punch class and second-lowest in the rest of the 5 classes. Since
the SBU dataset is captured using Microsoft Kinect, we observed
that the skeleton motions captured are not of high-quality and the
bone lengths of the characters vary over time. As a result, having
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the bone loss maintains the bone lengths over time will not give our
method a favourable AFD on this dataset, although it is essential to
enforce such a constraint in rigid-body character animation.

We also show the ablation test on the high-quality 2C dataset
with the results given in Table 5. By combining all constraints, our
model shows the best motion quality with the lowest FID. Since the
bone length captured in 2C is more stable, the advantage of continu-
ity constraint £, is more advantageous than £; compared to SBU
dataset. Furthermore, the effectiveness of the multi-hot encoding is
also significant when generating between these two highly-similar
interaction.

AFD ()
Method Kick | Push | Shake hand | Hug | Ex. Obj. | Punch
OURS 0.5 | 043 0.4 0.42 0.4 0.32
OURS w/o D 0.53 | 045 0.42 0.49 0.44 0.38
OURS w/o L}, 045 | 0.42 0.39 0.40 0.39 0.32
OURS w/o L 0.59 | 045 0.55 0.46 0.41 0.4
OURS w/o FC 055 | 047 0.46 0.49 0.41 0.4
OURS w/o Multi-Hot Embed | 0.51 | 0.48 0.50 0.66 0.46 0.45

Table 4: Ablations of main components in the proposed model eval-
uated by AFD on the SBU dataset. The model without the bone loss
(L) gives the lowest AFD
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Figure 7: t-SNE of the embedding space obtained using
[MSHL22].

5.4. Data Augmentation for Interaction Recognition

To demonstrate another application of our proposed method, we
conduct a series of experiments to evaluate how the interactions
synthesized by our method can be used for enhancing the datasets
for training interaction recognition algorithms. Specifically, we
generate a new set of 300 (50 per class) interactions from the SBU
dataset and the dataset will be available to the public to stimulate
the research in this area. We train an interaction classifier to test the
quality of the synthesized interaction. The classifier has the same
structure as the multi-class discriminator but outputs N classes in-
stead of N+1. Its train-test split settings are as follows:

e Original: We follow the half-half data split [YHC*12] widely
used in the interaction recognition protocol in the SBU dataset

o Augmented: We evenly divided the synthesized dataset and add
them to the original SBU training and testing set

The classification accuracies are reported in Table 6. The results
show that the variations introduced by our augmented dataset have
a positive impact on improving the interaction classification per-
formance over the original SBU dataset. In particular, 5 out of 6
classes have an increase in the classification accuracy with a range
from 1.33% to 21.39%.

6. Discussion and Conclusions

In this paper, we propose a novel GAN-based framework for syn-
thesizing 2-character interactions based on the input motion of one
character and the interaction label. By incorporating the multi-hot
class embedding, our method enables Interaction Mix which gener-
ates new interaction classes by extrapolating single-hot labelled in-
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Accuracy
Different Splits | # Train Seq. | # Test Seq. Kick Shake Hand Hug Exchange Object Punch
Original 99 98 0.947368 | 0.941176 0.692308 0.538462 0.667367 0.888889
Augmented 124 123 0.996013 | 0.877035 0.705583 0.640724 0.881263 0.911242

Table 6: Accuracy of the classifier on different splits on the original and augmented SBU datasets. The augmented dataset helps improve the
recognition performance over most of the interaction classes in the original SBU dataset.

teractions for the training data, as well as Interaction Match which
synthesizes diverse interaction variations from the original inter-
action classes in the dataset. Experimental results show that our
method outperforms the existing work including the most relevant
work [MSHL22].

While the proposed method provides users with a large degree
of high-level control, mixing very dissimilar interaction types may
result in artefacts such as interpenetration of body parts (see the ex-
ample illustrated in Figure 8). This can happen since our method
does not handle collisions explicitly. Further exploring the us-
age of the latent space, such as interpolation and extrapolation,
learned using our model as well as learning a topology-aware latent
space [HSCY13] for avoiding interpenetration are potential future
directions. Using existing close interaction editing methods such
as Interaction Mesh [HKT10] and Aura Mesh [JKL18] as a post-
processing step to clean up the interpenetration as well as maintain
the contact points between the characters can be another solution as
demonstrated in [HCKL13]. In terms of the quality of the synthe-
sized motion, artefacts such as foot sliding can be found in the syn-
thesized motions since there is no explicit loss term on the stepping
pattern in our proposed network and this is quite common to other
GAN-based motion synthesis methods [AYA*22] such as Motion-
CLIP [TGH*22]. We are interested in incorporating the contact
consistency loss proposed in GANimator [LAZ*22] or an addi-
tional post-processing step [WHSZ21] to clean up the foot sliding
artefacts in the results as an extension of the proposed work.

Figure 8: Artefacts such as interpenetration of body parts can be
found when mixing very dissimilar interaction types, e.g. mixing
Kicking and Hugging.

In the future, we could use a classifier [ZLX17] to generate the
Multi-Hot Class Embedding during training and inference time.
The Multi-Hot Class Embedding could also be extended to single
body motion synthesis [BAR*21] to generate controllable synthe-
sized motions.
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