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Abstract

Gestural animations in the amusement or entertainment field often require rich expressions; however, it is still challenging
to synthesize characteristic gestures automatically. Although style transfer based on a neural network model is a potential
solution, existing methods mainly focus on cyclic motions such as gaits and require re-training in adding new motion styles.
Moreover; their per-pose transformation cannot consider the time-dependent features, and therefore motion styles of different
periods and timings are difficult to be transferred. This limitation is fatal for the gestural motions requiring complicated time
alignment due to the variety of exaggerated or intentionally performed behaviors.

This study introduces a context-based style transfer of gestural motions with neural networks to ensure stable conversion
even for exaggerated, dynamically complicated gestures. We present a model based on a vision transformer for transferring
gestures’ content and style features by time-segmenting them to compose tokens in a latent space. We extend this model to yield
the probability of swapping gestures’ tokens for style-transferring. A transformer model is suited to semantically consistent
matching among gesture tokens, owing to the correlation with spoken words. The compact architecture of our network model
requires only a small number of parameters and computational costs, which is suitable for real-time applications with an
ordinary device.

We introduce loss functions provided by the restoration error of identically and cyclically transferred gesture tokens and the sim-
ilarity losses of content and style evaluated by splicing features inside the transformer. This design of losses allows unsupervised
and zero-shot learning, by which the scalability for motion data is obtained.

We comparatively evaluated our style transfer method, mainly focusing on expressive gestures using our dataset captured for
various scenarios and styles by introducing new error metrics tailored for gestures. Our experiment showed the superiority of

our method in numerical accuracy and stability of style transfer against the existing methods.

CCS Concepts
e Computing methodologies — Motion processing;

1. Introduction

Motion capture data are widely used to generate natural motions in
character animation. Many methods have been proposed for con-
structing minute features of movements (or styles) of motion data
to enhance their expressiveness. However, the existing methods
mainly focus on periodic motions such as walking and punching,
and capturing complicated aperiodic gestures is still challenging.
Many techniques that predict human activities using recurrent neu-
ral networks [MBR17] can also generate motions, but most of them
cannot treat style transformations.

Many motion style transfers modulate the means and variances
of motion signals over time, in the way of adaptive instance normal-
izations [JPL22], similarly to image style transfers [HB17]. This
success relies on the common property that the changes in phase
and magnitudes can characterize the cyclic signals of gait motions,
as displayed in [JPL22]. However, the shapes of motion signals are
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vastly changed against characteristic or exaggerated gestures; they
have fewer correlations over time owing to the non-uniform change
in velocities, as shown in Figure 1. The gesture style transfer should
be local for gestural motions because the time ranges are irregular
for more significant dynamic variations. This observation suggests
that statistical transformation does not work well owing to its global
property. Neural network models that convert each pose have intrin-
sic limitations in coping with such complicated transformations.

Moreover, the style features of motion data are physical prop-
erties, and they should preserve naturalness as human gestures;
for example, joint rotations are limited to actual physical ranges.
However, pure numerical approaches in image style transfer easily
destroy the naturalness due to the lack of physical constraints. To
overcome these limitations, we introduce an approach to swap seg-
ments of motion clips with those of the target style in a similar way
to the style transfers by swapping image patches [CS16, LFY*17,
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SLSW18]. Our approach divides and re-arranges a style gesture
to imitate the meaning (or content) of an input gesture, which is
suitable for transferring styles of expressive gestures because the
features of complicated styles are adaptively replicated to preserve
their personality and physical constraints locally.

Pose distance (m)
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Figure 1: Motion signals of gestures performed for the same ut-
terance scenario. These polylines indicate time-varying pose dis-
tances, which are computed by the mean Euclidean distance of ev-
ery joint’s position against those of the initial pose. The gray line
indicates a regular expression, and the red and green lines indicate
exaggerated characteristic expressions. The green line is performed
so that the motion content coincides with the regular expression.
These lines reveal the various phase shifts and complicated shape
deformations.

Gestural motions can be synthesized from voice signals or texts
of talks [Nefl16, YYH20]. This trend implies that a sequence of
structural motion units can be treated like spoken words. This
assumption is theoretically supported by Kendon’s continuum
[Ken88], which regards each gestural unit as a component of a
speech. This theory motivated us to introduce a context-based ap-
proach to motion style transfer by adopting a methodology devel-
oped in natural language fields; a transformer model [VSP*17]. In
our swap-based approach, the quality of the resulting gestures is
affected by the performance of pattern-matching between the mo-
tion segments of content and style gestures. Therefore, the context
of gestures is a crucial factor in detecting good correspondence be-
tween the two structures. This observation introduces a neural net-
work model suitable for extracting such contextual information.

Fortunately, the intrinsic power of transformer models has been
proven in image processing fields [DBK*21,CTM*21], and we also
constructed a transformer-based model, referencing existing meth-
ods proposed for image style transfers [DTD*22, TBRTBD22]. Our
method introduces style transfer using segmented (or tokenized)
gestures by considering contextual information with a transformer
model and a loss function that can be efficiently computed by splic-
ing the transformer’s variables. We also propose a gesture-specific
criterion for evaluating the quality of style transfers.

2. Related works
2.1. Patch-based image style transfer

In image style transfers, many patch-based approaches [CS16,
LFY*17, SLSW18] have been proposed for swapping each block
region of a content image, called a patch, using the corresponding
patch of a style image. In addition, the reliability of the pattern-
matching process is increased by statistics-based signal regulariza-
tion called whitening [SLSW18]. These piece-wise swapping ap-
proaches can be trained without the use of supervised samples.

Our method introduces such a patch-based approach by divid-
ing motion data into segments of a fixed period, and those of a
style gesture replace the segments of a contextual gesture. How-
ever, pattern-matching after the whitening cannot work well for
human gestures owing to their irregular and complicated statistics
features. Therefore, our method introduces context-based pattern
matching to increase its accuracy. Moreover, simply swapping the
segments of a motion clip, such as image-style transfers, often de-
grades the smoothness of human motions. Therefore, we introduce
a mechanism for estimating the probability of swapping by which
multiple adequate segments are blended. This soft-swapping ap-
proach can more accurately preserve gestures’ contents (or outline)
after transfer.

2.2. Style transfer for non-gestural motions

Existing methods identify motion-style features with a linear sys-
tem [HPPOS, XWCHI15], or optimization in the frequency domain
[YM16]. These methods require time alignment between motion
clips using numerical adjustments, such as time-warping, for cap-
turing correspondence over time. However, It is difficult to fully
automate the time alignment of complicated gestural movements,
which requires tedious manual preprocessing.

The recently proposed motion style transformation [HHKK17,
HSK16] based on deep learning applies the drawing style trans-
formation for images to motion data, which converts the statisti-
cal features of latent variables with a Gram matrix [GEB16]. This
method revealed that the drawing-style transformation for natural
images could be applied to motion data using similar mathematical
tools. This approach requires no time alignment of data samples
but requires re-training to add novel styles. Style transfer based
on domain adaptation [MSZ"18] was introduced using a phase-
functioned neural network (NN). This method successfully decom-
poses style components using residual adapters with compactly de-
composed tensors. However, it is only applicable to periodical mo-
tions, such as gaits or punches, owing to the intrinsic properties of
the phase-based model.

The generative adversarial network (GAN) model was intro-
duced [AWL*20] for style transfer using adaptive instance nor-
malization (AdalN) layers trained with an unpaired dataset. This
method can transfer motion styles from videos by learning a com-
mon style embedding for 2D and 3D joint positions. A spatiotem-
poral graph was also introduced [PJL21] to improve style trans-
lation between significantly different motions. These methods re-
quire labeled data to construct the adversarial loss of the GAN-
based model, which is unsuitable for zero-shot learning. Moreover,
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their AdaIN-based style transfers cannot capture time-varying mo-
tion styles because they merely fit the mean and variance of con-
tent features to style features. However, this statistical modulation
of AdalN globally captures temporal features, but the features of
characteristic gestures are mainly time-varying and temporally lo-
cal variations. Therefore, we propose a more stable approach based
on token swapping without statistical modulations.

2.3. Voice or text-driven gesture synthesis

Gestural motion synthesis from audio or text data is a vital technol-
ogy for the social agent systems using virtual humans or avatars,
and some methods have been developed using data-driven ap-
proaches. Levine et al. [LKTK10] proposed synthesizing gestural
motions from the acoustic characteristics of utterances by optimally
selecting motion segments using a probabilistic model. However,
gesture style transfer using this method requires a manual setting
of the control parameters for each motion unit or segment. Yang
et al. [YYH20] proposed motion synthesis of conversations based
on motion graphs, in which the optimal path is searched by using
a stochastic greedy algorithm. This method achieves audio-motion
coordination that can generate a variety of plausible motions. How-
ever, the expressiveness of gestures strongly depends on the motion
clips embedded in the motion graph, and style control is not sup-
ported.

Recently, speech-driven syntheses of gestures have been pro-
posed using NN models. As an image-based approach, Ginosar
et al. [GBK™19] proposed a person-specific prediction of gestures
from audio by using a video dataset, where the individual mo-
tion styles of arms and hands are learned using a temporal cross-
modal translation. Alexanderson et al. [AHKB20] proposed an in-
vertible NN model for speech-driven gesture syntheses. Although
this method can control motion styles with additional annotation
signals, re-training is required in adding novel styles. In addition,
the training dataset must be manually labeled for supervised learn-
ing. Yoon et al. [YCL*20] proposed speech gesture synthesis from
a trimodal context consisting of speech, audio, and speakers iden-
tities corresponding to motion styles. However, this method also
requires training for each identity, and collecting a trimodal dataset
for each style is cumbersome. Our approach can be utilized as a
post-process for these speech-driven methods to enhance the ex-
pressiveness of gestures with no additional training.

2.4. Personality-based style synthesis of gestures

Chi et al. proposed a gesture synthesis method called EMOTE
[CCZBO00] by introducing Laban Movement Analysis and its Ef-
fort and Shape components to parameterize the qualitative features
of movements. The gesture synthesis method [DKD* 16] generates
animations by embedding a gesture personality feature into a five-
dimensional space, called OCEAN [CM92], and 39 variables were
introduced to control styles whose values were determined using
multivariate regressions. Smith and Neff [SN17] compressed this
five-dimensional space into two dimensions by reflecting a cogni-
tive aspect, thus enabling a more efficient classification of gestural
styles. These model-based approaches can control time-dependent
features using a timing control function with key poses. However,
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detecting good key poses from raw motion capture data is often
challenging for complicated motions.

3. Architecture of style transfer

Our gesture style transfer architecture is roughly divided into an
auto-encoder for embedding motion representation in a latent space
and a style transformer for swapping tokens of content and style
gestures, as shown in Figure 2. Our style transfer network is trained
to compute the best matching between tokens of two samples to
preserve the content and style similarities estimated in a latent
space of the transformer, and new samples for evaluations are ex-
pected to be similarly matched by reflecting their contexts.

Content
esture Tensor
& Upper-body @ | 5| Upper-body
Encoder Tokens Decoder Pose vectors
) for full body
Pose vectors Style :
for upper body -e
Tokens Style
: Upper-body @ 1 Lower-body transferred
Style Encoder Tensor Decoder gesture
gesture

Figure 2: Flow of motion style transfer

Only the upper-body motion signals are fed to the auto-encoder
in this architecture. The embedded variables are time-divided to
create tokens that are fed to a transformer model developed for the
image classification task [DBK*21]. The output tokens of the trans-
former were restructured to fit into the two types of decoders, and
each separately generates motions for the upper- and lower bodies.
Notice that our method estimates the movements of the lower body
(i.e., both legs) from the transferred motions of the upper body. An
ordinary gesture is denoted as a content gesture, and an expressive
gesture of the target style is represented as a style gesture. These
two motion clips are separately embedded to compose the tokens
using the same auto-encoder.

The sizes of learnable parameters are 23.7 KB and 50.2 KB for
the auto-encoder and style transformer, respectively, and the total
parameter size is only 296 KB. This compact architecture enables
whole processes to be run by approximately 13 microseconds per
pose on average, measured on iMac Pro (2017) 3.2 GHz 8 core
Intel Xeon CPU without using any GPU. This processing time cor-
responds to the update frequency of 77 x 10° frames per second
and figure, which is small enough to allow interactive applications.
The training times were measured (see Section 4.1) by the same
conditions.

3.1. Gesture motion representation

Our human body model consisted of 21 joints, and finger move-
ments were excluded. As explained in the following section, the
gestural motion, given by the series of joint rotational angles, is
then converted to latent variables with auto-encoders. We imple-
mented joint rotations using a logarithmic map [Gra98] and ap-
plied no additional variables such as joint positions or constraint
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conditions. Therefore, the dimension of vectors representing each
full-body pose therefore becomes 21 x 3 = 63.

For the root (or waist) joint orientations, we use the rotation an-
gles whose components along a vertical axis are canceled and the
residual rotational components to feed the auto-encoder because
the global facing direction is not related to the styles of gestures.
Note that the omitted rotational component is directly copied from
the content gesture to the style-transfer result. Our method cannot
transfer (or estimate) the positions of the root joint. We currently
implement a mechanism that determines the root position at each
frame to fix the lower foot position on a floor level, using forward
kinematics. Since we only focus on the gestures of standing poses,
this simple adjustment works well in most cases.

3.2. Feature embedding with auto-encoder

We introduce an approach to swap the fragments of representa-
tion between content and style, developed in image style trans-
fers [CS16,SLSW18,DTD*22]. These methods first embed image
(pixel) values into the latent space via convolutional deep neural
networks such as VGG [SZ15]. The patches of images are then
composed of blocks of pixels divided into a fixed size. In our
method, the segment of motion clips corresponding to the image
patch is called a token to stress that our model focuses on the con-
textual analysis using transformers.

We introduced one-dimensional convolutional neural networks
(CNN) for motion data representing the time sequence of a pose
consisting of skeletal joint rotations. The convolutional kernel is
applied along time (or frames), and correlations in rotations among
joints are implicitly considered by regarding their components as
input channels. The time resolution of these embedded variables is
reduced by 1/4 with the encoder’s second and third convolutional
layers, whose strides are set to two. This reduced time resolution
is restored with the decoder’s first and second linear up-sampling
layers.

This CNN-based auto-encoder takes the input signals of the 13
upper-part joints and has two types of decoders for the same up-
per joints and eight lower part joints consisting of two leg joints, as
shown in Figure 2. This decomposition is derived from the obser-
vation that characteristic gestures mainly emerge in the upper-half
body: two arms, torso, head, and root (waist) joints, and the mo-
tions in the upper half of the body drive the motions in the lower
half.

These two decoders were designed with the same architecture,
except for the number of channels. The detailed architecture of this
CNN-based auto-encoder is explained in Appendix A.

3.3. Gesture tokens

Let the time-sequences of latent variables for a motion z;—1 »

R% be embedded by the auto-encoder, where F denotes the full
frames and d; is the dimension of the latent space. We decompose
these variables into the fixed intervals w with a stride of 4 to com-
pose the n-th gesture token g, as

8n+1 = Znh+1 G9Z}’l/’l+269'”GBZ}'”H»W7 n=0,1,...,LF/hJ71, (1)

where @ denotes the concatenation of vectors and | | is a floor func-
tion. We call this flattened one-dimensional vectors g, € R% ,dg =
wd; as a gesture token.

The stride is set to the half-size of the interval & = w/2; tokens
are sampled while being entirely overlapped to increase the time-
granularity of transfer. The transferred tokens are then converted
into tensors to feed the decoder for de-embedding. The successive
tokens are then linearly interpolated to merge the overlapped re-
gions, by which the smoothness at the tokens’ boundaries is ob-
tained. We found that the size of an interval of w = 4 ensures an
excellent balance to reflect the outline of the content gestures and
the details of styles. Because the time resolution shrinks by 1/4 in
the encoder, each gesture token corresponds to 4 x4 = 16 frames in
the original time scale, corresponding to approximately a quarter
second for motion data sampled at 60 frames per second.

3.4. Style transformer for gestures

The tokens of the content and style gestures are swapped in a trans-
former model, as shown in Figure 3. Our transformer model is de-
signed to adequately replace every token of a content gesture with
the linear blending of those of a target style gesture. This archi-
tecture can transfer styles while reflecting their contexts to obtain
content similarity.

Encoded tokens Decoded tokens

Style-transferred
/417 . P —t— N latent variable
/ o / (¥) \
1 b N,
:

(+

(X )e— Style
T tokgns

Dot-product

|| Layer-norm ||
4

)
Positional | O)
encoding l’
Encoded  Encoded Decoded Encoded

Tokens 9 content style content  style

,2,/ 7t tokens tokens tokens  tokens

Latent variable z :

(a) Encoder (b) Decoder

(c) Soft-swapper

Figure 3: Architecture of gesture style transformer

Encoder

Our style transfer mechanism adopts an encoder model of a visual
transformer [DBK*21] for converting tokens to include contextual
information, where the content and style motion clips are processed
separately. This encoder model employs layer normalization as a
preprocessing step and GeLU activations, where we set a single
self-attention layer of a single head, as shown in Figure 3 (a). Be-
cause the linear networks for encoding queries, keys, and values
have the same number of channels for input and output, the dimen-
sion of every token is preserved. The residual block with multi-
layer perceptron, denoted by MLP in Figure 3, has no hidden layer
and is composed of two fully connected layers of the same number
of channels while putting a GeLU activation layer between them.
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Before feeding a token sequence of gestures to the encoder,
an extra learnable classification token [DBK*21], denoted by
CLS, is concatenated at the head of the sequence as g =
[CLS,g1,82,---,8N], CLS € R%. In our method, the output corre-
sponding to this classification token extracts the common features
included in all gesture tokens. This value was utilized to evaluate
style features, as explained in Section 3.5.

In addition, a position-encoding is adopted for every element as
g=g9+p, 2

where p denotes a sequence of dg dimensional positional values
defined by the sine and cosine functions of different frequencies
[VSP*17].

We consider that each gesture token has little effect on the
distant tokens and introduce a mask operation to block the im-
pact of distant tokens, increasing computational efficiency. Self-
attention is therefore computed by masking (excluding) the tokens
of gr, k <i—wUk > i+ o, where we experimentally set as ® = 20,
which corresponds to the intervals of nearly 10 seconds centered at
each token.

Decoder and soft swapper

Our transformer decoder is composed similarly to the vision trans-
former [DBK*21], where we set a single cross-attention layer of
a single head, as shown in Figure 3 (b). The residual block with
multi-layer perceptron has the same architecture as the above en-
coder.

The transformer decoder Tp gives the decoded content tokens G©
by taking the pair of encoded tokens for content and style as:

3 =Tp(Te(9%),Te(g")) . 3)

where T is the encoder of the style transformer using the position-
encoder in Equation (2).

The content tokens are then style-transferred by blending the
style tokens g®°. A soft-swapper gives the weights of blending, as
shown in Figure 3 (c), which computes the weights of style tokens
swapped by each content token based on their similarity. Similari-
ties between decoded content tokens and encoded style tokens are
computed by their dot-products and filtered by softmax functions
as follows,

g*'¢ = softmax(g° - Tz (g°)) g° - 4)

The style-transferred tokens g* ¢ are then fed to the auto-
encoder to obtain the final motion representation consisting of ev-
ery joint’s rotations. The blending and swapping mechanism can
preserve style gestures’ characteristic features and physical plausi-
bility. In addition, the final softmax operations can avoid excessive
blending of many tokens, which often causes over smoothing of the
resulting motions.

3.5. Loss functions

In training our CNN-based auto-encoder, the encoder’s output is
directly fed to the decoder while bypassing the style transfer layers.
We define the loss by the mean square of the restoration error in
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every pose, where the angular differences between the input and
output joint rotations were used as errors. Adam optimization was
used for training, setting the batch size to 32 and the learning rate to
10~%. Batches of training samples were randomly sampled in 256
frames with an even probability. We experimentally confirmed that
1000 epochs were sufficient to achieve convergence.

In training our style transfer mechanism, the loss function is de-
signed using the restoration error of the latent variables between
the original and synthesized motions. Identical motions were gen-
erated using the same latent tokens in the decoder of the gesture-
style transformer for both the content and style gesture samples.
Cyclically transferred motions are caused by transferring content
tokens with style one, and the resulting tokens are back-transferred
by using the same content tokens as style tokens.

In this way, we compute the identity and cyclic loss, denoted
by Ligeniry and Leyejic, respectively, by the norm of the difference
calculated as

Lidentiry = 16°'¢ = g°llc+1g°"* —g"lI< , (&)
Lcyclic = ”gClSlC_gC”T7 (6)
gclslc _ SOftmaX(§S|c~TE(gc))gC, (7

3" = 1o (Te(a" ). Tx(g")) | ®)

¢ and g*'* denote the content and style tokens whose

clste corresponds to the
slc

where g°'
styles are transferred by themselves, g
cyclically transferred token using the style-transferred tokens g
as content and g°© as style, and || || represents the averaged L2-norm
computed per each token.

These loss functions merely ensure the consistency of trans-
formations and cannot guarantee the similarity of the content be-
tween the content gesture and the transferred gesture. Therefore,
we add a loss function to ensure the consistency of meanings by
introducing structural similarity proposed by the image style trans-
fer [TBTBD22]. Let m(g) be the matrix of structural information
for g, which is extracted by the self-similarity of keys in the trans-
former encoder as

ki-kj .
m(g):{i, z,]zLZ,...,n}7 ki=mpgi, (9
i1

where the i-th key k; is obtained by the linear projection of the
i-th token with the linear matrix my for the keys. Structure loss,
which is the content dis-similarity of two gestures g¢ and g*'¢, is
then obtained by the Frobenious norm || || of the two matrices as
follows:

Lytructure = ||m(g°) —m(gS|°)||p . (10)

Our token-wise blending automatically inherits the intrinsic fea-
tures of style gestures because the resulting tokens are purely lin-
ear combinations of the original tokens for the target style gesture.
However, most style gestures include tokens of normal-style mo-
tions that are likely pattern-matched to the content tokens, by which
stylistic movements are missed during the transfer. Therefore, we
add a loss function to enhance the tokens of characteristic motions
to be more likely a match by introducing an appearance similar-
ity [TBTBD22], which is given by the L2-norm of the class-tokens



310 S. Kuriyama & T. Mukai & T. Taketomi & T. Mukasa / Context-based style transfer of tokenized gestures

between style and transferred gestures as
Lappearance = HCLSS _CLSS|CH2 B (11)

where CLS® and CLS* ' © indicate the class tokens for style and style-
transferred content gestures.

Our loss function L is finally given by
L= L[dgn[ity + Xch}rc[[c + 7\«? Lstructure + 7\41 Lappearnace ) (12)

where we set equal weights to A. = As = A, = 1.0 for all exper-
iments in the next section. This total loss L leads to the detailed
features of the style-transferred gesture differing from those of the
content gesture while preserving content similarity after style trans-
fer and the consistency of identically and cyclically transferred re-
sults.

Our transformer model was trained by randomly sampling a pair
of motion clips for content and style gestures with no behavioral
synchronization or time alignment; the only requirement was that
the performed motion had consistent styles within each clip. We
trained the networks for style transfer with eight content gesture
clips of 1280 frames per batch, and nine style gestures were uti-
lized. In addition, we set the learning rate by 10~ for 1000 epochs
and adopted no dropout operations in training the attention models.

4. Experiment
4.1. Dataset and trainings

Although there are some publicity-available datasets for gestural
motions, most of them do not have very expressive or exaggerated
gestures, on which our method mainly focuses. We, therefore, col-
lected motion samples for such styles of gestures by capturing them
with an optical device at 60 frames per second.

A professional female actor performed ordinary gestures and ex-
pressive gestures of two types: one enhancing extraversion and the
other enhancing an anime-like style by synchronizing movements
with the synthetic voice of each scenario. The total length of these
motion samples reached about 8 and 9 minutes, respectively, for
content and style (for further details, see Appendix B). These sam-
ples are used in training our style transformer and auto-encoder. To
enhance the auto-encoder training, we added samples of 230 sec-
onds, including various types of gestures captured without using
synchronization with voices (see Appendix B).

Our auto-encoder was trained by feeding the above motion sam-
ples with a batch size of 32 by randomly and evenly picking and
clipping per 256 frames. The training was sufficiently converged
after 103 epochs, which took approximately 23 minutes with the
learning rate by 10~ with no GPU.

The style transformer was trained by feeding the pair of content
and style gestures. We randomly and evenly sampled and clipped
1280 frames among the seven content samples and nine style ges-
tures, which produced 63 pairs. The training took approximately
6.2 minutes with a batch size of 8, using the same learning rate and
the number of epochs as the auto-encoder.

For experimental evaluations, we collected samples by asking
the same performer to behave in ordinary and expressive styles

while synchronizing 15 scenarios of utterances spanning from 20
to 36 seconds. These scenarios were borrowed from publicly-
available short voice samples for female characters. However, in
this case, all characteristic gestures are performed in a freestyle ac-
cording to the content of the scenario. This condition means that
all evaluated gestures have different styles from the samples used
in training. We collected two types of characteristic gestures: one
was performed freely, and the other was conducted to have similar
hand trajectories to the content sample while having the same ex-
pression as the freely performed one. The latter samples compare
our style transfer method with human imitations. The total length
was approximately 226 seconds for each sample type. Notice that
these samples are not used in training, by which our feasibility of
zero-shot learning is proved. In the evaluation phase, style gesture
is augmented by computing mirror symmetry. We confirmed that
the restoration accuracy of this auto-encoder is not degraded for
samples used in evaluations; the restoration errors for training and
testing samples have no significant differences independent of their
styles.

4.2. Quantitative evaluation of style transfer

‘We now focus on defining the similarity measures of gestures. From
the viewpoint of content preservations, we expect the output, i.e.,
the resulting motions after style transfer, to have the same meaning-
ful signs or symbols shaped by the postures of arms [Mcn94]. This
observation conceptually relates to the shape controls by the end-
effector’s key points in the EMOTE model [CCZB00]. We assume
that the similarity of the arms’ postures can be efficiently replaced
with the similarity of both hands’ trajectories because they mainly
appeal to the intention or meaning of gestures. Therefore, we sum
the L2-norms of both hands’ positions between the content gesture
and the style-transferred one as a content error after style trans-
fer. Because we focus on the similarity of the trajectories of the
hands, we measure the distance between hands of corresponding
poses by allowing the shift of frames. Let pé = [pf, pé, e pfp} be
the sequence of 6D vectors representing the 3D positions in meters
of both hands for the content (¢ = c) and style-transferred (¢ = x)
gestures, and the i-th content error component Ef°"*" is given as

El_content _ Hpg[ _ p;[ ||2 , (13)
I = FastDTW(pS,p"), (14)
where I = [[c1,x1],[c2,%2], ..., [cF,XF]] represents the sequence of

indices for corresponding pairs between p° and p* whose summa-
tion of Euclidean distances is minimized, which is efficiently com-
puted using the linear-order dynamic warping technique denoted
by FastDTW [SCO7].

For evaluating the preservation of styles after a transfer, we as-
sume that characteristic styles of gestures can be visually perceived
by the quickness or slowness of meaningful arms’ movements,
which can also be interpreted as slow-in/out features. This obser-
vation is conceptually related to the effort control by keyframe-to-
time functions in the EMOTE model [CCZBO00]. However, directly
computing the differences in velocities is complex and error-prone
because adequately pattern-matching the fragments of velocities is
difficult between the motion clips of different contents. Moreover,
unlike the content features, the style features are not a local prop-
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erty, and their semi-global patterns emerge irregularly within some
periods. From this observation, we evaluate the k-th error compo-
nent of style features, denoted by E}:zyle, using their statistical val-
ues per half-overlapped fixed interval 0 as

E]ityle - m}n (Dmean(p27pj)+Dstd(pz’p§')) , (15
Py, = P'{kho+1.kho+8), ho=16/2],  (16)

where | | is a round operation, p(kg,k;) denotes 6D hand posi-
tions segmented in the frame range from kg to &k, and Dyean and
Dg;4 denote the L2-norm of the difference in means and standard
deviation along frames between segments of hand positions for
style-transferred pj and target style p; gestures. We experimen-
tally set the interval 6 = 128 and also confirmed that the magnitude
relation of the mean errors for the resulting gestures was invariant
against the intervals of 6 = 64 and 256.

We evaluate gesture-style transfers by introducing three metrics
for each error. We compute the mean of errors computed for every
error component to evaluate overall performance. Moreover, we
focus on the worst-case among all components because the style
transfer should avoid instantaneous conspicuous deviations rather
than averaged ones. Therefore, we also compute the maximum er-
rors as a worst-case and the mean of the first 25 % most signifi-
cant errors for evaluating the group of conspicuous errors among
all components. We quantitatively evaluate the accuracy of style
transfer by the averages of these metrics for all evaluation samples,
assuming that good style transfers minimize these metrics, whereas
some trade-off exists between the errors of content and style.

Here, we evaluated the reliability of our error metrics, using the
samples for evaluations. Table 1 compares errors computed for con-
tent and style samples against those captured by performing sup-
posed style-transfers as referential samples. This result shows that
all content errors are smaller for the content than those for the style.
On the contrary, all style errors are smaller for the style than those
for the content. This relation roughly demonstrates the validity of
our error metrics.

Table 1: Error metrics of content and style samples compared with
those performed as referential samples. The w25% denotes the av-
erage of worst-25% error metrics.

Content errors ECoent |, Style errors ES¢ |
mean  worst W25% | mean  worst w25%
Content 0.139 0.51 0.3 1.14 2.65 2.14
Style 0.293 0.785  0.557 0.997 2.11 1.69

Samples

4.3. Comparison with existing methodologies

Here, we compare the performance of our method using the er-
ror metrics mentioned above. We first select a commonly used
approach for motion style transfer, which considers the style fea-
tures based on the mean and variances over time for each chan-
nel. This approach converts the latent variables of content gesture
2= {Z§:1‘2.4..,F}’ with the means and variances for those of style
gestures 2° = {zi=12,..r}> in an adaptive instance normalization
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as,

C Cc
X _ sy Li _ﬂ(z ) §
<j _G(Z ) lc(zc) +:u(z ) ) amn
where u(z) and 6(z) denote the mean and standard deviation for
z, and 7} is the i-th latent variable for the style-transferred gesture.
This method is regarded as the comparative study against our token-
based composition of style transfer.

The second comparative method was swapping tokens using
pattern-matching of content and style gestures. Let g5; and gj, be
the n-th content token and m-th style token, respectively, and gj; is
replaced by the most similar style token g} as

g = [8h g giy] o in = argmax,, arceos(gh-gn) . (18)
where g} is the i-th token of the style gesture, and gy, g5, are
the flattened 1D vector of gy, g5, whose lengths are normalized
to 1. We adopt regularization for the latent variables z°, z° be-
fore and after the swapping operation using mean and standard
deviation, in a similar way to image style transfer called Avatar-
net [SLSW18]. This method is compared to evaluate the effective-
ness of our transformer-based style transfer.

In addition, we evaluate our swapping mechanism in a hard-max
manner by replacing Equation (18) with

in = argmax (g“ -Tg (gs)) . (19)

where this approach corresponds to the ablation of our soft-
swapping mechanism.

Moreover, we evaluate the similarity of the style-transferred
samples against ones performed by the same actor. For each
content-style pair of gesture samples used for style transfer, we
asked the actor to imitate a gesture regarded as a ground truth
while consciously performing the same meaning and expression as
the content and style samples, respectively. We computed the error
metric using these imitated gestures as a style-transferred result.

We evaluated the style transfer for two conditions: one uses
content-style pairs performed in the same scenario, and another
uses all style samples whose scenarios are different from content
samples. In the former intra-scenario condition, the style samples
have relatively similar content owing to the same scenario, whereas
the actor freely performed by neglecting the correspondence to the
content gesture. On the other hand, the latter inter-scenario con-
dition is regarded as a more difficult case because the contents of
style samples largely differ due to the different scenarios.

As shown in Tables 2 and 3, our method has the minimum mean
errors in content and style, and this indicates superior overall per-
formance. AdalN has larger mean content errors and smaller worst
errors, suggesting that statistics-based conversion conservatively
transfers the styles due to its global property. The larger style er-
rors in all metrics for Avatar-net and Hard swap imply the diffi-
culty of transferring style features by one-to-one swapping without
a blending technique. On the other hand, our method achieved the
smallest style errors in all metrics. The magnitude correlation be-
tween intra- and inter-scenario conditions is very high because the
methods of the first and secondary minimum errors mostly coin-
cide; the exception is the tied relation in the content worst 25%
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errors. As expected, all error metrics increase in the inter-scenario
condition compared with intra-scenario ones. However, the degra-
dation in style similarity is slight, considering the large degradation
in content similarity.

Table 2: Error metric comparison of intra-scenario style-transfer
for various swapping approaches. Parenthesized number in Method
denotes the index of the corresponding equation. Bold values indi-
cate the minimum values, and italic values indicate the secondary
minimum values.

Method Content errors E€"e" || Style errors E*e |

mean  worst W25% | mean  worst < Ww25%

AdalN 17) 0.192 0421 0289 | 0.763 1.59 1.34
Avatar-net (18) 0.189 0491 0334 0.92 2.07 1.61
Hard swap 19) | 0.171 0493  0.307 | 0.886  2.07 1.64
Soft swap (ours) 0.16 0443 0289 | 0.646 1.43 1.19

Table 3: Error metric comparison of inter-scenario style-transfer
for various swapping approaches.

Method Content errors Ecoment | Style errors ES¢ |

mean  worst Ww25% | mean  worst < Ww25%

AdalN (17) 0.239 0.49 0.35 0.782 1.68 1.39
Avatar-net (18) 0.258 0.626  0.439 1.01 2.13 1.75
Hard swap (19) 0.212 0.528 0.359 0.959 2.02 1.7
Soft swap (ours) | 0.206  0.495  0.348 | 0.693 1.49 1.27

For a qualitative evaluation, we visually compare content errors
with the existing methods by the poses produced at the same frame
time. Figure 4 shows the snapshots of the poses whose differences
against the content sample are noticeable. In all cases, the poses
generated by AdalN and Avatar-net caused significant disparities
rather than those generated by our method. Although the poses by
our method also differ from the content in the fourth and bottom
rows, the poses have more similar shapes than those of the compar-
ative approaches from the viewpoint of gesture’s meaning.

Figure 5 shows failures generated by our methods. The results
in the first and second rows imply that the target style gestures
have no corresponding poses to the content poses. In contrast, the
AdalN approach works well when the shape of the content pose is
relatively simple, as shown in the first column. The results in the
third and fourth rows show a similar tendency for more significant
differences. We found that the incorrect poses by the swap-based
transfers (c), (d), and (e) have a similar shape that crossing both
arms in front of a chest. On the other hand, the resulting poses in
the bottom row show an opposite phenomenon; the arm-crossing
pose in the content sample can not be correctly transferred in all ap-
proaches. This curious bias should be investigated. We also found
that the hard swap model occasionally causes noisy vibrations, as
shown in the supplementary movie. All snapshots in Figures 4 and
5 are picked up from the intra-scenario samples (see Table 7 for
details).
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Figure 4: Snapshot of poses generated by comparative approaches.
From top to bottom, the poses are sampled from the scenarios of 10,
15,15, 9, 13 in Table 7

4.4. Ablation study of loss functions

Here we evaluate the effect of our loss functions. We trained the
style transfer network by omitting a loss function one by one. Table
4 shows the error metrics for the combinations of intra- and inter-
scenarios, which shows the degradation of accuracy. The worsen
errors are marked in bold, and the minimum errors within each
metric are marked in italic. This result suggests that the identity
and cyclic losses, which are introduced for consistency in transfer,
affect the similarity of content, and the structure and appearance
losses, which are computed by splicing the transformer variables,
affect the similarity of style.

Interestingly, omitting identity loss achieved the minimum style
errors, and omitting structure loss achieved the minimum content

(© 2022 The Author(s)
Computer Graphics Forum (©) 2022 The Eurographics Association and John Wiley & Sons Ltd.



S. Kuriyama & T. Mukai & T. Taketomi & T. Mukasa / Context-based style transfer of tokenized gestures 313

A
I

!

i
7 | 1'/ 7 &
\ ™ |

N

‘ :
A ~
At

-
e

e
««

«

e

,;}-
e

.
€

.

5
e
e
-
‘e
‘e
Sy
L

e
(S
e
‘_g...—

_EH_

e
P
e
“
-
L

g
e
=
-

.
.
€
€
«
€
.
.

[
-
[
e
e
o
[
[

g > S
i..._. —

\/ )
3

AR Ty re v vy
< R4

(a) Content (b) AdaIN  (c) Avatar-net (d) Hard swap (e) Ours

Figure 5: Incorrect poses caused by our method. From top to bot-
tom, the poses are sampled from the scenarios of 8, 12, 9, 12, 5 in
Table 7

errors. These results implied some trade-offs between these losses
and the potential to use two types of loss settings depending on
the relative importance of the content and style. Nevertheless, the
use of all losses can achieve the best performance that ensures both
qualities of content and style.

5. Conclusion

We proposed a style transfer for gestural animations by incorpo-
rating a transformer model for gesture tokens. Our NN model can
be trained unsupervised and requires no additional training for new
style samples, similar to the relevant image-style transfer. This ad-
vantage can avoid the high cost of preparing time-aligned pairs of
content and style gestural clips as supervised samples. Our token-
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Table 4: Error metric comparison for every ablation of a loss func-
tion, using all combinations of scenarios. The worsened results
caused by each ablation are marked in bold letters, and the min-
imum values for every error metric are marked in italic letters.

Loss Content errors E<oment |, Style errors ES7¢ |
conditions mean  worst w25% | mean  worst w25%
WI0 Ligensity 0.216 0.495 0.36 0.59 1.26 1.09
W/0 Leyelic 0.208 0.509 0.356 | 0.696 1.5 1.26

W/0 Lytructure 0.198 0488 0338 | 0709 1.54 1.3
w/0 Lappearance | 0.201  0.491 0344 | 0.708 1.53 1.29

L (all losses) 0203 0491  0.344 | 0.689 1.49 1.26

wise transfer ensures motion plausibility because the resulting mo-
tions are composed of a linear combination of a few tokens of a
style gesture in a latent space. Moreover, this mechanism robustly
preserved the characteristic features of expressive gestures.

Our zero-shot learning approach can efficiently transfer style
features by piecewise-reshuffling of target style gestures; its expres-
sive power, however, still depends on the diversity or richness of the
training dataset and the similarity of reshuffled gestures. The em-
bedding space obtained by the auto-encoder restricts the expression
space, and the preservation of content motion is essentially limited
by the structure of the target style gesture. Although these limita-
tions are common to the patch-based image style transfer, they are
more severe and problematic for the motion data due to the lack of
training dataset and the amount of information inherent in each mo-
tion clip. Although our method still needs improvement for more
convincingly transferring target styles, increasing the amount and
variety of samples could be a simple solution. Therefore, sophisti-
cated data augmentation should be developed.

Recently, fully automatic gesture syntheses from voice signals
have been intensively developed; most of them, however, lack flex-
ible controls of expressive gestures. This defect becomes serious
in applying entertainment fields that require rich expressions of
avatars’ actions and behaviors in an interactive way. The compu-
tational cost of our style transfer is very small and can be run on-
the-fly, and this advantage supports the integration with the state-
of-the-art gesture synthesis systems, which is the final target of this
study.

Although we fixed the token size for the content and style mo-
tions, some adaptive optimizations could be developed by treating
the size as learnable parameters. These extensions might increase
the controllability of the styles more flexibly. Our method deals
with joint rotations and requires no joint positions, which has the
scalability to the change in body size. However, the performance
of style transfer might be degraded when we train the auto-encoder
for multiple actors at once due to its simple architecture. This pos-
sible defect motivates us to develop a more flexible auto-encoder
that can adapt to various body shapes, for example, by introducing
a graph-based hierarchy [YXL18,JPL22].

The current limitation of our method is the controllability of the
root (or waist) joint because the bending style of the waist cannot be
fully reflected in the styles. Furthermore, the actual contribution of
our method is limited to upper-body movements. Our method indi-
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rectly controls the lower-body motions through the upper-body mo-
tions by assuming their correlations, but we could not evaluate their
plausibility and the effects of style transfer in a meaningful way. As
a by-product of this defect, kinematics constraints of the foot po-
sition are easily broken, which causes foot sliding defects. Most
motion-style transfer methods suffer from kinematic problems and
introduce numerical adjustments based on inverse kinematics. Al-
though our method can also introduce such numerical solutions, the
resulting gestures might lose the style feature according to the in-
crease of adjustments. Therefore, a more intensive study is required
to capture the gesture styles for a full-body scope. The motions of
hand (fingers) play an important role in expressive gestures, and
our future works also include the style transfer of hand motions,
ideally as an integrated system.
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Appendix
A. Detailed architecture of feature embedding auto-encoder

The encoders are composed of three one-dimensional convolutional
layers followed by a GeLU activation function, where the convolu-
tion is performed along the time (frame) axis. The first layer sets
the kernel width and stride by 1, the second and third layers set
kernel widths by three and strides by two, and the channels are suc-
cessively converted from 39 to 64, 32, and 16, respectively. This
setting was inversely replicated in the decoder.

The channels are altered as 16 — 32 — 64 — 39 and 16 — 16 —
32 — 24 for the upper-half and lower-half decoders, respectively.
Instead of using multiple strides to expand the frames to the original
length, we utilize an upsampling layer using a scale factor of 2
and linear interpolation before the first and second deconvolutional
layers to ensure smoothness. Except for the last layer, activation
with the GeLU function is similarly used after deconvolution. Note
that this auto-encoder is trained independently of the style transfer
networks.

B. Dataset for training

Table 5 shows the details of motion clips used for training the style
transformer and auto-encoder. The parenthesized symbols in Sce-
nario denote the capital letter of spoken languages; English and
Japanese, and the symbols in Style condition denote the capitals of
Ordinary, Extraversion, and Anime-like, respectively. The Length
is the duration of the gesture in seconds for each style condition.

Table 5: Gesture samples used for training our neural networks.

Scenario Style condition | Length (sec.)
Weather forecaster (E) 0.E 63
Weather forecaster (J) 0,A 54
Flight attendant (E) O,E 62
Flight attendant (J) 0,A 75
Reading fairy tale (E) O,E 72
Reading fairy tale (J) 0, A 82
Product introduction (J) O,E A 50
Encouraging talk (J) E 46

Table 6 shows the motion clips added for training auto-encoder,
where all samples were captured without using spoken voice. The
Length is the duration of the gesture in seconds.
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Table 6: Gesture samples added in training auto-encoder.

Scenario Length (sec.)
Pointing (one hand, sideway directions) 25
Pointing (one hand, back and force directions) 37
Pointing (two hands, sideway directions) 27
Pointing (two hands, back and force directions) 47
Exaggerated pointing (various hands and directions) 40
‘Work operations 23
Signature poses 31

C. Dataset for evaluations

Table 7 shows the details of motion clips used for evaluations. The
Content denotes the scenario of the gesture, the Style denotes the
performed style, and the Length is the duration of the gesture in
seconds for each style condition. Notice that every sample also in-
cludes the same duration motion clips performed as an ordinary
style and a supposed transferred style.

Table 7: Gesture samples used for evaluations.

No. | Content Style Length (sec.)
1 Attack Coldly and disappointedly 31
2 Begging Friendly and lively 27
3 Blame Coldly 22
4 Denying In an panic 32
5 Excuse In doubt 24
6 Expectation Uneasy 35
7 Good-bye Neatly and cleanly 35
8 Hate Proudly 31
9 Order High-handedly 20
10 Reminiscence | Gratefully 30
11 Talk in cafe Actively and charmingly 36
12 Teaching Kindly 34
13 Teenage chat Pleasurably 34
14 Temptation Sexy 30
15 ‘Waking up Hurriedly and violently 32




