
ACM SIGGRAPH / Eurographics Symposium on Computer Animation 2022
D. L. Michels and S. Pirk
(Guest Editors)

Volume 41 (2022), Number 8

Generating Upper-Body Motion for Real-Time Characters
Making their Way through Dynamic Environments

Eduardo Alvarado1, Damien Rohmer1, Marie-Paule Cani1

{eduardo.alvarado-pinero,damien.rohmer,marie-paule.cani}@polytechnique.edu
1 LIX, École Polytechnique/CNRS, Institut Polytechnique de Paris, Palaiseau, France

Figure 1: Thanks to a hybrid physical-kinematic model allowing the adjustment of tension/relaxation in the upper-body, our responsive
character is able to anticipate interactions in order to make its way through a variety of obstacles, while being driven by an input walking
motion.

Abstract
Real-time character animation in dynamic environments requires the generation of plausible upper-body movements regardless
of the nature of the environment, including non-rigid obstacles such as vegetation. We propose a flexible model for upper-body
interactions, based on the anticipation of the character’s surroundings, and on antagonistic controllers to adapt the amount
of muscular stiffness and response time to better deal with obstacles. Our solution relies on a hybrid method for character
animation that couples a keyframe sequence with kinematic constraints and lightweight physics. The dynamic response of the
character’s upper-limbs leverages antagonistic controllers, allowing us to tune tension/relaxation in the upper-body without
diverging from the reference keyframe motion. A new sight model, controlled by procedural rules, enables high-level authoring
of the way the character generates interactions by adapting its stiffness and reaction time. As results show, our real-time method
offers precise and explicit control over the character’s behavior and style, while seamlessly adapting to new situations. Our
model is therefore well suited for gaming applications.

CCS Concepts
• Computing methodologies → Animation;

1. Introduction

Being able to animate virtual characters navigating through com-
plex, dynamic environments is of utmost importance for video
games and virtual reality applications. Natural scenes that typically
include tall plants, bushes, and trees of various types and sizes are
particularly challenging.

In real life, we, humans, constantly anticipate and adapt our
upper-body motions when making our way through complex envi-

ronments. Roughly evaluating the expected stiffness and dynamics
of obstacles helps us anticipate interactions, and in particular tune
our muscular stiffness and reaction speed in order to efficiently
push them out of the way or avoid their trajectories. For exam-
ple, we stay relaxed making space around us in the middle of tall
grass, but we tense our muscles to fend off a stiffer branch of a
tree or quickly protect our head when a potentially dangerous ob-
ject comes toward us. Moreover, the way we interact with obstacles

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.14633

https://diglib.eg.orghttps://www.eg.org

https://doi.org/10.1111/cgf.14633


E. Alvarado et al. / Generating Upper-Body Motion for Real-Time Characters Making their way through Complex Environments

does not only depend on our prediction but also adapts dynamically
to the environment’s response, especially if it differs from our ex-
pectations.

While recent video games produce highly realistic images of nat-
ural scenes [Koj19, Gue22], the range of dynamic interactions they
can handle between a character and its environment remains quite
limited. Indeed, the combined need of predictable overall motion
and high performance usually prevents the use of fully physically-
based models in gaming applications. Therefore, modeling interac-
tions usually requires the dynamic selection of a best animation clip
from a motion library, and coupling it in real time with a suitable
response of the environment, as was done, for instance, to model
characters walking on loose grounds such as mud or snow [Roc18].
Leveraging such lightweight animation clips with simple adapta-
tion to various environments would tremendously ease the design
of video games. Ideally, a game designer should be able to use stan-
dard pre-recorded animations, and refine and adapt these efficiently
in a semi-automatic way to different behaviors. To this end, the ges-
tures of the character should (i) automatically adapt in a plausible
way to its surrounding environment when needed (i.e., a character
making their way through dynamic environments such as in dense
vegetation), (ii) still follow, while doing so, the high-level intent set
by the designer, while (iii) relying on the initial animation clip for
the general motion.

In this work, we propose a real-time animation model for the
upper-body of human-like virtual characters; it provides high-level
behavioral control in order to interact plausibly with dynamic ob-
stacles. Composed of an anticipation mechanism based on sight,
followed by a rule-based action module, our model makes the char-
acter responsive to its surroundings by allowing it to push away
dynamic obstacles made of hierarchical articulated rigid bodies as-
sociated to visual skinned-rigs, and make its way through the ob-
served environment. To achieve this, we introduce a hybrid, layered
character model that couples the input keyframe animation with a
lightweight physics-inspired model, used to dynamically adapt the
upper-body animation. The character is able to anticipate interac-
tions based on high-level rules that take into account ray-cast visi-
bility as well as the predicted stiffness of obstacles. This anticipa-
tion mechanism is used to guide an Inverse Kinematics (IK) objec-
tive that drives the character’s gestures with suitable synchroniza-
tion and amount of muscular stiffness. Our solution allows char-
acters to react to any upcoming obstacle, and therefore to plan ac-
tions, through simple real-time query about their surroundings. The
interaction process relies on a dedicated reformulation of Neff and
Fiume’s antagonist control method [NF02], which enables us to
control tension/relaxation during a character’s motion without af-
fecting the position and angular objectives of its limbs. Ultimately,
our model generates plausible action for a character, whatever its
current state and the nature of obstacles, while remaining loosely
driven by the input kinematic motion clip.

Our technical contributions are threefold:

• A real-time, hybrid character model coupling keyframe anima-
tions with a lightweight physics-inspired model for each upper-
body limb separately. It makes the upper-body of kinematic-
controlled characters able to interact through plausible dynamic
responses (Sec. 3).

• An extension of antagonist controllers [NF02] allowing the intu-
itive tuning of gestures and interaction styles by dissociating the
position and orientation of the limbs from their degree of mus-
cular rigidity (Sec. 4).

• An efficient, yet generic and customizable anticipation mech-
anism that enables our model to couple high-level procedural
rules with metadata from observed obstacles. By driving the
kinematic controllers and anticipating the amount of tension or
reaction time required, this mechanism generates character ani-
mations that adapt to the surroundings (Sec. 5).

Fig. 1 illustrates the application of our method to a real-time char-
acter making its way through a variety of dynamic environments,
including deformable obstacles.

2. Related Work

Generating the reactive motion for an agent in a dynamic envi-
ronment is an active research topic. It was addressed in differ-
ent fields, from Computer Graphics (CG) to robotics and bio-
mechanics (e.g., [SP17]). For the sake of conciseness, we focus
here on CG research tackling the reciprocal influence between char-
acter motion and animation of its virtual surroundings.

2.1. Controlling Physically-Based Characters

Since the early years of CG animation, physically-based models
have been explored to represent reactive characters in dynamic
environments [RH91, HBWO95]. Ragdoll models represent each
limb as a constrained articulated rigid-body with prescribed mass
and inertia. The character’s motion can be handled by applying
a set of actuator forces and torques to the rigid bodies coupled
with a numerical time integrator. However, computing coherent
forces over time to achieve a given motion is a complex problem.
A popular approach relies on the use of high-level controllers for
joint actuation, providing a trade-off between motion plausibility
and the complexity of user-control [GP12]. Proportional-Derivative
(PD) controllers are in particular considered as common ground for
character-animation methods [YLv07, WFH10]. However, despite
their simplicity, instability and stiffness control are still recurrent
problems when reproducing highly-dynamic and accurate anima-
tions.

Stable Proportional-Derivative (SPD) controllers [TLT11,YY20]
introduce the idea of incorporating the next simulation step into
the computation of forces, thus improving numerical stability
and performance. Simplified physical models [KH10, KHH17],
stochastic optimal control [LYV∗10], or Model Predictive Con-
trol (MPC) [TET12, TMT14, EHSN19] have also been success-
fully used to animate virtual agents with PD controllers at their
joints. In terms of motor parameterization, Abe et al. [ALP04] add
momentum constraints to generate more plausible physical move-
ments. Proportional controllers mix stiffness (which models the
appearance of tension/relaxation in the character) and the joint
orientation at the equilibrium state. This dependence may ham-
per the intuitiveness and precision that a user may want to ad-
dress when parameterizing its character behavior. Neff and Fi-
ume [NF02] introduce an antagonistic-based PD formulation, al-
lowing them to decouple stiffness and equilibrium-state orientation.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

170



E. Alvarado et al. / Generating Upper-Body Motion for Real-Time Characters Making their way through Complex Environments

In our work, we leverage and extend their antagonistic formula-
tion for arbitrary 3D limb motions, and demonstrate that it can be
used to dynamically edit keyframe animations in an online fash-
ion and to decouple stiffness and position controls. To the best of
our knowledge, joint-based stiffness control has shown benefits in
robotics [BSTS11, BN15, MMLG∗19], but has not yet been fully
explored for character animation.

The use of Reinforcement Learning (RL) has become preva-
lent in recent years for optimizing physically-based controller pa-
rameters [KAK∗22]. These approaches can preserve character bal-
ance to achieve realistic locomotion up to complex acrobatic ges-
tures [CMM∗18,PALvdP18,PCZ∗20]. However, it is still a difficult
task to define an accurate, yet general reward system that performs
well in selecting the best action under a multitude of scenarios.
Thanks to the democratization and availability of motion capture
data, Deep Learning (DL) based motion synthesis has been very
successful in reproducing lifelike character motions for prescribed-
scenarios [HKS17, HFO∗20, MHL∗21]. Most particularly, DL has
been combined with RL to handle real-time dynamic simulated be-
haviors while preserving the naturalness of the training data. The
effectiveness of such combination was demonstrated for charac-
ters maintaining their balance in new environments with moving
solid obstacles [BCHF19, WGSF20]. However, learning-based ap-
proaches still suffer from limitations that make them hard to use for
efficient game-like setups in natural environments. First, precise
authoring of learned behaviors is highly indirect and hard to pre-
dict; yet, this aspect is of utmost importance for game design. Sec-
ond, natural environments are characterized by diverse deformable
elements such as various types of vegetations or uneven terrains.
Each natural element may be associated with different physical
properties and thus, could trigger specific character behaviors. Pre-
training all possible deformations and behaviors would be, at best,
very challenging. This is also orthogonal to the process of current
game development, where tuning of flexible behaviors and inser-
tion of new environment assets have to be as lightweight as possi-
ble.

2.2. Hybrid Character Models using Kinematics

Kinematic-driven virtual characters are extremely efficient to com-
pute and allow intuitive formulations for constraints and objec-
tives. Hybrid models combine physical or data-driven represen-
tations with kinematics to offer a trade-off between automatic
motion quality, automatic pose adaptation, and user-control. The
use of space-time constraints [WK88] is a common way to de-
scribe kinematics objectives while preserving character dynamics,
but it involves an optimization procedure that is not applicable
at run time. The use of Inverse Kinematics (IK) is an intuitive
representation to specify end-effector objectives in a kinematic-
chain [ALCS18]. It was used, for instance, in combination with
physical constraints [BMT96] and hierarchical motion curve edit-
ing [LS99]; it was also combined with short-term dynamical ef-
fects [RRSK12]. Extending motion synthesis to the morphology
of an arbitrary character was proposed in integrating procedu-
ral techniques with a gait generator in dynamic environments for
both quadruped and multi-legged characters [KMG∗, KGM∗12].
A lightweight physically-based model reduced to a single inverse

pendulum was combined with keyframe animations to generate
a responsive, real-time character for augmented reality applica-
tions [MAA∗09].

Similar to our approach, some work proposed local hybrid mod-
els addressing the motion of some parts of the upper-body, such as
the arms. Zordan and Hodgins [ZH99] added contact constraints to
locally modify motion capture data, and extended it further to in-
tegrate dynamic responses [ZH02]. Arm motion was also studied
using learning-based approaches in sport applications [LH18], and
used to infer lower-body motions in VR [YKL21]. In our work, we
introduce a framework that helps the user define upper-body anima-
tions by locally combining keyframes and light physical control.

2.3. Controlling Characters in Natural Environments

Natural scenes are characterized by a rich set of dynamic and de-
formable elements , which might affect how the character actively
behaves. Although visuomotor systems have been used to adapt
the character based on external observations [EHSN19], generat-
ing plausible, yet general motions that remain controllable for vir-
tual characters interacting with such environments – in real-time –
is challenging, due to the computational cost of a full-scale phys-
ical simulation of both, characters and deformable materials that
might constitute the ground or vegetation. Layered models embed-
ding simplified representations of the environment’s response have
been successfully used for real-time applications. For instance,
a simplified fluid representation was used for swimming charac-
ters [YLS04], or for windy environments [LGS∗11]. A simpli-
fied friction model was used to represent human locomotion effi-
ciently on semi-flooded grounds [BTZZ18] or through dense veg-
etation represented using billboards [PARC21]. An essential as-
pect in plausible natural environments is the bi-directional interac-
tion between the character and the scene. The character should not
only adapt to its surroundings, but the environment itself should
also be deformed by the character’s actions. In the resulting two-
way interaction, the character’s behavior should dynamically adapt
to the ongoing deformation. Such coupled interactions were pro-
posed for lower-body motions on soft natural grounds, such as mud
or snow [APRC22]. However, to the best of our knowledge, no
work has yet tackled the real-time action-reaction of the character’s
upper-body in interaction with a natural environment.

3. Hybrid Character Model for Upper-Body Interactions

We introduce a hybrid model that couples keyframe animation
and lightweight physical simulation for human-like characters. Our
novel system aims to be flexible enough to coexist with current
gaming animation pipelines, such as in Unity 3D, by bringing to-
gether hand-crafted animations or motion-capture data, with on-
the-fly actions and reactions to new situations. The hybrid model
is able to switch between physical and kinematic spaces indepen-
dently for the different body parts. This allows the game designer
to improve the interactive motion from the predefined kinematic
controllers, based on the effects that the dynamic, deforming en-
vironment might have upon specific body parts, as well as on the
actions that the character physically exerts on its surroundings.

We define the character as a human (bipedal) model represented

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

171



E. Alvarado et al. / Generating Upper-Body Motion for Real-Time Characters Making their way through Complex Environments

by a skin mesh, rigged to an articulated animation skeleton. This
model can be associated to a set of predefined animations such as
walking or running, either manually defined by keyframes or, al-
ternatively, from motion-capture data. In this work, we call input
skeleton the animated skeleton that follows these predefined move-
ments. It will be used as a soft constraint to guide our hybrid model.
In parallel, we associate a physically-based ragdoll model to a sub-
set of the character’s limbs using an anchor system (that will be
described later). Each physical limb is described as a rigid-body
model defined by its mass, its center of mass, and its inertia ten-
sor. Limbs are connected by joints, with angular limits for each
degree of freedom. A physical simulator computes the movements
of this skeleton model, and takes into account the various forces
and torques acting on it, such as the action of the weight on each
limb, any other external force such as response forces due to inter-
actions, as well as the actuator torques computed by our approach
to animate the skeleton.

Figure 2 gives an overview of our animation pipeline. At each
time t, we update the input skeleton regardless of the environment.
Then, we consider the local surroundings of the character, thanks
to a lightweight visibility model. Each obstacle type, its proxim-
ity, and its velocity are interpreted using a high-level rule-based
system that provides kinematic objectives to the character’s upper-
body, such as pushing obstacles away with one or both hands, or
protecting itself. These objectives are handled using an IK solver,
and leading to the generation of an intermediate kinematic skeleton.
This skeleton can address high-level goals but does not integrate yet
any dynamic response. To this end, we compute actuator torques
on a specific subset of dynamic limbs defined by an anchor, us-
ing an antagonistic controller representation. The latter allows the
physical model to move towards the time-varying kinematic skele-
ton, whatever our choice of stiffness (i.e., tension/relaxation) in the
limbs. This stiffness is adapted in real time, either from our antici-
pation model before establishing contact with an obstacle, or from
the current interaction forces during contact. As a result, the tar-
get motion defined by the kinematic skeleton drives the physically-
based limbs selected by the anchor system, leading to the final re-
sponsive skeleton able to act on its dynamic surroundings, and to
react to interactions in a plausible way.

We consider the following conventions to represent our skele-
tons (see Fig. 3): Each skeleton joint frame, located at the base
of a bone, is encoded as a position p and an orientation q (unit
quaternion), both w.r.t. its parent frame in the skeleton hierar-
chy. The local Y axis is assumed to be aligned with the bone.
In order to limit the physically-based simulation to a local subset
of the skeleton, the final upper-body responsive skeleton is parti-
tioned into a set of kinematic parts and dynamic parts. Assum-
ing that joint 0 corresponds to the root at the level of the hips,
the partition between kinematic and dynamic bones is defined by
the anchor a ∈ A, where A is a set of admissible bones indicated
in bold in Fig. 3. For a joint a and parent joint p(a), all ances-
tors ((pkin

0 ,qkin
0 ), · · · ,(pkin

p(a),q
kin
p(a))) are considered as kinematics-

driven, while the descendants ((pa,qa), · · · ,(pn,qn)) up to the end-
effector n of the hierarchy are considered as dynamic ones with po-
sitions/orientations computed from the rigid-body simulator. An-
chor a plays the role of a local physical-root, and the choice of a
in the hierarchy depends on the nature of the current interaction.

Ragdoll
Skeleton

Kinematic 
Skeleton

Environment Data

IK solver

Target

Antagonistic 
Control

Anticipation Model

Visibility 
Model

Procedural 
Rules

User-Parametrization

Obstacle-Stiffness 
Relation

Metadata

Anchor

Responsive 
Skeleton

Hybrid Model

Input
Skeleton

Action-Reaction

Figure 2: Overview of the animation pipeline for the hybrid model.

Fig. 4 shows the effect of choosing different nodes for a for a static
character with no external, upper-body interactions, where only the
weights of the limbs are applied to the rigid-body simulation. Note
that several anchors can be set at the same time, for instance for
having both left and right arms be driven by dynamics, while the
rest of the body remains fully kinematic.

Figure 3: Physical model of a character. The anchor is chosen
among the possible positions a ∈ A, shown as spheres at the joints.
The anchor a partitions the skeleton hierarchy into a set of kine-
matic versus dynamic bones.

4. Extension of Antagonistic-based Control

In this section, we first remind the general principle of antagonis-
tic controllers [NF02] and their interest to control the dynamic part
of the responsive skeleton, before describing our formulation, de-
signed for joints with two or three degrees of freedom.

4.1. Antagonistic controllers principles

Controllers for physically-based character models generally rely on
Proportional-Derivative (PD) controllers, which convert the angu-

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

172



E. Alvarado et al. / Generating Upper-Body Motion for Real-Time Characters Making their way through Complex Environments

Figure 4: Impact on the choice of an anchor on the responsive skeleton. Left: Input kinematic skeleton with yellow spheres representing
the possible choices for an anchor. Right: responsive skeleton, where the weights of the limbs are only the external forces. The physical
simulation takes control of the part of the character down the hierarchy, starting at the user-defined anchor point (where a = 0 is the hips
join, and a = 8 is the wrist). The user may set an anchor on a single arm, or on both (shown for a = 6 and a = 7).

Ragdoll Joint

Current Rotation 𝑞

Kinematic Joint

Target Rotation 𝑞

𝑞௫

𝑞௫


𝐴𝑥𝑖𝑠 − 𝐴𝑛𝑔𝑙𝑒

𝐴𝑥𝑖𝑠 − 𝐴𝑛𝑔𝑙𝑒

(𝒖𝒙, 𝜃௫)

(𝒖𝒙, 𝜃௫
)

𝑞௬

𝑞௬


𝐴𝑥𝑖𝑠 − 𝐴𝑛𝑔𝑙𝑒

𝐴𝑥𝑖𝑠 − 𝐴𝑛𝑔𝑙𝑒

(𝒖𝒚, 𝜃௬)

(𝒖𝒚, 𝜃௬
)

𝑞௭

𝑞௭


𝐴𝑥𝑖𝑠 − 𝐴𝑛𝑔𝑙𝑒

𝐴𝑥𝑖𝑠 − 𝐴𝑛𝑔𝑙𝑒

(𝒖𝒛, 𝜃௭)

(𝒖𝒛, 𝜃௭
)

𝝉 = (𝜏௫, 𝜏௬, 𝜏௭)

𝑃𝐷௭
௧

𝜏௫

Spring-Set Points (𝜃௫
, 𝜃௫

ு) (𝜃௬
, 𝜃௬

ு) (𝜃௭
, 𝜃௭

ு)

𝝉 𝒈𝒍𝒐𝒃𝒂𝒍

S
w

in
g-

Tw
is

t 
D

ec
om

po
si

tio
n 𝑃𝐷௫

௧

𝑃𝐷௬
௧

𝜏௬

𝜏௭

Figure 5: Antagonistic-based control for a 3-DOF joint. The system retrieves both, target and current orientation, and uses Swing-Twist
Decomposition to get an orientation for each joint axis. Then, we convert the orientations to Axis-Angle representation and estimate the
angular differences with respect to the user-defined spring-set points. Finally, these angular deviations are fed to the antagonistic controllers,
which provide a torque that drives the physically-based model to the kinematic target orientation.

lar error in their proportional part to a spring-like force of pre-
scribed stiffness. However, on the one hand, setting a fixed value
for the stiffness does not allow a skeleton to reach precisely a target
orientation when external torques are applied, such as the effect of
weight. On the other hand, changing the stiffness by increasing or
decreasing it over time to reach an objective angle affects the style
of the motion, by making it more or less tense or relaxed. Derived
from Feldman’s theory on bio-mechanical motor control [Fel66],
the notion of antagonistic controller provides an elegant solution
to stiffness control. First, it guarantees to reach the equilibrium at
any arbitrary target orientation, specified within admissible bounds.
Second, it preserves the joint tension, and therefore the motion

style, throughout the animation. While antagonist controllers were
already introduced in CG [NF02], the method was developed for
pre-computed target motions only, and the original approach suf-
fered from gimbal lock issues when dealing with the elbow joints.
We therefore propose a new formulation, compatible with interac-
tive motions where the target objective may change at run time, and
expressed in local coordinates in order to avoid gimbal-lock issues.

Inspired from human anatomy, an antagonist controller models
the action of a pair of antagonist muscles controlling the angle be-
tween two limbs at a given joint. The combined effect of two such
muscles enables to reach any target angle with variable muscular
stiffness. Considering a single rotational degree of freedom and the

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

173



E. Alvarado et al. / Generating Upper-Body Motion for Real-Time Characters Making their way through Complex Environments

relative angle θ between the limbs with respect to the initial T-pose,
the dynamics of the antagonist controller is parameterized by a pair
of lower and upper stiffnesses (or proportional gains) (kL,kH) asso-
ciated to two angular soft limits (θL,θH) at the joint, and a deriva-
tive gain kd such that

τ+ τext = kL(θ
L−θ)+ kH(θ

H −θ)− kd θ̇ , (1)

where τ is the current actuator torque exerted by the controller and
τext is the torque resulting from the external forces.

Let the motion of the articulation be guided by an objective target
angle θ

kin, obtained from the kinematic skeleton. When θ reaches
θ

kin, the antagonistic controller is at static equilibrium (τ= 0), lead-
ing to:

τ
kin
ext = kL(θ

L−θ
kin)+ kH(θ

H −θ
kin), (2)

where τ
kin
ext is the total torque in this state.

This equilibrium constraint implicitly links the two stiffness val-
ues, and can be rewritten as:

kH = kL
θ

L−θ
kin

θkin−θH −
τ

kin
ext

θH −θkin . (3)

This relation describes the so-called isoline of the controller, whose
slope is independent from the external torques exerted on the joint.
In addition to compensating for the respective error in the orienta-
tion, each pair of gains kL and kH lying on the isoline represents
all the possible relaxation/tension configurations that the joint may
use while reaching the same equilibrium orientation. This simple
linear relation thus provides us with an intuitive way of modifying
the target orientation for the character while still being able to tune
the desired amount of tension/relaxation in our pose (see Fig. 6).

Right Hand Right Fore Arm Right Arm𝑘ு 𝑘ு 𝑘ு

𝑘𝑘𝑘

Figure 6: Isolines between antagonist stiffnesses, for each limb
of the responsive skeleton of the right arm. The slopes of the de-
picted line-segments are function of the target angular pose. The
isolines represent the degree of freedom of the stiffness to reach
this specific pose. Navigating interactively along these lines allows
an intuitive way to setup the stiffness values at the design stage of a
game. At run time, our system further computes automatically the
corresponding coordinates along these lines based on a procedural
rule taking into account the parameter of the obstacles (see Sec. 5).

4.2. Adaptation to joints with multiple degree of freedom

Antagonistic controller must be formulated in relation to each indi-
vidual degree of freedom of a joint as it depends on extremal values
θ

L,θH . A naive approach to extend this formulation to a joint with
two of three degrees of freedom would be to decompose the joint
orientation along Euler angle representation. However, decompos-
ing a joint orientation expressed in a global frame system using Eu-
ler angles would lead to gimble lock artifacts during the animation.

Algorithm 1 Antagonistic Control

Input: current q, target qkin, spring-set points (θL, θ
H )

Output: torque τ

1: function COMPUTETORQUE(q, qkin, θ
L, θ

H )
2: qz qy qx ← STD(q)
3: qkin

z qkin
y qkin

x ← STD(qkin)
4: for each u ∈ DOF do
5: θu ← qu
6: θ

kin
u ← qkin

u
7: Compute τ

eq
ext in equilibrium

8: Initialize kL

9: kH ← kL
θ

L
u−θ

kin
u

θkin
u −θH

u
− τ

eq
ext

θH
u −θkin

u

10: τu ← kL(θ
L
u −θu)+ kH(θ

H
u −θu)− kd θ̇u

11: end for
12: return τ

13: end function

To avoid these artifacts, we propose to express this decomposition
in a local frame where typical human-like gestures will be free from
Gimble-lock issues (see Fig. 5).

Let us consider the initial T-pose of the character, and call b0

the unit quaternion representing the orientation of a joint-frame
expressed with relative coordinates to the parent joint. We fur-
ther attach in this relative coordinate system an orthogonal ba-
sis (ux,uy,uz) associated to the three degrees of freedom of this
joint, and associate for each of them a low/high angular limit
(θL

x/y/z,θ
H
x/y/z). At run time, the articulated joint has an orienta-

tion given by the unit quaternion b expressed in relative coordi-
nates, and q = bb0 represents the rotation of by this joint in lo-
cal coordinates, with b0 being the unit conjugate quaternion of
b0. Similarly, we consider the target rotation qkin = bkin b0, bkin

being the target orientation also expressed in the relative coor-
dinates system of its parent. Then, q (resp. qkin) is decomposed
as q = qz qy qx (resp. qkin = qkin

z qkin
y qkin

x ) using three consecutive
Swing-Twist-Decomposition [Dob15] along the axes ux, uy, and uz.
As such, qx represents a rotation around the axis ux, and similarly
for the others. Converting these decomposed quaternions into an
axis-angle representation leads to the three angles (θx,θy,θz) (resp.
(θkin

x ,θkin
y ,θkin

z )) corresponding to the local rotation along each in-
dividual degree of freedom. From these angles, the (x,y,z) com-
ponents of the torque τ can be computed in this local frame using
Eq. (1), and converted back to the global coordinate system before
being used in the rigid-body simulator. Algorithm 1 summarizes
this process.

5. Anticipation and Action on Upcoming Obstacles

To free the user from manually tuning the responsive character ev-
ery time it should interact with a new obstacle, we provide a high-
level, yet customizable anticipation and action method, enabling
the character to use its upper-body to make its way through com-
plex dynamic environments. To realize this, an anticipation mecha-
nism extracts metadata from the obstacles in the field of view, and
uses it to edit the responsive skeleton model based on a set of pro-
cedural rules. These rules generate action gestures for the upper-

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

174



E. Alvarado et al. / Generating Upper-Body Motion for Real-Time Characters Making their way through Complex Environments

𝜃௫
ு 𝜃௫



𝜃௫


𝑏

𝜃௫

𝑏

𝑏

𝑏௫

𝑏௬

𝑏௭

Figure 7: Left upper-arm configuration for the degree of freedom
corresponding to the rotation around the local x-axis (vertical di-
rection) at the shoulder. All angles are measured with respect to the
initial T-pose orientation b0. θx describes the current orientation,
θ

kin
x the target one, and (θH

x ,θ
L
x ) are the high/low soft-limits of the

antagonistic controller.

body’s kinematic skeleton so that the character protects itself and
responds differently to obstacles of different nature. They also au-
tomatically tune the antagonist stiffnesses of the ragdoll skeleton,
so that obstacles can effectively be pushed out of the way. In prac-
tice, this is achieved through one or several safety region(s) around
the character, which it will always try to keep free from obstacles;
this is detailed next.

5.1. Detecting Upcoming Obstacles

We use a frustum-like visibility region starting from the charac-
ter’s head and propagating along the sight direction to make our
character aware of his environment, and in particular of the obsta-
cles to come. We further define a set of safety regions representing
parts of the body that a character may try to protect with its arms
while walking in some dense, dynamic environment. We approxi-
mate these safety regions as spheres around some body parts such
as the left and right shoulders. Their radius r can be defined from
the character’s size and arm length (note that using a slightly larger
radius than the arm length is relevant, since it will enable the char-
acter to anticipate a collision by taking the right posture in advance,
before eventually catching the object). Our system considers that an
obstacle must be stopped or pushed by the character’s hand if it is
both in the visibility region and intersects with at least one of the
safety regions (see Fig. 8).

5.2. Anticipation behavior

The character anticipates a possible future collision with the ob-
stacles in actively pushing the one at the closest distance from the
center of a safety region. The choice of which arm to use to pro-
tect a particular part of the body is done according to which hand
is at the closest distance to the obstacle, and the obstacle’s mass: If
the difference between the distances of the obstacle to each hand is
less than a threshold, or if the estimated weight of the object is per-
ceived as greater than a certain value, the character uses both hands

Figure 8: Visibility and safety Regions. The approximated frustum-
like volume keeps track of the obstacles within the visual bounds of
the character, while the safety regions are used to target the closest
obstacles.

to interact with it. Otherwise, when different obstacles appear at
the left and right sides of the character, reactions from the two arms
can be generated independently from each other, and may overlap
in time.

The general idea of the anticipation gesture is to move the char-
acter’s selected hand(s) to the closest point on the obstacle (or to
the nearest accessible point to the obstacle, if the latter is not yet
within reach), while adapting the motion speed and tension to the
expected velocity and mass of the latter. To this end, we provide a
set of procedural motion rules aimed at generating somewhat nat-
ural behaviour, and which the user may customize to better reflect
the specific personality of the character to be animated. In addition,
to model the possible uncertainty of the character’s prediction, we
allow metadata to return false or disturbed information about the
expected mass and velocity of the upcoming obstacle. Considering
an obstacle obsi, mi and vi stand for the expected (possibly fake)
mass and velocity, while m̂i, v̂i are the actual ones.

Let us consider p0, q0 the original position and orientation of
the arm at time t0 when the obstacle became the targeted one. The
closest point on the obstacle is defined by its position pc and as-
sociated normal nc. We aim to orient the hand such that the palm
becomes tangent to the obstacle at position pc. We thus define qc,
the objective orientation, as the rotation transforming the direction
bx (orthogonal to the hand) into nc, and the by direction (aligned
with the hand) into by×nc (see vectors conventions in Fig. 7). At a
given time t, we consider the following kinematics objectives pkin,
qkin for the hand trajectory:

pkin(t) = p0 +(pc− p0)ω

(
t−t0

tr

)
qkin(t) = SLERP

(
q0,qc,ω

(
t−t0

tr

)) , (4)

where ω is a smooth easing-function varying from 0 to 1, and tr is
the character’s reaction time.

We propose a simple way to set the character’s reaction time,
assuming that it only depends on the expected relative velocity of
the obstacle ∥vi∥ with respect to the character’s root’s velocity:

tr = clamp
(

αtr
di− r
∥vi∥

, trmin, trmax

)
, (5)

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

175



E. Alvarado et al. / Generating Upper-Body Motion for Real-Time Characters Making their way through Complex Environments

where di is the closest distance to the obstacle, r is the radius of
the safety region, αtr ∈ [0,1] is a safety parameter ensuring that the
hand should reach its final position slightly before the contact with
the obstacle, and (trmin, trmax) are user-defined bounds.

Note that the trajectory we just defined is, by construction, free
of external obstacles, otherwise the hand would switch to another
target position during the planned reaction time, to anticipate a
more sudden collision. In addition to these kinematics objectives,
applied to either one or the two hands, the anticipation model also
guides the stiffnesses kL and kH of the antagonist controller - which
are linked by the linear law of Eq. (3). Indeed, we make the assump-
tion that the character adapts his tension/relaxation behavior based
on the expected mass of the obstacle, leading to a relaxed motion
for lightweight objects and more muscular tension when interact-
ing with heavy ones. We model this behavior using the following
linear relation between mass and stiffness:

kL = clamp
(

kL min +(kL max− kL min)
m

mmax
, kL min, kL max

)
, (6)

where mmax is the extreme mass value that the character is expected
to handle, and kL min and kL max are the limits for the lower gain kL.
The gain value kH is then computed accordingly using Eq. (3).

Note that the previously defined bounds trmin, trmax,kLmin,kLmax
are customizable. The user can adapt them to a given character,
but also, in all generality, set different bounds for different types
of obstacles and safety regions. For instance, the character might
always keep a slow motion and low stiffness when pushing away
flexible and spiky vegetation such as brambles, while being able to
move faster and exert a higher tension toward other type of long-
anticipated obstacles, such as a fence to be opened. Moreover, an
obstacle moving towards the eyes of the character can thus be asso-
ciated with a faster movement of anticipation than if it were moving
towards his chest.

5.3. Behavior during the contact phase

In our experiments, we consider the obstacles as dynamic artic-
ulated rigid bodies, visually represented as meshes deformed by
skinning. The dynamic of these shapes is computed using a rigid
body simulator, and the rest orientation of the articulated elements
is handled using standard PD-controllers using a constant pre-
scribed objective angle θ0. Therefore, as long as the contact lasts
between the hand and the obstacle, the opposite response forces
generated by the collision are used to apply the corresponding ex-
ternal torques to the simulated character on one hand, and to the
obstacle on the other hand (see Fig. 9).

In addition, our method can handle different kinematic-driven
behavior for the character’s arm, described as procedural rules.
Our current implementation provides two specific scenarios: The
first one is when a character walks along a slippery obstacle along
which the hand remains in contact but can slide. To this end, the
kinematic position of the hand is continuously adapted to target
the updated closest point on the obstacle pi at the current frame,
while remaining orthogonal to the normal at this position. The sec-
ond scenario holds in non-sliding contact cases (eg. contact with
an uneven wall), where the hand should remain at a fixed position

Figure 9: Obstacles such as flowers (left) or hanging fruits (right)
are rigged and their background dynamics are defined by self-
balancing poles that are kept upright using PD controllers. The
red object (defined by the corolla, or by the fruits, respectively) is
used as a proxy for computing the interaction with the character.

p1
i relative to the obstacle as long as the arm can reach this posi-

tion. To do so, the original contact position is stored in the local
reference frame of the obstacle, and used as the kinematic objec-
tive of the responsive skeleton, until the hand needs to be moved to
a new position. When this situation is detected, we trigger a tempo-
rary motion making the arm reaching a new updated closest point
p2

i . During the transition period begin parameterized by the time
tr, we consider a trajectory defined as a Cubic Hermite polynomial
interpolating the two extreme positions (p1

i , p2
i ) with the two corre-

sponding normals (αn1
i ,αn2

i ), where α > 0 controls how much the
hand moves away from the obstacle. During this transition, the ori-
entation of the hand is interpolated using SLERP in the quaternion
space. We illustrate these two scenarios in Fig. 10.

Figure 10: Depending on the user’s choice, the character’s inter-
actions can be described as a continuous, sliding contact (left) or
as a discretely updated contact position depending on the reach of
the character’s arms (right).

Finally, when the targeted obstacle moves away of the safety re-
gion, the hand positions are interpolated, using a similar formula-
tion than in Eq. (4), toward the next active obstacle in the priority
list if it exists, or toward their current position in the kinematic
skeleton otherwise.

5.4. Failing at anticipating or handling interactions

One of the key advantage of our method is that, as in real life, a
character may miss-evaluate the nature of an obstacle or fail de-

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

176



E. Alvarado et al. / Generating Upper-Body Motion for Real-Time Characters Making their way through Complex Environments

tecting it in time, and therefore not handle it properly. This makes
the generated behaviour more lively.

Figure 11: A character with constant tension in the arms (top)
cannot maintain the prescribed posture when the mass of the red
object increases, while an adaptation of tension (bottom) thanks
to the antagonist stiffnesses in the controller enables to achieve it,
within the limit of muscular strength.

First, the stiffnesses of the antagonist controllers only takes into
account the expected obstacle mass and velocity (mi,vi), which
may be different from the real ones (m̂i, v̂i). As a result, a heavier
or faster obstacle than expected leads to a controller experiencing
large angular displacement in order to absorb the momentum of the
obstacle as illustrated in Fig. 11. Such miss-match will make the
character look too relaxed, and hardly able to avoid the collision.

When the expected mass is too low, reaction time may be too
slow. Moreover, an obstacle coming from some unseen orienta-
tion may actually collide with the character without being detected.
In this case, the ragdoll model is dynamically updated in order to
model a reaction to an impact, while trying to restore the current
position of the kinematic skeleton. Let us consider that the obstacle
collides with a given limb. Then the closest possible anchor posi-
tion on this limb or one of its parent is selected to be the root of
a temporary antagonistic controller. We then adapt Eq. (1) in order
to take into account the additional torque exerted by the obstacle,
while the equilibrium condition from Eq. (2) is set with the angle at
the impact time. As illustrated in Fig. 12-middle for a collision on
the character’s head, this approach allows to generate an adequate
response to unexpected collisions as well.

6. Results and Discussion

We implemented our method as an interactive prototype in the
game engine Unity 3D where the character is interactively con-
trolled using a game-pad or a keyboard. The entire method is
coded in high-level C# scripts, and all the presented examples run
in real-time on a standard laptop (Intel Core i7, eight cores, run-
ning at 3.10 GHz). The main computational cost is spent on the
rigid body simulation, while our additional anticipation model and
procedurally-guided behavior do not bring any noticeable over-
head. The default key-frame animation (with and without the IK)

Figure 12: When the character fails anticipating a collision, our
hybrid system system dynamically updates to generate an appropri-
ate responds. Left: Expected correct handling of the falling apple.
Middle: The apple fall outside of the visibility region leading to a
collision with the head which is pushed back by the impact thanks to
the dynamic update of the anchor point on the responsive skeleton.
Then our antagonistic-based formulation helps it recover its initial
position. Right: The apple falls too fast compared to the character’s
reaction time leading to non-optimal position to stop it.

runs at 6 ms/frame (155 FPS). Activating the ragdoll simulation on
the character with a single spherical obstacle adds an additional 1
ms/frame (140 FPS). Our most complex scene (Fig. 14) includes
70 simulated plant assets and requires 25ms/frame (40 FPS). Note
that these measures could be optimized in skipping the simulation
of the assets that are not interacted with.

In our experiments, the character is placed in an environment
consisting on various dynamic elements, such as different vegeta-
tion types or hanging objects. The input kinematic skeleton is ani-
mated using a state-machine controller with keyframe animation of
a walking gait. Antagonistic-based controllers are set at each degree
of freedom of the shoulders, along with an initial stiffness kL and
angular limits θ

L and θ
H . The character’s upper-body is protected

using two spherical safety regions of radius r = 0.5 meter, located
at the center of each shoulder joint. We use a default reaction time
tr = 0.5 s with minimum and maximum bounds of trmin = 0.5 s and
trmax = 2 s. The maximum mass that the character is expected to
handle is by default mmax = 15 kg. See Appendix 9 for additional
information on the parameters used in our examples.

The animated results, described next, are provided in the com-
panion video.

6.1. Interacting with Different Stiffnesses and Reaction Times

Fig. 1 illustrates a general situation where the character interacts
with different types of outdoor elements. The diverse nature of the
elements in terms of sizes or weights, are associated to different,
but coherent, actions and reactions of the character.

A constant controller stiffness would lead to a fixed amount of
tension during this journey. As such, the character would never
adapt its muscular strength to the obstacle’s mass, leading to in-
creased bending of the arms and difficulty to push heavier obstacles
away, as shown in Fig. 11. Thanks to our local adaptation to the an-
ticipated weight, from Eq. (3), the character is able to dynamically
adapt to the current obstacle with a similar posture, in the limits of
its muscular capacity.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

177



E. Alvarado et al. / Generating Upper-Body Motion for Real-Time Characters Making their way through Complex Environments

The reaction time tr may affect the success of an interaction in
certain cases (see Fig. 12-right and Fig. 13). If the character re-
acts too slowly when an obstacle is heading its way, its arms will
not take an optimal position to stop the obstacle. Reducing reaction
time increases the speed at which the reactive skeleton assumes the
correct protective posture, making it easier to manage the interac-
tion.

Figure 13: Short reaction time (top) vs longer (bottom), with detec-
tion time and all other parameters unchanged. Note that by using
the longer reaction time, the character did not have time to prop-
erly place his hand before impact.

6.2. Anticipating Natural Surroundings

Table 1 summarises both internal factors and external metadata that
can be retrieved by the anticipation system, along with their impact
on the behaviour of the interaction. To better show these effects and
experiment with interactions in dynamic environments, we built a
3D scene comprising multiple assets, as illustrated in Fig. 14. Ap-
pendix 9 provides the set of parameters used for our 3D models.

We tested different types of behaviors dependent on metadata in
this environment, using our high-level procedural rules for cases
such as quick anticipation movements, or long-term behavioral re-
sponses. The character adapts its muscular rigidity based on the ex-
pected mass retrieved from the active obstacles entering the safety
region. A comparison between character interactions with, versus
without, such adaptation is shown in Fig. 15, as well as in the com-
panion video. Moreover, since the velocity of an incoming object
is used to adapt reaction time tr (see Eq. (5)), the character is able
to automatically generate quick anticipation movements to protect
itself.

6.3. Discussion and Limitations

The previous results illustrated the benefits of our method in var-
ious scenarios, through real-time interactions with a variety of
obstacles. While they demonstrate the benefits of automatic ten-
sion/relaxation adaptation, thanks to our new formulation of an-
tagonist control, the current implementation is limited to the case

Internal Factor Description

Safety Region Radius r Reach of the anticipation
Reaction Time tr Rapidity of the interaction
Reaction Time Bounds
[trmin, trmax]

Reaction capacity (faster/slower)

Stiffness Gain kL Muscle rigidity
Stiffness Gain Bounds
[kL min,kL max]

Stiffness capacity (stronger/weaker)

External Factor Impact of Anticipation

Expected Mass m Increase/Decrease Stiffness kL
Expected Velocity v Increase/Decrease Reaction Time tr

Table 1: Internal parameters and external factors that influence
character behavior. Note that both, expected the mass and veloc-
ity returned by the metadata, might differ from real values. The
character will then mis-adapt its behaviour, according to its cur-
rent perception of the object.

of characters pushing obstacles away from their safety regions.
To improve realism, more complex behaviors could be integrated,
such as refining our anticipation process with better predicted haz-
ards, modeling protective or avoidance gestures for obstacles with
large momentum, and dynamically adapting the character’s re-
sponse when the true mass of an obstacle is perceived, during in-
teraction. We believe that these would be quite easy extensions of
our method, thanks to our flexible procedural approached, guided
by the observed environment.

As our prototype was developed as a generic proof of concept,
some of the parameters and procedural rules should be refined to
improve the plausibility of motions and contact modeling. For in-
stance, the character’s wrist sometimes has too great a twist angle
during the anticipation phase or rotates too slowly in relation to the
arm. This could be addressed via dedicated IK constraints for the
wrist. Additionally, some small gaps can also be seen between the
hands and the mesh used to represent the vegetation. The use of
finer collision proxy representation would avoid such visible arti-
facts. Also, the velocity (magnitude and direction) of the obstacles
could be considered in the anticipation behavior to deal with mul-
tiple obstacles more plausibly, as our current system only handles
the closest one.

The main limitation of our approach is obviously the indepen-
dence between the upper-body motion and the orientation of the
character, as well as the locomotion gait of the lower-body. Indeed,
in real-life, the motion of our legs is linked to our actions. For in-
stance, we stop moving when expecting an unavoidable hit, or we
bend hips and knees in order to push heavy obstacles. Such cou-
pling is not orthogonal to our approach, but would require - on top
of additional rules - a more global simulation method including a
locomotion controller.

Lastly, while enabling precise authoring of the character’s be-
havior thanks to procedural rules is usually desired in video-game
development, the number of cases to explicitly define can be a bur-
den. In addition, some of the parameter choices may result in lim-
ited plausibility, and the rules themselves may have a limited valid-

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

178



E. Alvarado et al. / Generating Upper-Body Motion for Real-Time Characters Making their way through Complex Environments

Figure 14: Our test environment allows rich interactions with multiple dynamic elements, including flowers, flexible trees, a semi-rigid
fence, and hanging objects.

Figure 15: While light vegetation like tall grass can be easily pushed away, heavier items like the wooden gate may require more muscle
stiffness to be pushed back. When the character does not adapt its tension/relaxation to obstacles (top), it results in over-stiff movements
for light plants, inaccurate contacts, and over-relaxed motions when facing heavier obstacles. With our method (middle), the character
automatically adapts the stiffness of each arm while making its way through. Bottom: Depiction of the stiffness variation along the obstacles.

ity range. For instance, defining the controller’s stiffness as a linear
function of the obstacle mass may not be a valid approximation
anymore for a wide range of masses, or for objects moving at high
velocities. This choice may be a limitation in some cases compared
to more complex, learning-based approaches. Using such methods
could allow to tune tension/relaxation not only in anticipation be-

fore a collision, but also continually during the contact phase, re-
sulting in more convincing interactions.

7. Conclusion and Future work

In this work, we have proposed a method to generate real-time
upper body movements from simple keyframe locomotion inputs,
such that characters make their way through dynamic environ-

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

179



E. Alvarado et al. / Generating Upper-Body Motion for Real-Time Characters Making their way through Complex Environments

ments. Our hybrid model for character animation combines kine-
matics, IK constraints, and lightweight physics to produce a re-
sponsive skeleton able to react to any kind of external obstacle.
A local anchor system identifies the limbs that need to be dynami-
cally simulated during the interaction, and leveraging antagonistic
controllers to generate actuator torques that follow a reference an-
imation, while controlling the level of tension/relaxation indepen-
dently. A flexible anticipation mechanism allows the user to com-
bine both, information from the surroundings and changes in the
character’s stiffness and reaction time, enabling high-level author-
ing in the way the character handles the interactions. Overall, we
believe our reactive character model provides a practical and flex-
ible framework well suited to video game pipelines where precise
control of behaviors and real-time computation are essential.

A promising future direction would be to explore the coupling of
our approach with some non-supervised learning method, in order
to improve the fine-grain plausibility of interactions while main-
taining the same level of control. Procedural creation could then
be used to define the coarse behavior, while reinforcement learn-
ing would help guide and enrich the local details of the animation,
thanks to the fine-tuning of the antagonistic control for each joint,
set to minimize the muscular effort undergone by the character.

8. Acknowledgments

This work has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No 860768 (CLIPE project).
We also thank Prof. Pierre Poulin (Université de Montréal) for his
help and comments on the manuscript.

References
[ALCS18] ARISTIDOU A., LASEBRY J., CHRYSANTHOU Y., SHAMIR

A.: Inverse kinematics techniques in computer graphics: A survey. Com-
puter Graphics Forum 37, 6 (2018), 35–58. 3

[ALP04] ABE Y., LIU C. K., POPOVIĆ Z.: Momentum-based param-
eterization of dynamic character motion. Computer Animation 2004 -
ACM SIGGRAPH / Eurographics Symposium on Computer Animation
(aug 2004), 173–182. 2

[APRC22] ALVARADO E., PALIARD C., ROHMER D., CANI M.-P.:
Real-Time Locomotion on Soft Grounds With Dynamic Footprints.
Frontiers in Virtual Reality 3 (mar 2022), 3. 3

[BCHF19] BERGAMIN K., CLAVET S., HOLDEN D., FORBES R. J.:
DReCon: Data-Driven Responsive Control of Physics-Based Characters.
ACM Trans. Graph. 38, 6 (2019), 11. 3

[BMT96] BOULIC R., MAS R., THALMANN D.: A robust approach for
the control of the center of mass with inverse kinetics. Computer &
Graphics 20, 5 (1996), 693–701. 3

[BN15] BHATTACHARJEE T., NIEMEYER G.: Antagonistic muscle
based robot control for physical interactions. In Proceedings - IEEE
International Conference on Robotics and Automation (2015), vol. 2015-
June, pp. 298–303. 3

[BSTS11] BUCHLI J., STULP F., THEODOROU E., SCHAAL S.: Learn-
ing Variable Impedance Control. The International Journal of Robotics
Research 30, 7 (2011), 820–833. 3

[BTZZ18] BERMUDEZ L., TESSENDORF J., ZIMMERMANN D., ZOR-
DAN V.: Real-time locomotion with character-fluid interactions. In Pro-
ceedings of the 11th Annual International Conference on Motion, Inter-
action, and Games (MIG) (2018), ACM. 3

[CMM∗18] CHENTANEZ N., MÜLLER M., MACKLIN M., MAKOVIY-
CHUK V., JESCHKE S.: Physics-based Motion Capture Imitation with
Deep Reinforcement Learning. In Proceedings of the 11th Annual Inter-
national Conference on Motion, Interaction, and Games (MIG) (2018),
ACM. 3

[Dob15] DOBROWOLSKI P.: Swing-Twist Decomposition in Clifford Al-
gebra. arXiv:1506.05481 (jun 2015). 6

[EHSN19] EOM H., HAN D., SHIN J. S., NOH J.: Model predictive
control with a visuomotor system for physics-based character animation.
ACM Trans. Graph. 39, 1 (oct 2019). 2, 3

[Fel66] FELDMAN A.: Functional tuning of the nervous system with con-
trol of movement or maintenance of a steady posture. Biophysics (1966).
5

[GP12] GEIJTENBEEK T., PRONOST N.: Interactive character animation
using simulated physics: A state-of-the-art review. Computer Graphics
Forum 31, 8 (dec 2012), 2492–2515. 2

[Gue22] GUERRILLA GAMES: Horizon Forbidden West, 2022. 2

[HBWO95] HODGINS J. K., BROGAN D. C., WOOTEN W. L.,
O’BRIEN J. F.: Animating human athletics. Proceedings of the ACM
SIGGRAPH Conference on Computer Graphics (1995), 71–78. 2

[HFO∗20] HOLDEN D., FORGE L., OUSSAMA KANOUN C., UBISOFT
C., BLVD S. L., KANOUN O., PEREPICHKA M., POPA T.: Learned mo-
tion matching. ACM Transactions on Graphics (TOG) 39, 4 (jul 2020),
13. 3

[HKS17] HOLDEN D., KOMURA T., SAITO J.: Phase-functioned neural
networks for character control. ACM Trans. Graph 36, 4 (2017). 3

[KAK∗22] KWIATKOWSKI A., ALVARADO E., KALOGEITON V., LIU
C. K., PETTRÉ J., VAN DE PANNE M., CANI M.-P.: A Survey on
Reinforcement Learning Methods in Character Animation. Computer
Graphics Forum 41 (mar 2022). 3

[KGM∗12] KARIM A. A., GAUDIN T., MEYER A., BUENDIA A.,
BOUAKAZ S.: Procedural Locomotion of Multi-Legged Characters in
Dynamic Environments. In Workshop on Virtual Reality Interaction and
Physical Simulation (VRIPHYS) (2012). 3

[KH10] KWON T., HODGINS J.: Control Systems for Human Running
using an Inverted Pendulum Model and a Reference Motion Capture
Sequence. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (2010), p. 129–138. 2

[KHH17] KWON T., HODGINS J. K., HODGINS J. K.: Momentum-
Mapped Inverted Pendulum Models for Controlling Dynamic Human
Motions. ACM Transactions on Graphics 36, 4 (jul 2017), 1. 2

[KMG∗] KARIM A. A., MEYER A., GAUDIN T., BUENDIA A.,
BOUAKAZ S.: Generic Spine Model with Simple Physics for Life-Like
Quadrupeds and Reptiles. In Workshop on Virtual Reality Interaction
and Physical Simulation (VRIPHYS). 3

[Koj19] KOJIMA PRODUCTIONS: Death Stranding, 2019. 2

[LGS∗11] LENTINE M., GRÉTARSSONGR O., SCHROEDER C.,
ROBINSON-MOSHER A., FEDKIW R., GRÉTARSSON J. T.,
SCHROEDER C., ROBINSON-MOSHER A., FEDKIW R.: Creature
Control in a Fluid Environment. IEEE Transactions on Visualization
and Computer Graphics 17, 05 (may 2011), 682–693. 3

[LH18] LIU L., HODGINS J.: Learning Basketball Dribbling Skills Using
Trajectory Optimization and Deep Reinforcement Learning. ACM Trans.
Graph 37 (2018), 14. 3

[LS99] LEE J., SHIN S. Y.: A Hierarchical Approach to Interactive Mo-
tion Editing for Human-like Figures. In Proceedings of the ACM SIG-
GRAPH Conference on Computer Graphics (1999), p. 39–48. 3

[LYV∗10] LIU L., YIN K., VAN DE PANNE M., SHAO T., XU W.:
Sampling-based contact-rich motion control. ACM Transactions on
Graphics (TOG) (jul 2010). 2

[MAA∗09] MITAKE H., ASANO K., AOKI T., MARC S., SATO M.,
HASEGAWA S.: Physics-driven Multi Dimensional Keyframe Anima-
tion for Artist-directable Interactive Character. Computer Graphics Fo-
rum 28, 2 (2009). 3

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

180



E. Alvarado et al. / Generating Upper-Body Motion for Real-Time Characters Making their way through Complex Environments

[MHL∗21] MOUROT L., HOYET L., LE CLERC F., SCHNITZLER F.,
HELLIER P., HELLIER P. A., MOUROT L., HOYET L., LE CLERC F.,
SCHNITZLER F., HELLIER P.: A Survey on Deep Learning for Skeleton-
Based Human Animation. Computer Graphics Forum 41, 1 (nov 2021),
1–32. 3

[MMLG∗19] MARTÍN-MARTÍN R., LEE M. A., GARDNER R.,
SAVARESE S., BOHG J., GARG A.: Variable Impedance Control in
End-Effector Space: An Action Space for Reinforcement Learning in
Contact-Rich Tasks. IROS 2019 (2019). 3

[NF02] NEFF M., FIUME E.: Modeling Tension and Relaxation for Com-
puter Animation. ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation - SCA (2002), 81. 2, 4, 5

[PALvdP18] PENG X. B., ABBEEL P., LEVINE S., VAN DE PANNE
M.: DeepMimic: Example-Guided Deep Reinforcement Learning of
Physics-Based Character Skills. ACM Transactions on Graphics 37, 4
(apr 2018), 18. 3

[PARC21] PALIARD C., ALVARADO E., ROHMER D., CANI M.-P.:
Soft Walks: Real-Time, Two-Ways Interaction between a Character and
Loose Grounds. In Eurographics (short papers) (2021). 3

[PCZ∗20] PENG X. B., COUMANS E., ZHANG T., LEE T.-W., TAN J.,
LEVINE S.: Learning Agile Robotic Locomotion Skills by Imitating
Animals. 3

[RH91] RAIBERT M. H., HODGINS J. K.: Animation of dynamic legged
locomotion. ACM SIGGRAPH Computer Graphics 25, 4 (jul 1991),
349–358. 2

[Roc18] ROCKSTAR STUDIOS: Red Dead Redemption 2, 2018. 2

[RRSK12] RAHGOSHAY C., RABBANI A., SINGH K., KRY P. G.: In-
verse Kinodynamics: Editing and Constraining Kinematic Approxima-
tions of Dynamic Motion. In Proceedings of Graphics Interface 2012
(2012), p. 185–192. 3

[SP17] SHAHABPOOR E., PAVIC A.: Measurement of Walking Ground
Reactions in Real-Life Environments: A Systematic Review of Tech-
niques and Technologies. Sensors 17, 9 (2017). 2

[TET12] TASSA Y., EREZ T., TODOROV E.: Synthesis and stabilization
of complex behaviors through online trajectory optimization. IEEE In-
ternational Conference on Intelligent Robots and Systems (2012), 4906–
4913. 2

[TLT11] TAN J., LIU K., TURK G.: Stable Proportional-Derivative Con-
trollers. IEEE Computer Graphics and Applications 31, 4 (2011), 34–44.
2

[TMT14] TASSA Y., MANSARD N., TODOROV E.: Control-limited dif-
ferential dynamic programming. In IEEE International Conference on
Robotics and Automation (ICRA) (2014), pp. 1168–1175. 2

[WFH10] WANG J. M., FLEET D. J., HERTZMANN A.: Optimizing
walking controllers for uncertain inputs and environments. ACM SIG-
GRAPH 2010 Papers, SIGGRAPH 2010 (2010). 2

[WGSF20] WANG T., GUO Y., SHUGRINA M., FIDLER S.: UniCon:
Universal Neural Controller For Physics-based Character Motion. 3

[WK88] WITKIN A., KASS M.: Spacetime constraints. In ACM SIG-
GRAPH (1988), vol. 22. 3

[YKL21] YANG D., KIM D., LEE S.-H.: LoBSTr Real-time Lower-body
Pose Prediction from Sparse Upper-body Tracking Signals. Computer
Graphics Forum 40 (June 2021), 265–275. 3

[YLS04] YANG P.-F., LASZLO J., SINGH K.: Layered Dynamic Control
for Interactive Character Swimming. Tech. rep., 2004. 3

[YLv07] YIN K., LOKEN K., VAN DE PANNE M.: SIMBICON: Simple
biped locomotion control. ACM Transactions on Graphics 26, 3 (jul
2007), 105. 2

[YY20] YIN Z., YIN K.: Linear Time Stable PD Controllers for Physics-
based Character Animation. Computer Graphics Forum 39, 8 (Dec.
2020), 191–200. 2

[ZH99] ZORDAN V. B., HODGINS J. K.: Tracking and Modifying Upper-
Body Human Motion Data with Dynamic Simulation. Tech. rep., Georgia
Institute of Technology, 1999. 3

[ZH02] ZORDAN V. B., HODGINS J. K.: Motion capture-driven
simulations that hit and react. In Proceedings of the 2002 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (2002),
pp. 89–96. 3

9. Appendix

9.1. Character and Environment Description

Table 2 gives the parameters used in our experiments for each rigid-
body in the responsive skeleton.

Rigid-body Mass (kg) Center of Mass (x,y,z) (m)

Hips&Spine 10.56 0.00 0.00 0.00
Chest 25.2 0.00 0.22 -0.03

Upper Chest 10 0.00 0.35 -0.04
Neck&Head 4.8 0.00 0.60 0.00

Shoulder 1 ± 0.06 0.44 -0.04
Upper Arm 2.95 ± 0.19 0.42 -0.03

Forearm 1.59 ± 0.23 0.15 -0.02
Hand 0.5 ± 0.26 -0.13 -0.02

Table 2: Rigid-body settings for the upper-body model.

Most of the 3D obstacles in our environments (see Fig. 9)
are rigged and defined using PD controllers with different rest-
positions. Therefore, both fences and hanging plants follow similar
principles, each set to a different dynamics. The main parameter
values are given in Table 3.

Asset Mass (kg) kp kd

Sunflower (Large) 1.25 20 10
Sunflower (Small) 1 20 10

Bush 0.2 200 10
Banana Tree 10 50 1
Tree Branch 3 500 15

Fence 10 100 10
Fence w/ Door 10 100 20

Hanging Bucket 1 - -
Swing 2 - -

Hanging Fruit 0.5 - -

Table 3: Obstacles used in our natural environment.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

181


