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Figure 1: An agent navigates based on information communicated by a directional arrow sign. The information is encoded and visualized
on a spatial grid which planning and steering interact with.

Abstract
Signage systems play an essential role in ensuring safe, stress-free, and efficient navigation for the occupants of indoor spaces.
Crowd simulations with sufficiently realistic virtual humans provide a convenient and cost-effective approach to evaluating
and optimizing signage systems. In this work, we develop an agent model which makes use of image processing on parametric
saliency maps to visually identify signage and distractions in the agent’s field of view. Information from identified signs is
incorporated into a grid-based representation of wayfinding familiarity, which is used to guide informed exploration of the
agent’s environment using a modified A* algorithm. In areas with low wayfinding familiarity, the agent follows a random
exploration behaviour based on sampling a grid of previously observed locations for heuristic values based on space syntax
isovist measures. The resulting agent design is evaluated in a variety of test environments and found to be able to reliably
navigate towards a goal location using a combination of signage and random exploration.

CCS Concepts
• Computing methodologies → Multi-agent systems; Image manipulation; • Applied computing → Computer-aided design;

1. Introduction

A signage system is an information system which makes use of
visual cues to assist in navigation through a built environment. Sig-
nage systems provide invaluable through navigational aids such as
"you are here" maps, directional arrows, and exit signs, which guide

occupants along optimal paths in unfamiliar environments. While it
is generally preferable to optimize the actual layout or floor plan of
the environment, the application of signage is an effective post-hoc
solution to ease or eliminate the confusion commonly experienced
during wayfinding tasks. In addition to reducing the stress of navi-
gation, effectively designed signage systems can optimize the flow
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of pedestrians, and greatly improve safety during emergency egress
scenarios. Similarly, visually striking or landmark features such are
art installations, statues, lighting etc, impact the navigation of hu-
mans in complex spaces.

Due to this importance in the functioning of built, or real envi-
ronments, there would be an expectation that virtual human mod-
elling would have rich models for information gathering and explo-
ration via signage and visual information sources. However, there
is little work in this area at the intersection of visible environment
information, agent modelling, and and information driven agent be-
haviour. The majority of the literature in crowd simulation focuses
on global goal information assumptions and long term path plan-
ning. Global goal information assumptions that allow for long-term
path planning may take into account area costs, route complexity,
smart route choices, or even occupation density. However, there are
few if any methods that view the world from the agent’s perspective
and allow the modelling of complex interactions between signage
information, the distribution of that information in the environment,
and exploratory navigation driven by that information.

Here, crowd simulation provides a compelling solution. Crowd
simulation, agent-based crowd simulation, is a valuable tool in nu-
merous industries and research areas that allows a practitioner or
researcher to model large groups of autonomous entities interact-
ing in a shared environment. From an animation perspective hav-
ing smart agents improves the ability of animators to generate high
quality scenes of interacting characters. This reduces costs and po-
tential dangers inherent in the filming of large-scale live action
scenes and reduces overhead and costs in the animation of large-
scale animated scenes.

In this paper, we propose a novel agent-based, vision-based,
crowds method for smart agents that interact not only with each
other but more intelligently with their environment. We take a vi-
sion based approach, allowing each agent to actually see the envi-
ronment and base their gaze movement on the value, or saliency, of
objects in the visual field including signage and distractions. This
visual field information allows our proposed agents to find and seek
visual information for navigation and directly interact with the vi-
sual catchment areas of signs, art, distractions, etc. We propose an
information map, inspired by recent advancements in human-like
navigation, that encodes the distribution of information gained from
several classes of signage. Finally, we propose a two stage naviga-
tion algorithm: a modified A* algorithm that accounts for the in-
formation value distributed in the environment and an exploration
behaviour that accounts for spatial features by encoding their value
in the form of SpaceSyntax measure on a pre-computed visibility
graph. We show our method is capable of producing compelling be-
haviours automatically and that the parametric model affords deep
authoring capabilities.

2. Related Work

2.1. Salient Objects

A first step to building a vision-based agent is deciding not just
what in the scene is visible, but also what is interesting enough to
be noticed by this agent. The inherent visual noticeability of an ob-
ject is referred to as its saliency. One option for identifying salient

areas and objects in an image is to use machine-learning-based
methods like SALICON [JHDZ15], which have been trained on
real-world image data. When such approaches are too slow for real-
time multi-agent simulations, or fail to generalize well to simulated
environments, an alternative is to use parametric saliency maps
[KCH∗21]. These are a recently proposed method of Modelling
visual attention for autonomous agents. A parametric saliency map
(PSM) is a 2D grayscale texture generated by applying a custom
shader to the agent’s camera. The fragment shader outputs lighter
pixels in areas corresponding to more salient areas of the scene.
This approach is fast and can produce similar results to those ob-
tained from machine learning based methods, when sufficient meta-
data is available.

S′ =W (Sdwd +SF wF +Svwv+SRwR+SIwI)(SMwM)(SAwA) (1)

The calculation, shown in equation 1, uses a weighted sum of
various factors including speed v, angular speed R, interestingness
I, depth d orientation F semantic masking M and visual attention
A. The resulting value S′ is the lightness of the resulting pixel, rep-
resenting saliency.

2.1.1. Legibility of Signage

The fact that an agent can see a sign does not necessarily mean
they can read it. Both user studies and information-theory-based
approaches [DKT∗17] have found that the area in which a sign is
legible forms an approximate circle tangent to the surface of the
sign and called the visual catchment area (VCA).

One approach to considering the legibility of signage during
navigation is to take an information-theoretic approach [DTK∗19].
Dubey et al. use information theory to quantify wayfinding infor-
mation by considering the entropy associated with a sign. In their
model, agents proceed towards a sign until this entropy is reduced
past a set threshold, after which the agent is likely enough to have
gained information, and receives a directional vector indicating to
where it should proceed.

An alternative method is to use a binary check for signage visi-
bility i.e. the sign is either visible, or it is not. To determine whether
an agent is within the VCA of a sign, [XFG∗07] considers the dis-
tance as well as the angular separation between the agent and the
sign; the result is a circle given by equation 2. If an agent is within
this circle and directly facing the sign, then the sign should be leg-
ible. In this equation, b is half of the size of the minimum recog-
nizable element, and θ is the angular separation between the agent
and the sign. The definition of the minimum recognizable element
depends on the type of signage being modelled, but it is generally
decided based on the size of the smallest text or pictogram on the
sign as [XFG∗07]:

(
b

sin(θ)
)2 = x2 +(y− b

tan(θ)
)2 (2)

2.2. Space Syntax

When no other information is available, human wayfinding is
based, in part, on the spatial configuration of an environment as
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visible from the agent’s isovist. An agent’s isovist is the volume of
space visible from their current position. Space syntax refers to a
set of theories deriving metrics based on the intervisibility of lo-
cations in an environment; these include neighborhood size, which
measures the number of vertices visible from a given location, and
clustering coefficient, which measures the proportion of vertices
which are connected versus the number that could possibly be con-
nected [Tur01]. Past research has shown that uninformed explo-
ration can be modelled surprisingly well using these metrics, even
when compared to other more complex decision making strate-
gies [PT02]. Furthermore, isovist measures of visual connectivity
have been shown to be statistically significant in predicting route
choice probabilities for users in a virtual reality experiment, as well
as being effective in optimizing the configuration of environments
to guide occupant route choices [DMS∗22]. By making decisions
using geometrical measures which could be reasonably estimated
by the agent using information available in current or past isovists,
we can avoid basing exploration on unrealistic global information.
Additionally, our method proposes more than one information layer
and integrates more than one visibility layer (visual perception with
a max distance, and visual catchment areas) as well to avoid limi-
tations of visibility graphs and isovists [SVF21].

2.3. Wayfinding Familiarity

Exploration is not always based solely on the configuration of the
environment, as measured by space syntax. In many cases there
is additional information available either through navigational aids
like signage, or in a cognitive map developed through past experi-
ence navigating the environment. This additional information can
be thought of as wayfinding familiarity, which varies throughout
an environment. Higher familiarity results in an increased ability to
make optimal decisions to reach the goal.

One approach to modelling this familiarity involves subdividing
the environment into a hexagonal grid and assigning integer counts
Cx,z to each cell, such that larger values indicate greater wayfind-
ing familiarity [RP22]. The hexagonal grid provides equal distance
measurements for long-term planning, even in the diagonal. The
agent is then guided by the path produced by an A* search with a
heuristic function h(px,z), given in equation 3, that assigns higher
priority to cells with values closer to the maximum count Cmax.
When the agent has no familiarity with the current location, i.e. it
is standing in a hex with a counter value of zero, it proceeds by
randomly exploring the environment.

h(px,z) = |px,z −pgoal |+λx,z (3)

λx,z = 2(Cmax), when cx,z = 0 (4)

λx,z =
Cmax

Cx,z
, when cx,z > 0 (5)

2.4. Existing Crowds Solutions

A variety of end-to-end solutions for the generation, optimization,
validation, and simulation of building layouts, crowds, and sig-

nage systems already exist. AUTOSIGN is a tool for signage sys-
tem optimization, which includes agent-based validation of signage
layouts [DKM∗20]. Spatial Human Accessibility graph for Plan-
ning and Environment Analysis (SHAPE) is a path-based simula-
tion framework that takes a physiological approach to evaluating
wayfinding in 3D multilevel environments [Sch21]. BuildingEX-
ODUS is software which focuses on the simulation of large-scale
emergency egress situations; it includes signage as one of an ex-
tensive set of parameters [RNG12]. Existing solutions for the ap-
plication of crowd simulation to studying wayfinding using both
signage and uninformed exploration frequently include several lim-
itations. Some models overly simplify the representation of the
agent or its cognitive model of the environment. Others consider
vision in only a basic sense, such as by basing visibility checks
on simple ray casts [DTK∗19]. Approaches using only ray casts
fail to model the noticeability and legibility of signage. The use
of global shortest-path routing algorithms like A* is another com-
mon issue [Sch21]. Shortest path routing fails to model the varied
sub-optimal paths taken as a result of realistic wayfinding in unfa-
miliar environments. Work in this area is mainly focused on density
adaptive planning, where agents intelligently avoid overly crowded
areas [VTCIG12]. Furthermore, few current systems take into ac-
count the influence of distractions in the environment which draw
attention away from the wayfinding task and can significantly al-
ter the flow of crowds [KHKF21, KHKF20]. However, gaze mod-
elling and interactions are a rich area in the literature. For example,
there are methods to simulate gaze between real and virtual hu-
mans [NBR∗16]. Most closely related to this work are those gaze
methods which incorporate relative scoring mechanisms [GT09].
Recent works focused on the interaction between density and gaze
behaviour reveal the effect local surroundings can have on gaze
and movement behaviour and point toward incorporating vision
based gaze models in crowd simulation [BHO∗20]. There are a
few vision-based crowds methods that have emerged [OPOD10]
which includes density-adaptive synthetic-vision [HOD15]. All of
these methods point toward a desire in the crowd animation field to
have intelligent agents which automatically react to visual stimuli
and also have intelligent behaviours. Our paper proposes the first
fully parametric method to gain information from visible signage
directly through agent based vision and explore accordingly to the
gained information in an autonomous and intelligent manner, in-
cluding when there is little or no information or the agent is new to
the environment.

3. Overview

The aim of this work is to develop a performant multi-agent simu-
lation system in which agents visually identify and observe signage
using a more realistic method than simple ray cast visibility checks.
This information should then be used to construct a cognitive map
to assist in wayfinding to a goal location. To achieve this agent be-
haviour while improving upon certain aspects of existing models,
there are several key challenges to overcome. Firstly, a representa-
tion of vision needs to be chosen, as well as a method of identifying
objects of interest within that representation. Then, the informa-
tion conveyed by the objects of interest which are selected needs to
be encoded and stored. Finally, the stored navigational information
must be used to guide future wayfinding.
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Figure 2: Structure of the agent. Animation rigging is shown in
blue, physics rigid body in green, and camera frustum in gray.

3.1. Input Data

Before the beginning of the simulation, input geometry represent-
ing the simulation environment must be labelled and pre-processed.
The user of the software must specify the locations and sizes of all
the signs that should be available to the agents. Several parameters
must be set for each sign: path length, sign type, indicated direc-
tion, strength of information, and goal location. The setting of these
can be automated for different classes of signs and signs with ex-
plicit world locations. For each agent in the scene, a start position
and a global goal position must be specified. For the geometry pre-
processing step, we calculate walkability and store the information
in a shared obstacle grid, this is one of several grid layers which
are available to the agent during the simulation. The resolution of
the obstacle grid is set by the user as a parameter of the model. In
the tests conducted, a square grid representation with a resolution
of 1m2 was used. A grid cell is considered walkable if a rectangu-
lar prism with a square base matching the size of the grid cell and a
height equal to the maximum height of the agent does not intersect
any obstacle geometry in the scene.

3.2. Agent Avatar

The chosen representation of the agent is relatively straightforward.
For physics, the agent is represented as a capsule-shaped rigid body
with a width of 0.3m. For the purposes of animating the agent, any
standard humanoid rigging can be used with a 3D model as well
as idle, walking, and running animations. This character model is
placed inside the capsule geometry to simplify collision checking.
A perspective camera is attached relative to the humanoid rigging’s
head bone, such that the view from the camera represents the area
of the scene visible to the agent. This structure is shown in Figure 2
with these key components highlighted.

3.2.1. Animation

The agent’s animation is especially important because the position-
ing of the agent’s rigging has a direct effect on the movement of its
head bone, which, in turn, moves the agent’s camera and impacts
the information available at any given time. Changes to the agent’s
animation result in changes to the outcome of the simulation. We
animate the agent’s avatar by combining idle, walk, and run anima-
tions with a blend tree, then dynamically modify these combined
animations by enforcing inverse kinematics (IK) constraints on the
head and chest bones to set the agent’s gaze direction. When the
agent is not fixated on an object in the scene, the weights of these
IK constraints are set to zero, and the gaze direction is decided
based on the most recent movement direction. When an object is
fixated on, the weights of the IK constraints are ramped up, and the
position of the agent’s look-at target point is linearly interpolated to
the world position of the target object. The speed of IK constraint
ramp-up and movement of the look-at point are configurable as pa-
rameters of the model, which control maximum the speed at which
the agent’s gaze changes direction. The location of the look-at point
is set by behaviour tree nodes which process information collected
by the agent camera, subsequent image processing and feature ex-
traction.

3.2.2. Local Steering

The agent’s high-level wayfinding behaviours decompose the pro-
cess of navigating to a global goal into sequences of local goals.
Certain agent behaviour nodes push locations in the environment to
a local waypoint queue. The agent’s local steering system contin-
ually consumes and navigates towards successive waypoints from
this queue. When the agent reaches a waypoint, that waypoint is
removed from the queue. When one of the agent’s behaviors is in-
terrupted by a higher priority behavior with an alternative naviga-
tion goal, the local waypoint queue is cleared. For example, if the
agent is exploring, then notices a sign to approach, the waypoints
associated with the random exploration behavior are discarded and
replaced with the sequence of waypoints required to navigate to-
wards the sign.

The simulations described in this paper used a simple model in
which the agent’s movement is driven solely by force applied to
its rigid body in the direction of the next goal point in the queue.
The calculation of this force is shown in equation 6. The agent’s
maximum walking speed is controlled by the kwalk parameter, and
the speed at which the agent stops in controllable by the kdrag. This
local steering model was chosen for simplicity while investigating
other agent behaviours; a more powerful predictive collision avoid-
ance system would be a drop in replacement by substituting the
appropriate behaviour tree node.

F = kdragv+ kwalk
pwaypoint −p
|pwaypoint −p| (6)

3.3. Identification of Salient Objects

Salient objects are items in the environment which are visually in-
teresting enough that the agent should slow down or stop, adjusting
its gaze towards the object in question while it gains information
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and investigates. We refer to this behaviour as the agent becoming
fixated on the object. We consider two categories of salient objects.
Firstly, there are signs, which when fixated upon provide useful
wayfinding information, then we have all other distractions, which
offer no relevant wayfinding information and simply slow the agent
down as it proceeds to its goal. When a sign is identified, the agent
will approach it until it is close enough to be readable. For all other
distraction types, the agent simply stops and observes the distrac-
tion until it is no longer interesting, this simplification was chosen
to avoid handling the complexity of modelling the decision making
process of whether to stop, slow, or approach a distraction, while
still having distractions impact the agent’s time to reach its goal.

The process of identifying salient objects begins with the para-
metric saliency map shader [KCH∗21], as described in section 2.1,
being applied to the agent’s head camera. To the standard PSM cal-
culation given in equation 1, we add an additional “information de-
cay” multiplier. This multiplier, Di(t), is used to reduce the saliency
of objects that the agent has already observed. It is calculated at
time t for salient object i using equation 7. The rate of information
decay, Ḋ, for each observing agent, and the initial amount of infor-
mation, Di(0), for each salient object are controllable as a parame-
ters for each agent and salient object in the simulation environment.
The calculation also takes into account the angular separation be-
tween the current look-at point and the target object relative to the
agent, such that when the agent is looking at an object head-on, the
saliency decay is faster. The saliency decay multiplier is applied to
the standard PSM fragment shader calculation according to equa-
tion 8.

Di(t +∆t) = Di(t)+∆t(Ḋ)(d̂current · d̂target) (7)

Si(t) = S′i(1−Di(t)) (8)

After the modified parametric saliency map is rendered to a tex-
ture, key points are identified on that texture using a feature extrac-
tion pipeline. The pipeline applies thresholding, erosion and dila-
tion image processing operations to reduce noise and create a bi-
nary image, and finally performs simple blob detection to identify
key points that the agent might want to focus on. The limits of the
thresholding and the kernel size for opening are controllable as pa-
rameters which effect the minimum saliency of objects noticeable
by the agent. An example of the parametric saliency map and cor-
responding key points is shown in figure 3.

Having identified key points corresponding to areas in the
agent’s field of view which are candidates to fixate on, we need
to choose between them. The choice is done randomly, with the
selection probabilities of each point being weighted by the size of
the corresponding blob. The selection probability of the ith salient
object with total saliency Si for an agent who is currently seeing
n candidate objects is given by equation 9. By using this method
of weighted random selection, objects tend to be fixated on in an
approximate order of descending saliency.

P(ob ji) =
Si

∑
n
j S j

(9)

Figure 3: (1) View of the scene with agent’s gaze being interpo-
lated towards one of three salient objects. The current gaze direc-
tion is shown in blue, the target direction is shown in pink, and the
camera frustum is shown in gray. (2) the parametric saliency map
representation of the agent’s viewpoint. One of the circles, corre-
sponding to the blue ball is not as a bright as the others due to
saliency decay. (3) The result of the image processing pipeline on
the saliency map from just before the agent fixated on the blue orb.
The blue orb was selected randomly from the three green key points.

Once a key point has been stochastically selected, the location
on the vision texture in pixel coordinates must be mapped to the
corresponding object’s metadata, so that the agent can integrate the
wayfinding information associated with that object into its deci-
sion making process. A simple approach would be using a ray cast
through the agent’s head camera’s near plane at the key point posi-
tion. Unfortunately, this approach is unreliable since blobs can be
irregularly shaped and composed of multiple salient objects, result-
ing in the ray to failing to intersect with the objects of interest, or
the wrong objects being selected.

A more reliable and faster method is to use a second shader
which encodes unique salient object IDs in a 32 bit scalar object ID
texture. We can mask the object ID texture based on the selected
feature in the parametric saliency map. Each pixel in the masked
area corresponds to an object ID. Since a salient blob might be
made up of multiple salient objects, we make a second random se-
lection between the objects that the blob is composed of, weighted
by the frequency of the IDs associated with the corresponding pix-
els. This randomly selected object is the one that the agent fixates
on. The entire process of selecting an object within the agent’s par-
tial isovist and obtaining it’s information is summarized in algo-
rithm 1.

3.4. Navigational Information

3.4.1. Obtaining Navigational information

If a salient object is fixated upon, and that object is a sign, then the
agent needs to gain information as a result of having observed it.
The agent immediately adjusts its gaze to face towards the sign to
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Algorithm 1 Saliency Map Feature Extraction Pipeline
1. Generate parametric saliency map
2. Convert to binary image (threshold)
3. Erode and Dilate (opening)
4. Extract connected components (blob detection)
5. Select a key point, weighted by saliency
7. Extract corresponding salient object IDs from id texture
8. Select a salient object, weighted by frequency
9. Map pixel coordinates to salient object metadata

Figure 4: The path taken by the agent is indicated by the blue trail.
We see that the agent starts in a position with the map visible, but
outside the VCA. The path taken goes first into the VCA, repre-
sented as a pink circle, to receive signage information. Then, the
agent proceeds to the goal by following signage information in the
navigation grid. The agent’s navigation grid values are shown by
the shaded grid on the floor of the scene.

maximize the information gain rate, but does not initially gain any
information until it is within the sign’s visual catchment area, as
defined by equation 2. In that equation, our model uses a constant
minimum angular separation of 0.29, consistent with values in the
NFPA Life Safety Code Handbook [XFG∗07] and leaves the size
of the minimum recognizable element to be set as a parameter for
each sign in the scene by the user of the system. The centre of
the sign’s VCA is added to the local waypoint queue such that the
agent moves close enough that the sign is legible, this behavior
can be observed in figure 4. The information gain rate of of the
agent, Ḋ in equation 7, drops off towards the edge of the VCA, so
that the saliency does not decrease until the sign can be read and
understood. When the saliency of the corresponding salient blob
drops to zero, the sign is considered to have been read by the agent.
After this point, the sign is no longer salient and the information
associated with it is integrated into the agent’s navigation grid.

3.4.2. Encoding Navigational information

Once the agent has fixated on and finished observing a sign, the
information associated with that sign must be stored so that it can
be used during the wayfinding process. To assist in representing
navigational information, we introduce another grid layer over the
environment for each agent, the navigation grid. The resolution of
this grid is configurable as a parameter of the model, and was set
to 1m2 per cell for most testing. All cells marked as walkable on
the obstacle grid are associated with integer counters in the agent’s
navigation grid. Familiarity for any grid cell is capped at a con-
figurable value. All counters are initially zero, and represent the
agent’s wayfinding familiarity with the corresponding area of the
environment. Larger values indicate greater familiarity.

When the agent observes a sign, the sign increases these coun-
ters along a path of grid cells; this path is determined by the type
of sign observed. There are two types of signs supported by the
system: global signs, which represent maps, and directional signs,
which represent arrows. Global signs increase counter values along
the grid cells corresponding to the optimal path from the sign to
the goal. Directional signs increase counter values along grid cells
intersecting a line starting at the sign and going in the direction in-
dicated by a user-specified vector controlling where the sign tells
the agent to go. Both kinds of signs have several common param-
eters: strength, distance, and falloff. The amount that the grid cell
counters increase, as specified by the strength parameter, linearly
decreases to zero along the number of cells on the path specified by
the distance parameter. The spread of information to cells adjacent
to the path is controlled by the information falloff parameter. Pa-
rameters controlling the integration of signage information into the
agent’s navigation grid are summarized in table1.

In figures 4, 5, 9, 10, and 11 global signs are represented as "you
are here" maps, while directional signs are represented as white
arrows. This symbology was selected because it portrays the kind
of information each kind of sign is intended to model; however, the
agent does not employ image processing to "read" the signs, rather,
once the agent has noticed a sign and entered its VCA, it directly
accesses the sign’s metadata and updates its navigation grid.

3.4.3. Acting on Navigational Information

The approach used to pick paths based on information in the
navigation grid is similar to the human-like path planning ap-
proach, except that square grid cells are used instead of hexagonal
tiles [RP22]. When an agent finds itself in an area of the environ-
ment with nonzero navigation familiarity, wayfinding is guided by
an A* algorithm with a modified heuristic similar to 3. The only
difference is that instead of a static multiplier of 2 being used in
the calculation of the λx,z term in the heuristic, the strength of
the agent’s preference for nonzero grid cells is a user-configurable
value. The modified heuristic is designed such that the agent prefers
paths through cells with higher familiarity, even if those cells do not
represent the shortest path. The agent strongly prefers not to move
through cells with zero familiarity. This approach works because
the heuristic is not admissible; the agent overestimates the cost of
moving into an unfamiliar cell. A* is not guaranteed to return a
shortest path when using a heuristic that is not admissible, and will
instead prioritize paths which pass through more familiar areas of
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Parameter Description
Sign Type Categorical. Either "directional" or

"global". Directional signs increase nav-
igation information along a straight line.
Global signs increase information along the
shortest path to the goal location.

Distance Integer. Maximum length of the trail of in-
formation left by this sign. A larger value
causes the sign to guide the agent further
towards the goal.

Strength Integer. Initial magnitude of navigation fa-
miliarity increase provided by this sign.
A larger value causes the path communi-
cated to be more strongly preferred during
wayfinding.

Falloff Integer. Reduction in strength when recur-
sively propagating the familiarity increase
to adjacent cells.

Direction 3D Vector. Applies only to directional signs
and indicates the direction the sign is sug-
gesting the agent proceed in.

Goal Location 3D Point. Applies only to global signs and
indicates the location of the goal the sign is
leading the agent to. x

Table 1: Signage metadata controlling navigation grid updates.

Figure 5: The red trail shows the path of agent navigating towards
a goal using both global (map) and directional (arrow) signage.
The square in the bottom left shows the agent’s head camera para-
metric saliency map as it approached the map. Darker blue grid
cells correspond to areas of the environment where the agent has
higher wayfinding familiarity as indicated by the integer counters
in the navigation grid. Wayfinding using the navigation grid is in-
terrupted when the agent notices a new sign to read.

the environment. When the agent enters an area of the environment
with which it has nonzero familiarity, as indicated by its navigation
grid, it calculates a complete path to the goal. The grid cells along
this path are pushed to the local steering waypoint queue and fol-
lowed until either the agent reaches its goal, steps into a grid cell
with zero familiarity, or becomes distracted. The result of using this
path planning method is shown in figure 5, wherein an agent nav-
igates through an environment with multiple paths to a goal using
both global and directional signage.

3.5. Simulating Random Exploration

While the agent is in areas of the scene with nonzero wayfinding
familiarity from signage, it can navigate using the modified A* ap-
proach described in the previous section. However, when there is no
such information available on the navigation grid, the agent must
randomly explore the environment in search of either the goal or
more signage to follow. The simulation of random exploration is
based primarily on visibility graph metrics. At the start of each
simulation, a dense undirected graph is generated wherein each
grid cell is a node, and two nodes are connected if they are vis-
ible from each other. Visibility between grid cells is determined
by a ray cast between the locations where the agent’s head camera
would be if they were standing in the middle of each of two grid
cells. From this graph we easily can calculate a variety of visibil-
ity graph measures representing the environment’s configuration.
These visibility graph measures are stored in a grid which is shared
between all agents to avoid re-computation. To model random ex-
ploration, each agent maintains an exploration grid layer over the
environment. As the agent navigates the environment, grid cells are
marked as "seen" if they are currently, or have been previously, visi-
ble. Only these cells are considered as targets for exploration. Each
exploration grid cell contains an exploration heuristic measuring
the desirability of navigating to that location with the intention of
gaining additional information about the environment.

3.5.1. Calculating the Exploration Heuristic

At each exploration grid cell, an exploration heuristic is calculated
using equation 11. Each pre-calculated visibility graph measure hi
from the corresponding static visibility grid cell is multiplied by its
weight wi; in the current version of the agent model, there are n = 2
metrics considered: neighbourhood size and clustering coefficient.
The chosen metrics and their corresponding weights are set by the
user to enable control over the agent’s preferences during random
exploration. Multiplied to this sum of visibility graph heuristics are
two additional factors used to avoid revisiting grid cells or selecting
a cell which is too close to a previously selected cell.

wdistance = max(0,min(
|pnode −pagent |

dideal
,1) (10)

Hexp = (
n

∑
i=1

hiwi)(wdistance)(w f amiliarity)
c (11)

Each time a cell on the exploration grid is visited during ran-
dom exploration, a familiarity counter c is increased for that cell
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Figure 6: The agent’s path is shown in blue. Grid cell color-
ing indicates exploration heuristic value with red cell indicating
lower exploration heuristic values and green more desirable higher
heuristic values. The random exploration behavior works well to
guide agents out of enclosed spaces, but is slow to navigate out of
highly connected regions.

by a user-specified constant ∆c ∈ N. The counters for adjacent
cells are recursively increased by c − 1 while c > 0 and the ad-
jacent cell is marked at "seen". A familiarity penalty in the range
[0, 1], w f amiliarity, is also set by the user. This penalty is raised to
the power of the node’s familiarity counter, such that the heuristic
value of a cell decreases the more times it has been visited. This
penalty is needed to avoid having the the agent get stuck in areas
with initially high exploration heuristic.

The second multiplier involves wdistance, which is calculated as
the straight line distance between the agent’s current position and
the candidate exploration grid cell. This distance can be thought
of as the magnitude of the homing vector to a previously observed
location; the ability of animals, including humans, to calculate the
magnitude of this homing vector through the process of path in-
tegration is a well established navigation mechanism which may
form the basis for cognitive maps of environments [Wan16]. The
addition of this factor further discourages the agent from staying in
the same location while exploring.

3.5.2. Using the Exploration Grid

The exploration grid cells with the highest heuristic values are con-
sidered for selection as the next location to explore to. A target
location is selected randomly from the candidate locations. The
agent considers all "seen" exploration grid cells as candidate points
for random exploration, including those which are not in its cur-
rent isovist. This is important because it means that the agent can
remember previously seen locations that look tempting to explore
and go back to them in the future. However, since the local steer-
ing model only works for straight line paths, this means that the
selected random exploration destination cannot be naively added
to the local waypoint queue. Instead, a shortest path is computed
within the grid cells which have been marked as "seen"; since the
path can only use areas that the agent has seen, it is not necessarily
a global shortest path. Examples of this exploration behavior are
seen in figure 6, which shows two opposite situations: exploring
from a confined area to a highly connected one, and vice versa.

3.6. Coordinating Agent Behaviors

Agent behaviors are coordinated by an event-driven behavior tree.
A simplified version of this behavior tree is shown in figure 7,
wherein the five primary agent behaviors are labelled (1) through
(5). These behaviors are ranked by increasing importance such that
any lower-priority (higher number) behavior can be interrupted by a
higher priority (lower number) behavior. The activation of each se-
quence is subject to a conditional node which functions as a predi-
cate controlling the activation of the corresponding behavior nodes.
The placement of the agent’s behavior tree in the context of the
other elements of the simulation system is shown in Figure 8. The
functionality of these behavior groups, in order of descending pri-
ority, are as follows:

1. The highest priority behavior is to stop when the goal is reached.
Regardless of whatever else is going on in the scene, the agent
will always stop and do nothing once it reaches its goal, inter-
rupting whatever is was doing before reaching it. The condi-
tional for this behavior group is a check to see if the agent is
sufficiently close to the goal location, as configured by the goal
threshold parameter.

2. The second behavior group’s conditional node checks for the
detection of a salient object by the agent’s PSM feature extrac-
tion pipeline from section 3.3. This behavior is only allowed to
activate if the agent doesn’t already have a completely informed
path to the goal location in its navigation grid; this prevents the
agent from looking at more signs when it already knows where
to go. When triggered, this behavior guides the agent into the
VCA if a sign was detected, observes the object until it is no
longer salient, then updates the navigation grid appropriately as
in section 3.4.

3. The goal seeking group’s conditional checks if the goal loca-
tion is visible within the agent’s isovist at any time. If it is, then
the agent will immediately clear its local waypoint queue and
navigate straight to the goal location.

4. The final conditional behavior group is triggered by the agent
residing in a navigation grid cell with a nonzero counter value.
This behavior has the agent follow the navigation grid as in sec-
tion 3.4.3 until it is interrupted by a higher priority behavior, or
strays into a region with zero wayfinding familiarity.

5. The fifth behavior group has no conditional; it is the fallback
behavior which is used when there is nothing else for the agent
to do. The behavior tree nodes in this group control the heuristic-
based random exploration behavior described in section 3.5.

Figure 9 shows the results of the simulation in an environment
with multiple agents demonstrating coordination of various behav-
iors in the agent behavior tree. We see the red trail agent initially ex-
ploring out of a snaking hallway using the heuristic-based random
exploration, which guides it to the more highly connected central
room. The red agent then sees map in that room, approaches its
VCA, observes it, and adds a trail of information to its navigation
grid along the optimal path to the goal, which it then follows. The
blue trail agent has a similar experience to the red agent, except
that it navigates out from its initial location using two directional
arrow signs. Once it exits its starting hallway, its navigation grid
following is interrupted by seeing the map. The green agent starts
in an open room, where it is initially distracted by a red sphere.
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  (1)   (4)  (3)  (2)

Sequence Sequence Sequence Sequence

Walk to
random goalGoal reached? Salient Blob

Detected? Goal Visible? Has Navigation

Info?

Selector

Follow Nav
gridStop Investigate Walk to goal

  (5)

Figure 7: A simplified representation of the agent model’s event-driven behavior tree. Conditional nodes are displayed as circles. There are
five main subtrees containing groups of behaviors. The behavior groups are ordered from left to right by priority; any behavior group to the
left of another group can interrupt that group if its conditional node is evaluated as true.

Figure 8: Overall agent design. The simulation environment is preprocessed to extract static grid layers including walkability and visibility
metrics. Each agent has a camera whose output is processed by the PSM shader and image processing pipeline. This data is integrated into
the navigation grid, which is used in conjunction with the Agent’s grid of exploration heuristics to guide wayfinding decisions coordinated
by the event-driven behavior tree. The model’s outputs are rigid body forces which move the agent through the scene.
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Figure 9: A complex scene containing multiple agents whose paths
are represented by red, green, and blue trails. This environments
requires agents to make use of multiple behavior tree groups to
reach the goal.

Figure 10: A complex scene showing the paths of the agents in red,
green, and blue. All the agents use a combination of random ex-
ploration and various types of signage in the scene to find the goal
more quickly than with completely random movement, and more
slowly than an unrealistic shortest path approach.

The distraction provides no navigational information, so the agent
runs across the central room to an arrow sign near the goal. Before
reaching the goal tile, once they enter the top right room, all three
agents have their "walk to goal when visible" behavior interrupted
to observe a non-signage distraction displayed as a red sphere.

Figure 10 and Figure 11 shows the results of the simulation in
an environment with multiple agents in increasingly more difficult
scenarios. Figure 10 demonstrates a simulation where agents obtain
enough information to initially proceed the correct direction but re-
quire exploration to find the next signage. In Figure 11, we signif-
icantly increase the difficulty of the environment by adding more
signage, conflicting signage for different goals, and two groups
with conflicting paths to their goals that they must find in the envi-
ronment using signs and exploration. This leads to a classic cross-
ing groups scenario where emergent lane forming from the steering
control helps resolve the scenario.

Figure 11: A complex scene showing the paths of the agents in
red, green, and blue. Here, there are blue and green groups which
interact and steer among each other. The scenario geometry is the
same as Figure 10 but more signage and conflicting signage for
directions have been added. The green and blue groups also have
conflicting paths to their goals which leads to a crossing groups
scenario.

4. Evaluation

In this section we evaluate the proposed model from a few differ-
ent perspectives. First we look at the cost of random exploration
since this is the baseline, no information case. Then we evaluate
the computational performance.

4.0.1. Random Exploration

The chosen method of exploration tends to encourage agents to
seek wide-open areas where they can see more of the environment,
this can be seen in left side of Figure 6, wherein the agent picks
exploration grid cells with high neighborhood size as the next des-
tination; it goes straight for the entrance to the large room. This
is an effective strategy for many environments because in a larger,
more connected area, the agent is more likely to notice some sig-
nage which can be used to find the goal.

The worst performance of the exploration heuristic is observed
when the agent starts in a highly connected region and needs to
go into a small passage to find the goal. In this case, the agent must
fully explore the open area such that the cells in the room are visited
enough times that familiarity multiplier causes the lower neighbor-
hood size nodes to be preferred. This worst-case situation is shown
in the right side of Figure 6, and could be likely be improved by
adjusting the exploration heuristic’s weighting of visibility metrics
and the size and spread of the familiarity penalty.

4.1. Computational Performance

Depending on the complexity of the scene, the system can accom-
modate around a dozen agents while maintaining real time perfor-
mance at around 60 frames per second on a AMD Ryzen 3 3100
Processor, GeForce GTX 1070 GPU machine with 32 GB of mem-
ory. If real time performance is not desired, an arbitrarily high num-
ber of agents can be accomodated, limited only by the system mem-
ory. Profiling reveals that the primary bottleneck is the image pro-
cessing pipeline. Generation of the parametric saliency maps is fast,
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but the feature extraction pipeline is slow, accounting for over 50
percent of the total CPU time of the simulation. This bottleneck oc-
curs because the implementation of the PSM processing pipeline is
executed on the CPU, while the PSM textures themselves are ren-
dered on the GPU; PSM textures must be transferred from the GPU
to the CPU at every update step. This is a slow blocking operation.
For these tests, visual information was rendered to 64x64 resolu-
tion textures. Increasing this resolution results in a more severe per-
formance bottleneck. The current implementation of neighborhood
size is O(n2) and clustering coefficient is O(n3) on the number of
walkable cells, where n is the number of walkable cells. Tests were
conducted using 900m2 grids with a resolution of 1m2, at this reso-
lution, startup times ranged from 10 to 60 seconds.

5. Conclusion

The proposed approach encodes the complexity of modelling hu-
man wayfinding behaviour in a configurable method that affords
authoring scenes with intelligently exploring agents. The key com-
ponents of this agent model are vision-based identification of sig-
nage, a per-agent navigation grid for informed wayfinding, static
grid layers to encode walkability and visibility metrics, and a pre-
computed spatial metrics based exploration behaviour. The agents
avoid following the simple shortest-path routes to their goals that
would be typical of models including unrealistic global informa-
tion, while also moving through the scenes faster than they would
without additional information from signage.

5.1. Limitations and Future Work

We show that our proposed model is robust and produces interest-
ing non-trivial paths in complex situations, however, there are cer-
tainly some limitations to the current approach. Firstly, there is no
mechanism for multi-objective signage systems, as would be seen
in buildings with multiple possible destinations. To study signage
layouts of this type, separate signage layouts and simulations must
be conducted for each objective. Also, signs are “all or nothing” in
the sense that an agent can’t receive partial information from a par-
tially visible sign. Secondly, the agent always tries to take a straight
line path to a sign’s visual catchment area, and to a goal if it sees
one. This causes issues if a sign is visible but not accessible across
something like an atrium, in this case the agent ends up walking
into a wall forever while it tries to reach the sign’s VCA; this issue
can be mediated by adding a timeout to group (2) in the behaviour
tree, though this does not address the underlying issue. While the
current method of following the navigation grid works well for op-
timal and slightly sub-optimal paths, there is currently no way to
have a sign which is so misleading that it guides the agent to a dead
end; this an unavoidable side-effect of the modified A* approach.

The current performance of the model could be improved
substantially by developing a GPU-based implementation of the
saliency processing and object tracking pipeline. Currently blob
tracking and image processing are a computational bottleneck.

There are several social effects which could be added to the sim-
ulation to increase realism. If an agent sees another agent looking in
a direction, they should also want to look in that direction; this is a
known phenomenon in real human behaviour [GHS∗12]. The local

steering model should be swapped out for something that includes
social forces [HM95] and short-term prediction [KHvBO09] to re-
duce collisions with nearly agents and obstacles. Additional realism
could also be added if, when uninformed, agents had a tendency to
follow other agents that might have might have more information.

Currently, the approach to gaze control is overly simplified when
the agent doesn’t have a specific object to focus on. A possible
future improvements would be to consider gaze direction as part
of the configuration space sampled by the agent during it’s random
exploration behaviour. This would mean exploration goals would
include going to a specific location, as well as looking in a specific
direction.
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