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Abstract

This paper proposes a novel crowd simulation method which integrates not only modelling ideas but also advantages from both
data-driven methods and crowd dynamics methods. To seamlessly integrate these two different modelling ideas, first, a fusion
crowd motion model is developed. In this model the motion of crowd are driven dynamically by different forces. Part of the
forces are modeled under a universal interaction mechanism, which describe the common parts of crowd dynamics. Others are
modeled by examples from real data, which describe the personality parts of the agent motion. Second, a construction method
for example dataset is proposed to support the fusion model. In the dataset, crowd trajectories captured in the real world are
decomposed and re-described under the structure of the fusion model. Thus, personality parts hidden in the real data could be
locked and extracted, making the data understandable and migratable for our fusion model. A comprehensive crowd motion
generation workflow using the fusion model and example dataset is also proposed. Quantitative and qualitative experiments
and user studies are conducted. Results show that the proposed fusion crowd simulation method can generate crowd motion
with the great motion fidelity, which not only match the macro characteristics of real data, but also has lots of micro personality

showing the diversity of crowd motion.
CCS Concepts

e Computing methodologies — Multi-agent planning; * Applied computing — Law, social and behavioral sciences;

1. Introduction

Vivid crowd simulation could increase the visual fidelity of vir-
tual scenes, and becomes more and more important for animations,
games and virtual reality. It is also vital for applications of pub-
lic security and intelligent traffic, since realistic crowd simulation
could provide a credible experimental environment for studies of
crowd. In real crowd, each person, as a highly autonomous indi-
vidual, can move flexibly avoiding surrounding ones and obstacles
while reaching its destination efficiently and naturally. They also
move differently from each other presenting diverse personality.
Furthermore, as a collection of individuals, crowd movement fol-
lows some general laws of crowd dynamics. Therefore, it is a great
challenge to simulate the motion of crowd, matching the macro and
micro laws of real crowd and showing diverse and natural motion
with collision-free interaction.

Extensive crowd simulation methods have been proposed from
different technical point of views to handle the challenge. Roughly,
they can be categorized into rule-based approaches and data-driven
approaches. Rule-based approaches set rules for virtual crowds
such as potential field, social force, cellular automata etc [XJID14]
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[YLG*20] [vTP21] [MCT21]. They usually generate collision-free
crowd motion but fail to produce diverse motion and natural inter-
actions. Data-driven approaches extract features from the real data
to imitate real crowds’ motion. They can generate diverse and nat-
ural motion but fail to deal with collision problem. Furthermore,
many data-driven approaches have high dependency between data
and scenario. That means the data they used is only applicable to
generate crowd scenario similar to data scenes.

This paper proposes a fusion crowd simulation method to com-
bine both data-driven and rule-based modelling idea. Firstly, a fu-
sion crowd motion model is developed which drives agents dy-
namically by different forces. Part of the forces are modeled under
a universal interaction mechanism from [KSG14], which describe
the common parts of crowd dynamics. Others are modeled by ex-
amples from real data, which describe the personality parts of the
agent motion. Secondly, a construction method for example dataset
is proposed, in which personality parts in real crowd trajectories are
extracted by reverse solving the proposed fusion model and stored
in dataset as a set of examples. Thirdly, a comprehensive crowd mo-
tion generation workflow is proposed which selects the appropriate
example from the database for each agent based on its state and
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drives them step by step. We conduct quantitative and qualitative
experiments to evaluate the performance of the proposed method.
Results proves that the method can generate realistic crowd motion
which match the macro and micro laws of real crowd and show
diverse and natural motion with collision-free interaction. Further-
more, a user study is conducted to prove our method offer a better
visual experience. The main contribution of this work can be sum-
marized as follow:

1. A novel fusion crowd motion model is proposed. It defines
crowd motion in two parts, common dynamic parts and person-
ality parts, and integrates them into a force driven framework.
So that, it has the ability to present not only common dynamic
law, but also diverse personality in crowd motion.

2. A construction method for example dataset is proposed which
extracts personality parts from real data. In our method, person-
ality parts mean the forces that push agents moving a little dif-
ferent from the general model. Such difference are tiny but vital
to diverse and natural crowd motion. They are difficult to model
with rules. So we extract them from real data by reverse solving
the proposed fusion model and translate them into forces. Thus,
personality parts in real data could be integrated seamlessly into
a force drive crowd framework. Furthermore, personality parts
have relatively low scenario dependency than trajectory or ve-
locity, and could be transplant to different crowd scenes by our
fusion model.

2. Related work
2.1. Rule-based Approaches

Rule-based approaches do not depend on real crowd motion data
and define crowd‘s motion by a set of rules. These approaches aim
to generate reliable collision-free agent motions. Following mod-
eling the crowd as an entirety or as individuals, these approaches
can be divided into macroscopic rule-based approaches and micro-
scopic rule-based approaches.

Macroscopic rule-based approaches set moving rules for all
agents in their entirety. [Hug00] [Hug02] [Hug03] considers crowd
as flowing continuums and uses fluid mechanics to model them.
[TCPO6] builds a global dynamic potential field based on agent’s
intentional velocity, goal location, and obstacles, then use it to
guide the agent motion. [BSK16] computes the harmonic field of
the environment and uses the Reeb Graph to present the topol-
ogy of the environment. With the help of harmonic field and Reeb
Graph, crowd’s motion can be acquired via a lightweight algo-
rithm. Macroscopic rule-based approaches ignore the interactions
among individuals, so they have high calculating efficiency and
better global effects for large-scale crowd simulation. However, this
neglect also results in homogeneity and lacks local details in crowd.

Microscopic rule-based approaches concentrate on the single
agent’s motion. They calculate the change of motion state at the
next time step based on self-motion state and environment sit-
uation for every agent separately. [GMS8S5] proposes the method
which predicts agent locations using cellular methods. Further,
[BEA97] [BA99] and [MIN99] introduce Cellular Automata into
agent movement simulation. Force-based methods consider that

agent motion is influenced by various virtual forces. [OM93] sim-
ulates crowd’s behavior by magnetic method. [HFV00] proposes
the social force model, which simulates escape crowd panic be-
havior by a set of socio-psychological and physical forces con-
ducted by the goal, obstacles, and other agents. [KSG14] fur-
ther studies the relationship between impact strength and esti-
mated impact time from real data and propose Power Law in agent
motion. In addition, [VABLMO8] [BGLM11] propose reciprocal
velocity obstacles(RVO) and optimal reciprocal collision avoid-
ance(ORCA) to search for efficient navigation for intelligent multi-
agents scenes based on velocities. Other methods take visual in-
formation, auditory information, and psychological factors into ac-
count. [VTGG*20] proposes a novel framework that optimizes a
cost function in a velocity space. By combing a particular cost func-
tion, different algorithm can be translated to this framework. Micro-
scopic rule-based approaches have the advantage of high scenario
generalization and strong stability. However, they regard agents re-
sponding to their surroundings in the same way, which loses the
different characteristics of agents.

2.2. Data-driven Approaches

Data-driven approaches extract features from real data to guide
crowd motion. These approaches generally focus on how to imitate
real trajectories’ patterns and reproduce natural behavior. These
approaches can also be divided into macroscopic data-driven ap-
proaches and microscopic data-driven approaches.

Macroscopic data-driven approaches extract features including
global velocity field, flow field, or spatial-temporal distribution to
guide virtual agents’ motion. [KBB*16] [CDG18] attribute vir-
tual agents into various clusters or streams learned from crowd
videos to imitate various crowd motion. [ZCLZ16] statistically an-
alyzes the crowd flow and establish a velocity field at every exit
to guide virtual agents’ motion in the same scenes. [HXZW20] de-
composes real-world crowd trajectories into a set of modes to re-
generate crowd motion. Macroscopic data-driven approaches have
strong scene dependence. When the virtual scene corresponds with
the real scene, they can fast generate realistic simulation results.
However, they fail to work when the virtual scene is altered.

Microscopic data-driven approaches learn the motion regularity
of a single agent’s motion from data instead of overall distribution
in the scene. Trajectory reusing methods rearrange trajectory pieces
in real data to generate virtual agnets’ trajectories. [LCHLO7] di-
vides agent motion features into high-level and low-level to pre-
dict crowds motion in different scopes. [LCL0O7] [LFCCOQ9] sep-
arate short trajectory segments from the real trajectories and con-
struct an example dataset for virtual agents to imitate. [CC14] fur-
ther improves the searching efficiency of the trajectory example
dataset by encoding virtual agent’s state into Temporal Percep-
tion Pattern. [ZCT18] considers the influence of the time to col-
lision to generate natural trajectories. [BKM15] proposes a tra-
jectory fusion method to merge crowd’s behavior from multiple
videos. [WLZX18] [YZLL20] use real data to train a neural net-
work that takes the agent’s current state as input and outputs its mo-
tion at the next time step. [RXX™* 19] proposes Heter-Sim, which se-
lects imitated objects in the dataset based on velocity. These meth-
ods can generate realistic results owing to utilizing the real data,
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however they suffer from collision problems and may fail when the
generation scene are different with the data scene.

3. Fusion Agent Motion Model

This section introduces our fusion crowd motion model which
adopts both rule-based and data-driven modelling ideas and inte-
grates data with dynamics, personality with common in crowd sim-
ulation. Specifically, we model the motion of each agents as a result
of influence from the target point, other agents, obstacles, and the
personalized motion features. And define these influence into four
forces which drive the agent step by step to its target. Definitions
of the first three forces, which describe the common parts of crowd
dynamics, are mainly inherited from Power Law model [KSG14],
which studies interaction dynamics of crowd from real data by a
statistical-mechanical approach. Thus, PowerLaw can statistically
reflect the basic collision-avoid, destination-driven and other basic
intention in crowd motion. As a result, our fusion model matches
the statistical laws of real crowd motion very well and could gener-
ates collision-free interaction of agents. In order to generate diverse
and natural motion, we design the forth force to describe personal-
ity parts in the crowd motion. Specifically, in our model, the forth
force pushes agents moving a little deviation from the motion de-
fined by Power Law model. Such deviation do not affect the agent’s
overall movement but make the agents different from each other
and show diversity of crowd. In our fusion model, the forth force
is not defined as a formulaic rule. It is acquired from real data for
each agent dynamically and respectively.

3.1. Agent Motion Model

Agent movements in our model are regarded in two-dimension and
agents are regarded as discs of the radius r with uniform mass dis-
tribution. In our proposed model, the agent’s position at the next
frame x;1 is calculated by its position x; and velocity v; at the
current frame .

X1 =%+ VA 1)

We use dynamics to model agent velocity change, which con-
siders current velocity v; is decided by its previous velocity v~
and acceleration a,_ ;. Furthermore, the acceleration g, ; is deter-
mined by force applied to the agent ftil

Vi =V +d— - A 2
fi-1

m

(3

G =
where m is the mass of the target agent.

As mentioned above, we model force in agent movement in four
aspects: goal dr1v1ng force fd, agent interaction force fn, obstacle
interaction force fo, and the personalized motion feature force fp

F=FatfutfotTo 4)

Through these forces, we can explicitly describe how the internal
and external factors influence agent movement. (Figure 1)
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Figure 1: Force in agent movement

3.2. Force Calculation

Goal driving force Agents will choose a preferred velocity vy
pointing to their goals if there is no other interference in the scene.
The goal driving force fy is exerted when the agent’s current veloc-
ity Vis not equal to the agent’s preferred velocity and tries to adjust
the current velocity toward the preferred velocity.

fa= 0 =9)/¢ ®)
where ( is the parameter which indicates the strength of goal driv-

ing force. Unlike [KSG14], the agent’s preferred velocity is ob-
tained from the real data, which will be further discussed later.

Agent interaction force We model the influence of other agents
in the certain perceived distance into agent interaction force to
avoid possible collisions. We apply the spatial gradient on the in-
teraction energy between the agents referring to Power Law model
[KSG14](which is called anticipatory force in Power Law), which
founds the interaction energy between agents statistically follows
a power law based on agents’ projected time to a potential future
collision. In this circumstance, agent interaction forces only exist
when a potential future collision is predicted. To predict a potential
future collision, we first calculate the relative velocity v;; between
agent i and agent j :

Vij = i = ©)

Then, we move the disc of agent i along the direction of relative
velocity. If the disc does not collide with the disc of the agent j,
there is no potential future collision between i and j. Otherwise,
there exists a potential future collision, and the projected time T is
calculated as:

=2 ™

where d_. is the distance between the current position of agent i and
the position when the potential collision happens. The agents who
have the potential future collision with agent i together apply the
agent interaction force on agent i.

=Y 7 ®)
J(F#0)
Fi = —VE; ©)
Ej— fe’% (10)
] 12
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where fn is the resultant agent interaction force, Tg is the thresh-
old of the projected time of the potential future collision, k is the
parameter that indicates the strength of agents’ interaction, j(# i)
represents all agents that exist potential future collision with agent
i in the perceived distance.

Obstacle interaction force The calculation of obstacle interac-
tion force is familiar with the agent interaction force. The model
considers every line segment in the scene as an independent obsta-
cle. Similarly, to predict the potential future collision, we move the
disc of agent i along the direction of its velocity v;. If a potential
future collision with the obstacle is predicted, the projected time T
is calculated as:

de (11)

Vi

T=

where d, is the distance between the current position of agent i
and the position when the collision happens. The obstacles which
have the potential future collision with agent i apply the obstacle
interaction force on agent i.

fo=Y fw (12)
fow=—VE, (13)
Ejy = T%e’% (14)

where fo is the resultant agent interaction force, w is all obstacles
that exist potential collision in the perceived distance of agent i.

Personalized motion feature force When we generate agent
movements via the three forces mentioned above, the simulation
results will differ from the real data. The main reason is that these
rule-based methods only model the common motion regularities.
However, in real agents’ movement, personalized factors also play
an essential role. To model these implicit factors, we use data-
driven methods to construct a real agent motion example dataset
e. The model would find a matching example e in the dataset dur-
ing the simulation process based on the target agent’s current state
q. The personalized motion feature force is a part of the example e.
The following section will discuss the structure of the example, the
representation of the agent’s state, and the matching function.

4. Construction of the Example Dataset

This section introduces how to extract features from real data
and construct the agent motion example dataset. The real data
used in our work include SNU [LCHLO7], RCS [ZKSS12], ETH
[PESVG09], and UCY [LFCCO09].

4.1. Example Construction

In dataset, every example corresponds to a trajectory piece of a real
pedestrian and includes its personalized motion features and state
features during the time period the trajectory piece occurred. The
personalized motion features o describe the motion characteristic
of the given agent, including the goal point Xp, the magnitude of
the preferred velocity |vp|, and the sequence of characteristics dif-
ferences Fp. The state features S describe the states of agents and
are used to match the suitable example for generating movements

of crowd, including the sequence of positions X, the magnitude of
initial velocity |vs|, and the sequence of density map P. Each ex-
ample is a (&, S ) pair which means in the given state as S, the real
agent has exhibited personalized motion feature as .

4.2. The Calculation of Personalized Motion Features

Goal Point We set the initial position of the trajectory piece as
origin, the direction of initial velocity as the positive direction of
the axis. In the following section, we use this local coordinate as
default. The goal point of xp is set as the position a period after the
corresponding segment of agents trajectory.

=1 (15)
where T’ is a certain time after the end of the example.

The magnitude of preferred velocity We calculate the average
speed of the agents as the magnitude of preferred velocity |vp|:

Ivp| = Xrlvi
T

_ |xt11 —ft|

M

where V; is the velocity of the agent at frame ¢, T is the total frames

of the example, x; 1| and X; are adjacent position coordinates in the

trajectory piece.

Nl

(16)

a7

Vi

The sequence of characteristics The sequence of characteris-
tics differences Fp consists of the personalized motion feature force
f;,, at frame ¢ in the example. In our model, the movements of the
crowd are generated under four forces. The rule-based forces fd,
ﬁ and fo can directly calculated as Section 3.2. Then, the person-
alized motion feature force f:y can be reversely calculated by the
resultant force fR.

ot = fre = (Fan + fo + for) (18)

Based on the kinematics model, we can mathematically get f;g from
real data:

Xip1 — X

L fre
= LM A 19
A vt + - (19)

The sequence of characteristics differences Fp is composed of
f,;t calculated at each frame. This sequence represents the devi-
ation between real crowd movements and movements generated
by rule-based forces. Therefore, when generating crowd motion,
adding these characteristic differences will improve the fidelity of
movements. Furthermore, the sequence structure will preserve the
sequential and temporal characteristics of the real data, which is
helpful to reproduce the temporal regularities in crowd movements.

4.3. The Calculation of State Features

Agents have different moving behaviors under different states, in-
cluding their historical movements and their surroundings. Before
simulating movements for crowd, we need to match proper per-
sonalized motion features for agents based on their states. We use
the sequence of position and the magnitude of initial velocity to
represent the agent’s self-motion states, then use the density map
sequence to represent the agent’s surrounding states.
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Figure 2: Structure of the example

The sequence of position The sequence of position X is a set of
position at each frame %; in the example.

X ={x%[r€[0,T),r € N} (20)

The magnitude of initial velocity The magnitude of initial ve-
locity |vs| is defined as the speed of the frame before the example
begins. Using this feature ensures speed continuity at the beginning
of the example.

_ o=«

At @b

V]
The sequence of density map We abstract agent’s surrounding
states into the density map p;, and the sequence of density map
P represents the surrounding states of the agent at every frame in
the example. Every density map consists of L * L grids; the center
of the density map is agent’s position at the first frame, and the
length of the grid is d. Here d and L are predefined constants. The
grid in the density map has a density that represents distributions
of other agents and obstacles. The mathematical presentation of the
sequence of the density map is as follow:

P={p:|t €10,T),t €N} (22)
pr = {dmn|m,n € [1,L], mn € N} (23)
dpn = da,, +€do,, (24)

where dy; is the density of the grid, dq,,, is the density of agents,
do,,, 18 the density of the obstacles, € is the weight to adjust two
densities.

For the density of the agents d,,, in the grid, we first find all
neighbor agents in the density map at the current frame. Then we
calculate the relative distances between neighbor agents and the
center of the grid. The density of agents in the grid is calculated
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through the gaussian distribution of the relative distances.

J=N 1 [Jz
da,,, = ——exp(—— 25
Amn j:zl \/% p ( 2 (52 ) ( )

where /; is the distance between agent j and the center of the grid
(m,n). (Figure 3)

The calculation of the density of the obstacles d,,,, is similar;
however, we need to map the obstacles line segments into the grids.
We consider that the obstacles have the same influence on the grid
once they are within the grid. The density of obstacles in the grid is
calculated as:

k=N 2
Aoy, = exp(—5 5
’ k;l V2716 P52

) (26)

where [, is the distance between the center of the grid which have
obstacle in it and the center of the grid (m,n). (Figure 4)

Jan
NP

daml - o

Figure 3: Calculation of agent density of the grid
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Figure 4: Calculation of obstacle density of the grid

5. Agent Motion Generation
5.1. Position Prediction

We match suitable examples for agents based on the state features
to get personalized motion features. To calculate the sequence of
the density map, we need to know the position sequences of all
agents in the scene. However, they are unknown at the begin of a
simulation or when the matching example needs to be renewed or
ended. We predict the future positions for such agents using the
linear velocity.

After predicting the future positions for every agent, we can cal-
culate the rest state features of the agents as Section 4.3, including
the magnitude of initial velocity and the sequence of the density
map.

5.2. Example Match

We need to match an example for the virtual agent in three situ-
ations: no matching example for the agent, the matching example
has reached its ending, the deviation between the generating posi-
tion and the position in the example is too large. When matching
an example in the example dataset, we calculate the similarity score
between the state features of the virtual agent and every example in
the example dataset. The similarity score Sim is consisted of two
parts: the score of the sequence of density maps Simp and the score
of the magnitude of initial velocity Simy:

Sim = Simp + u- Simy 27
where u is the parameter of weight.

The score of the sequence of density maps Simp is the weighted
sum of all density deviation between all grids of the current se-
quence and the example sequence:

SimP = Z |dsmm — ddmnt‘ . }\rmnl (28)
N,T

where dsnne and dgy,, are the densities of grid (m,n) at frame 7 in
the current sequence and the example sequence, N is the number of
the grid, T is the length of the sequence. The grids have different
influences on the score, which we use a weight parameter Ay to
represent. On the space scale, the grid closer to the center has a
higher weight. In time scale, the grid in the earlier frame has a
higher weight. The mathematical expression is:

T—t K—1

hmnt:(i)'( K

7 ) (29)

where ¢ is the number of the current frame, 7 is the length of the
sequence, K is the distance between the furthest grid and the center
grid, [ is the distance between the target grid and the center grid.

The score of the magnitude of initial velocity Simy is calculated
as:

Simy = [[vs}] — Vs (30)

The matching example is chosen randomly among several ex-
amples with the top similarity score. Worth noting that we apply
an additional detection mechanism on the example to avoid that the
deviation grow larger as time goes by. We set a deviation threshold
d;, and calculate the deviation between the virtual agent sequence
and the example sequence. When the deviation is larger than d;, we
need to rematch a new example for the agent.

The implementation details of our approach is shown in the sup-
plementary material. The design of the example dataset and the
motion generation workflow is to insure the added personalized
motion features could generate diverse agent motion matching the
macro and micro laws of real crowd, while not causing new colli-
sions.

6. Experiment Results

We conduct quantitative and qualitative experiments to evaluate
the proposed method. The datasets used in the experiment in-
clude SNU [LCHLO7], RCS [ZKSS12], ETH [PESVG09], and
UCY [LFCCO09]. We compare our method with the advanced
rule-based method Power Law [KSG14] and the advanced data-
driven method Heter-Sim [RXX™ 19]. Furthermore, user studies are
conducted shown in supplementary material to prove the superior-
ity of our approach.

6.1. Quantitative Experiment

We randomly select 50% of each dataset to establish the example
dataset, which is used for agent motion generation. The rest 50% of
data are used as ground truth to calculate the quantitative metrics
and provide initial states for the virtual agent motion generation.
We introduce five metrics referring to [ZCT18] to quantify crowd’s
motion in various aspects, including collision rate, average speed,
average vertical deviation distance, average speed change, and av-
erage angle change. The values of all the parameters are provided
in the supplementary material for reproducibility.

Average speed is the average magnitude of the velocity of all
agents at every timestep:

1 e En(@—x2))/A
V_Y'Z— (31

7 T;
where 7; is the lasting frame of agent i, / is the total number of
agents in the scene.

Average speed change is the average of the change of the mag-
nitude of the velocity of all agents at every timestep:

1 Y (| — |17 =t ]) /At
1y Bl )

S
I T;

(32)
7
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Figure 5: Distance of vertical deviation

where 7 and %, —1 are agent’s velocities at time ¢ and ¢ — 1.

Average angle change is the average of the change of the direc-
tion of all agents at every timestep:
Yo7 [0 — 01| /At

1
A:Y-;fi (33)

where ¥; and U;_ are agent’s directions at time ¢ and ¢ — 1.

Distance of vertical deviation is the distance between the agent
and the line from the agent’s initial position to its final position, as
Figure 5. This metric has a strong relationship with the shape of
trajectory. Average distance of vertical deviation is the average of
the distance of vertical deviation of all agents at every timestep:

1 Yrdi
L= ; T (34)

We use these four quantitative metrics to evaluate whether the
simulation results match the macro and micro laws of real crowd.
The collision rate indicates collision avoidance ability and is cal-
culated using the number of agents who have collisions divided by
the total number of agents. When the distance of two agents’ cen-
ters is less than the sum of their radius, they are considered colli-
sion agents. Our method and Power Law can generate collision-free
motion, while the data-driven approach Heter-Sim has a higher col-
lision rate (Figure 6). The result proves that our method combining
the dynamics method can effectively solve the collision problem,
which is common in most data-driven methods.

As shown in Figure 7 and Table 1, Power Law has an approxi-
mately equal average speed in all scenes and cannot fit the real data
because its parameters are artificially predefined. Our approach per-

Our approach Heter-Sim Power Law
RCS 0.12 0.04 0.36
SNU(one way) 0.11 0.01 0.39
SNU(stroll) 0.23 0.09 0.91
SNU(stagger) 0.27 0.12 0.70
UCY (zaral) 0.13 0.06 0.16
UCY(zara2) 0.11 0.02 0.16
UCY (univ) 0.45 0.28 0.51
ETH(eth) 0.17 0.03 0.88
ETH(hotel) 0.09 0.08 0.09

Table 1: Error table of average speed (m/s)
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forms similarly compared with Heter-Sim in average speed. The re-
sult of Heter-Sim is a little closer to the real data because it directly
obtains velocity from the real data. However, our approach does not
explicitly use the speed of real data and achieve a similar average
speed compared with real data, which proves the effectiveness of
our agent motion model.

Considering average speed change in Figure 8 and Table 2, the
rule-based Power Law has a small average speed change regard-
less of the scene. Through Heter-Sim use the velocity in real data,
our approach still outperforms Heter-Sim in most scenes because
Heter-Sim fails to model the continuity of speed in the time dimen-
sion. The use of examples with a time span can smoothen the speed
of agents, which helps generate realistic motion.

Our approach Heter-Sim Power Law
RCS 0.18 0.12 0.31
SNU(one way) 0.07 0.23 0.45
SNU(stroll) 0.07 0.09 0.17
SNU(stagger) 0.06 0.09 0.21
UCY (zaral) 0.06 0.04 0.15
UCY(zara2) 0.06 0.15 0.13
UCY (univ) 0.04 0.03 0.17
ETH(eth) 0.28 0.46 0.62
ETH(hotel) 0.15 0.12 0.42

Table 2: Error table of average speed change ( m/s® )

In Figure 9 and Table 3, our approach still performs better than
Heter-Sim and Power Law. If there is no expected collision, the
Power Law will not proactively change the direction of the agent,
but this does not accord with the psychological and social factors
in agents. Noticing that in the scene, which exists many small turns
like SNU(stroll) and SNU(stagger), the advantage of our approach
becomes more apparent, which proves that our feature extraction
method can effectively model the local characteristics in agent mo-
tion.

Our approach Heter-Sim Power Law
RCS 0.09 0.17 0.36
SNU(one way) 0.06 0.09 0.18
SNU(stroll) 0.25 0.66 0.83
SNU(stagger) 0.28 0.47 0.57
UCY (zaral) 0.08 0.04 0.07
UCY (zara2) 0.10 0.14 0.15
UCY (univ) 0.09 0.30 0.18
ETH(eth) 0.03 0.23 0.26
ETH(hotel) 0.22 0.33 0.46

Table 3: Error table of average angle change(rad/s)

Figure 10 and Table 4 show that our approach achieves the best
performance when Heter-Sim is better than Power Law. The result
indicates that our approach can regenerate the shapes of realistic
trajectories because we combine the characteristics of each agent
and surrounding states at each timestep.
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Figure 6: Collision rate results
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Figure 7: Average speed results
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Figure 8: Average speed change results
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Figure 9: Average angle change results
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Figure 10: Average vertical deviation distance results
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Our approach Heter-Sim Power Law
RCS 0.06 0.57 0.66
SNU(one way) 0.02 0.06 0.05
SNU(stroll) 0.01 0.09 0.16
SNU(stagger) 0.09 0.22 0.29
UCY(zaral) 0.01 0.32 0.42
UCY(zara2) 0.08 0.38 0.55
UCY (univ) 0.17 0.50 0.87
ETH(eth) 0.01 0.15 0.26
ETH(hotel) 0.00 0.02 0.05

Table 4: Error table of vertical deviation distance(m)

6.2. Qualitative Experiments

The performance of visualization is vital for agent motion model-
ing. We conduct several qualitative experiments to evaluate differ-

ent approaches further.

First, we conduct experiments on generating trajectories. The red
circle represents the target agent, and grey and blue circles repre-
sent the neighbor agents at the first frame in the scene. As is shown
in the Figure 11 12 13 14, the trajectory generated by our approach
is closest to the real data. Power Law tends to generate straight
trajectories if there is no predicted collision. Our approach estab-
lishes the connection between agents’ personalized motion features
and state features, thus generating better trajectories based on their
surrounding situations. Moreover, in Figure 14, the trajectory of
Heter-Sim appears turbulence in the opposite scene, while our ap-
proach uses the dynamics method to model agent motion to gener-
ate smooth trajectories in complex situations. The reason that the
data-driven Heter-Sim is less real than our approach is partly be-

cause the limit of dataset completeness and selecting rules.

[ Real Data [l Our Approach | Heter-Sim

Power Law

Figure 11: Comparison of individual agent trajectories

[ Real Data [l Our Approach | Heter-Sim

Power Law

Figure 12: Comparison of opposite agent trajectories
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[l Real Data [l Our Approach | Heter-Sim [ Power Law

Figure 13: Comparison of parallel agent trajectorie

[ Real Data [J] Our Approach

Heter-Sim Power Law

Figure 14: Comparison of individual agent trajectories in opposite
scene
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Figure 15: Results of using one way dataset
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Figure 16: Results of using stroll dataset
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Figure 17: Results of using stagger dataset
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Figure 18: Results of scaling up agent. The grey dots and blue dots represents two groups of agents moving in the opposite direction, the red
dots indicate the agent is collide with another agent. The meaning of the colored dots is same in Figure 19 and 20.
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Figure 19: Results of changing the direction of motion
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Figure 20: Results of adding obstacles
Secondly, we conduct experiments on restoring the data charac- Heter-Sim can restore the distribution of velocity, but it fails to re-
teristics. This experiment is designed to visualize the approach’s store trajectories’ shape. Compared with Heter-Sim, our approach
ability to extract personalized features from different datasets. We appears to tend to restore the dataset’s characteristics in all three
separately select 50% data in SNU(one way), SNU(stroll), and scenes.
SNU(stagger) as real data for our approach and Heter-Sim. These
datasets in SNU have different complicated characteristics. A good | Scaling Up | Direction Changing | Adding Obstacles
approach should regenerate similar motion patterns with these char- Our Approach 0 0 0
acteristics after selecting a particular example set. We use each Heter-Sim 0.75 0.61 0.3
.. . Power Law 0 0 0
training set as an example dataset to generate agent motion based
on the initial state of the real data, then compare the generated Table 5: Collision rate in different scenes

movement with the real data. As shown in Figure 15 16 17, our

approach outperforms Heter-Sim in the shape of trajectories and

the velocity distribution during the agent’s motion. To some extent, Last, to demonstrate that the proposed personalized features have
relatively low scenario dependency and could be transplant to dif-

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



Tianlu Mao et al. / A Fusion Crowd Simulation Method 141

ferent crowd scenes by our fusion model, we conduct the experi-
ments of scene variation. We change the scene in the RCS dataset
differently and use different approaches to generate agents’ mo-
tion. We increase the number of agents that walk in opposite di-
rections in every row from approximately 2/3 to 5/6. Then based
on the increasing scale situation, we change the opposite direction
into the vertical direction. Finally, we add obstacles in the center
of the scene. As is shown in the Figure 18 19 20 and Table 5, our
method can generate natural and collision-free agent motion. Power
Law can generate collision-free motion, but the motion is inflexi-
ble. Heter-Sim results in many collisions, especially when adding
obstacles in the scene, and causes unusual disturbances in agents’
motion. Overall, the result proves that our approach has the good
ability of collision avoidance and can run well in new scenes which
has different layout, crowd density and motion trend.

7. Conclusion

This paper proposes a fusion crowd motion modeling method
which combines data-driven method and crowd dynamics method
into a force driven framework. We model the main influence fac-
tor of agent motion by four forces, including goal driving force,
agent interaction force, obstacle force, and the personalized motion
force. The first three forces are calculated by rules mainly inherited
from Power Law model [KSG14] to ensure our method matches
the macro laws of real crowd laws and could generates collision-
free motion. The personalized motion force is from real data. An
example dataset construction method is proposed to extract person-
alized motion force from real data. And a crowd motion generation
workflow is proposed to sophisticatedly and dynamically select ex-
amples for each agents. So that our method could generate diverse
and natural agent motion matching the micro laws of real crowd
perfectly.

In the future, some works can be done to improve the perfor-
mance of crowd motion modeling. First, we model the crowd mo-
tion in microscopic scale, which may ignore the overall distribution
of the crowds. Introducing global features into the method can im-
prove the macroscopic performance of crowd motion. Second, the
structure of example dataset can be modified as [CC14] and op-
timize the searching algorithm to improve the efficiency of match-
ing examples. Finally, the example dataset is pre-constructed before
generating crowd’s motion. A self-adaptive approach that chooses
proper motion features from different datasets during generating
crowd’s motion can make the modeling method more usable. More-
over, deep-learning based approaches is also a plausible way to im-
prove the framework by automatically extracting proper features.
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