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B. Derivation of surface-only body force terms

We use a non-bold font with subscripts to denote components of a
vector or matrix in this note. The time domain displacement funda-
mental solution for elastodynamics [ES74] u* is given by
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wherer=y-x,r= r% + r% + r%, n(y) is the outward unit normal at

Yy, 6ij is Kronecker’s delta, H(-) is the Heaviside step function, and
c1 and ¢ are the longitudinal and shear wave speeds, respectively,
computed from the material parameters.

We will convert volume integrals involving time domain funda-
mental solutions into surface integrals as outlined in Eq. (4), and
apply the Laplace transform in the end to get the Laplace domain
functions for body force terms. To describe the process, we use the
following notation (Fig. 10):

r=y-x,
! =t—1,

Q, : Subset of the domain Q where r < c,t’,

I, : Curved surface inside the domain Q where r = ¢;t’, and
I’} : Subset of the boundary I" where r < ¢/,

where 17 = 1,2. The domains Q,, I', and I';. depend on ¢;; and ', but
we omit the explicit dependencies notation for the sake of brevity.

B.1. Translational fictitious force and gravitational force

We substitute the body force due to the translational fictitious force
and gravitational force b(y, ) = pg’(r) — pa(t) into the body force
term in the boundary integral equation:

!
ffu*(x,y,t—‘r)b(y,r) dQy dr
0 Jo

' (23)
=f0 (L—pu*(x,y,t—r) dQy|(a(r) - g (1)) dr.

We will convert the volume integral in the last line of Eq. (23) to a
surface integral.
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Observe that, omitting the constants, there are three differ-
ent types of terms in the integrand of the volume integral,
u* (Eq. (22)):

.(%q_ ) ( Z) (n=1.2),
ii rr’é( —CL) and
i Lo(r-L).

We will separately consider how each of them can be converted to
a surface integral.

(i) The terms of the first type are converted to surface integrals us-
ing the divergence theorem:
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(24)

where e; is the j™ standard basis vector. Notice that the first term
is an integral over the boundary of the volumetric domain, but the
second term is an integral over [, the wave front of the wave with
wave speed c¢;. We will show next that this term is cancelled out.
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Figure 10: 2D illustration of notation. The rectangle represents the
domain of object Q.

(ii) The terms of the second type are converted to surface integrals
using a property of the Dirac delta function:
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Observe that this cancels out the second term in Eq. (24) when we
put the constants back.

(iii) The term of the last type is converted to a surface integral us-
ing the divergence theorem and Green’s function for the Laplace
equation:
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Note that the first term is a volume of ,, which is an intersec-
tion of the original volume and a ball with radius ¢;¢’ and cen-
ter x. Let the domain of this ball be Q. and T'puy = 0Qpa-

Then, this volume integral term is computed as follows:
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Due to (i) through (iii), we find d* such that fQ —pu* dQy =
Jrd dry:
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Its Laplace transform is as follows:
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B.2. Euler force

We substitute the body force due to the Euler force, given by
b(y,7) = —p[y—)'(])f a(1) where [-]x denotes a skew-symmetric cross
product matrix, into the body force term in the boundary integral
equation:

t

f fu*(x,y,t—‘r)b(y,r) dQy dr

ot Q 31

:f (f —pu*(x,y,t—‘r)[y—i]£ dQy |a(7) dr
0 Q

The expression fg —pu* [y—i]£ dQ can be decomposed into two
terms, and one of them can be converted to a boundary integral
using d* (Eq. (29)) we derived for the translational fictitious force
and gravitational force:

L —pu*(x,y)ly - XI% dQy
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We dropped the time variables in the equation above for simplicity.
We will next convert the first term to a boundary integral. Each
element of u*[r]£ consists of multiplications of an element of u*
and an element of r:

WO IET)ij = U o)1 = Uy )2 (33)

We observe that w*[r]Z, which consists of u;kjrk( J # k), has three
different types of terms, and we convert the domain integral of each
term to a boundary integral:
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(iv) The terms of the first type are converted to surface integrals
using the divergence theorem:
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(v) The terms of the second type are converted to surface integrals
using a property of the Dirac delta function:
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Observe that this cancels out the second term in Eq. (34) when we
put the constants back.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

(vi) The terms of the last type are converted to surface integrals
using the divergence theorem:
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Due to (iv) through (vi), we find q* such that fQ —pu*[r]i dQy =
fl‘ q" dl'y:

q =I"+d*[x-x]L, (37)
where I* is
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Its Laplace transform is

Z\;‘ﬁj(x9yv S)

I (rirjsanja —rirjonja | r — L r -Ls
=—— A A s—+lle @' —[s—+1]e @*
4 ris? (o) c1

SiGje D2 = Sigjsnjsl -
" i+ j+2 i(j+2) j+le 5 ]
[

(39)

References

[ES74] EriNGEN, A. CEMAL and SunuBl, ERpocan S. “Elastodynamics. Lin-
ear theory”. Vol. 2. New York: Academic Press, 1974. Chap. V, 400 1.

[Usel14] User7530 (MarHEMATICS STACK EXCHANGE). Volume of overlap be-
tween two convex polyhedra. Mathematics Stack Exchange. 2014. urL:
https://math.stackexchange.com/q/974501 2.


https://math.stackexchange.com/q/974501

