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Figure 1: We start by animating a coarse cylinder (left) using a skinning rig. Then we enhance the animation by enriching the surface with
a fine thin-shell model (right). Voronoi filters provide an easy and efficient way of enriching the input animation.

Abstract
The simulation of complex deformation problems often requires enrichment techniques that introduce local high-resolution
detail on a generally coarse discretization. The use cases include spatial or temporal refinement of the discretization, the
simulation of composite materials with phenomena occurring at different scales, or even codimensional simulation. We present
an efficient simulation enrichment method for both local refinement of the discretization and codimensional effects. We dub our
method Voronoi filters, as it combines two key computational elements. One is the use of kinematic filters to constrain coarse
and fine deformations, and thus provide enrichment functions that are complementary to the coarse deformation. The other
one is the use of a centroidal Voronoi discretization for the design of the enrichment functions, which adds high-resolution
detail in a compact manner while preserving the rigid modes of coarse deformation. We demonstrate our method on simulation
examples of composite materials, hybrid triangle-based and yarn-level simulation of cloth, or enrichment of flesh simulation
with high-resolution detail.

CCS Concepts
• Computing methodologies → Physical simulation;

1. Introduction

In their simplest form, simulations of deformable objects use a sin-
gle fixed discretization and a single material model (possibly het-
erogeneous) per object. Simulations become more complex when
discretizations must be spatially or temporally adapted [MWN∗17,
NSO12], or when multiple material models are combined, e.g., to
represent composite materials [Gib10], or combinations of phe-
nomena best defined at different dimensionality [MKB∗10,LKJ21].
In this work, we use the term enrichment to denote two types of
simulations. One is a refinement of the discretization. Another one
is the simulation of composite models where a substrate model
is combined with another possibly local model, which describes

a phenomenon occurring at higher resolution. In both cases, the
coarser discretization of the substrate is combined with a finer dis-
cretization to describe the high-resolution phenomena.

We present a simulation enrichment method to handle in a com-
putationally efficient manner both discretization refinement and
composite models. Our formulation builds on the method of kine-
matic filters [BW98,AB03,MGL∗15,CCR∗20]. To enrich a coarse
displacement, we start by simply superposing a fine displacement,
but then we constrain both coarse and fine displacements to be
orthogonal and thus remove redundancies. This constraint is effi-
ciently imposed using kinematic filters. In Section 3, we describe
the general formulation of enrichment using kinematic filters, and
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we compare it to a regular constrained-based dynamics formula-
tion. To the best of our knowledge, previous works cover only bits
and pieces or special cases of the kinematic-filter formulation. Our
general exposition allows us to list design objectives for efficient
and robust enrichment.

Based on these objectives, in Section 4, we introduce cen-
troidal Voronoi enrichment. Our enrichment method enjoys non-
overlapping coarse basis functions, which enable extremely fast
implementation of the kinematic filter. However, naïve non-
overlapping basis functions do not satisfy rigid invariance, i.e., it
is not possible to achieve rigid motion on both the coarse and fine
discretizations at the same time, and rigid invariance is key to en-
sure that no spurious forces are injected between coarse and fine
discretizations. We show that a simple and elegant modification to
the coarse mesh allows our enrichment to satisfy rigid invariance.

We dub the combination of centroidal Voronoi enrichment and
kinematic filters as Voronoi filters. In the paper, we showcase
Voronoi filters on a variety of applications. The examples include
composite materials with codimensional embedded objects, mixed
simulation of triangle-based and yarn-level cloth, and enhance-
ment of coarse simulations with high-resolution surface detail, as
in Fig. 1. Voronoi filters are very simple to implement, and the en-
riched simulation bears practically no overhead with respect to un-
constrained simulation.

2. Related Work

In computer graphics, simulation enrichment is typically con-
nected to the design of adaptive meshing or mesh refinement
methods [WDGT01, DDCB01, MWN∗17], formally known as h-
refinement. This approach has obtained success for triangle-based
simulation of cloth [NSO12], where the construction of a consis-
tent adaptive mesh can be solved through local operations. Mesh
refinement for volumetric meshes requires however more complex
solutions, such as higher-order basis functions, discussed next.

In contrast to mesh refinement, an alternative to obtain higher ac-
curacy in simulations of deformable objects is to use basis functions
of higher order, formally known as p-refinement. This approach has
recently gained popularity to enforce accuracy bounds on meshes
of bad quality [SHD∗18], for isogeometric analysis where simu-
lation meshes conform to the curved boundaries used in CAD ap-
plications [SDG∗19], or to approximate high-resolution surfaces
with coarse simulation meshes with curved boundaries [LLK∗20,
JZH∗21].

A combination of both types of refinement considers the addi-
tion of basis functions of progressively higher resolution, known as
hp-refinement. Such basis functions may be designed through sub-
division schemes [GKS02], ensuring that the refinement bases are
orthogonal to the underlying bases, i.e., fine basis functions capture
only displacements that are not captured by coarse basis functions.
A related approach has recently been followed for the design of
material-adapted refinable basis functions [CBO∗19].

Mesh and/or basis refinement methods all assume that the simu-
lation models are defined on a simulation domain of a given dimen-
sionality. However, they do not consider codimensional objects or

composite materials with simulation models best described on dif-
ferent dimensionalities. In our work, we investigate a refinement
method that addresses both the local addition of detail as well as
the combination of models of different dimensionality.

An alternative to refinement is to combine discretizations of dif-
ferent resolutions (or dimensionality). If no special care is taken,
these discretizations produce a redundant kinematic space. There-
fore, constraints must be added to remove the redundancy. Bergou
et al. [BMWG07] proposed a constrained optimization to solve
such constraints, and produce a high-resolution simulation that
matches the overall deformation of a coarse simulation.

Malgat et al. [MGL∗15] introduced kinematic filters to solve the
redundancy constraints efficiently, and they demonstrated both re-
fined simulations and embedded codimensional effects. Casafranca
et al. [CCR∗20] used kinematic filters to combine triangle-based
and yarn-level models in cloth simulation. These works focused on
the development of the kinematic filter approach and formulating
and solving dynamics with such filters, but they did not pay partic-
ular attention to the design of the filters. Our work also builds on
the method of kinematic filters, but we introduce a novel filter that
achieves high computational efficiency thanks to a diagonal ker-
nel. Other works have also used ideas similar to kinematic filters to
transfer data between representations, e.g, between grids and parti-
cles [JSS∗15], or between grids and rigid modes [FLLP13]. Some
recent works constrain motion to the null-space of predefined re-
duced spaces; some use kinematic filters to implement the con-
straint efficiently [SYS∗21, RCPO22], while others could replace
Lagrange multiplier formulations with kinematic filters for higher
performance [ZBLJ20].

Several works have paid attention to the combination of
models formulated on different dimensionality, i.e., volumetric
solids, shells, and rods. The standard approach is to conform
the high-dimensional mesh to the embedded low-dimensional el-
ements [HZG∗18], but we avoid the need to mesh the high-
dimensional domain at a high resolution imposed by the em-
bedded low-dimensional elements. Martin et al. [MKB∗10] de-
signed integration rules that handle in a unified manner defor-
mation models of any dimensionality. Macklin et al. [MMCK14]
supported multi-physics effects using a particle-based discretiza-
tion and constraint-based models as unifying framework. Recently,
Chang et al. [CDGB19] have presented a general energy formula-
tion to handle the connection of objects with different dimensional-
ity. These methods require either conforming discretizations for the
objects with different dimensionality, or some type of explicit con-
straint between them. When the constraints are hard, they require
constrained optimization solvers. Our method does not require con-
forming meshes for codimensional objects, and handles constraints
efficiently thanks to a kinematic filter.

3. Enrichment with Kinematic Filters

In this section, we present the fundamentals of kinematic filters as
a way to implement simulation enrichment. We first present gen-
eral enrichment with non-redundancy constraints. Then we derive
dynamics equations, and we compare the solution approach with
regular constrained dynamics vs. the use of kinematic filters. We
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conclude with a discussion of the computational cost of kinematic
filters and design desiderata that motivate our formulation.

3.1. Enriched Kinematics

We start from a coarse discretization that defines a coarse displace-
ment field. This coarse displacement field may describe the defor-
mation of a substrate in the case of composite models, or a low-
resolution version of the full deformation in the case of refinement
problems. We wish to enrich this displacement field with displace-
ments computed on a fine discretization. The enrichments may de-
scribe the offset deformation of an embedded local material in the
case of composite models, or the high-resolution detail in the case
of refinement problems. Without loss of generality, we will analyze
the displacements at fine node locations; these can be then interpo-
lated at arbitrary points.

Let us define the deformed and undeformed positions of fine
nodes as {xi} and {x̄i} respectively. Similarly, let us define coarse
node displacements {uc

j}, fine node enrichments {u f
i }, and full fine

node displacements {ui}.

We define the displacement of a fine node as the sum of a coarse
displacement and a fine node enrichment. The coarse displacement
field may be constructed from coarse node displacements using
coarse basis functions {B j(x̄)}. Then, the full displacement of a
fine node can be formally expressed as:

ui = ∑
j

Bi j uc
j +u f

i , (1)

where Bi j = B j(x̄i) is the evaluation of a coarse basis function at a
fine node location.

We rewrite (1) in matrix-vector form, with concatenated vectors
of coarse displacements uc, enrichments u f , fine node displace-
ments u, and a matrix of coarse basis function values B:

u = Buc +u f . (2)

The enrichment function (2) produces a redundant kinematic
representation, as infinite combinations of coarse displacements
and fine enrichments produce the same full displacements. We want
the enrichment to be complementary to the coarse displacement,
and we achieve this by constraining the enrichment to be orthogo-
nal to the coarse basis function:

BT u f = 0. (3)

Since the constraint matrix BT is constant, an alternative to en-
forcing constraints on every simulation frame would be to define
enrichments using as basis the orthogonal complement of B, e.g.,
through QR decomposition. However, this basis is dense, and it
would lead to dense energy Hessians. Kinematic filters achieve the
same goal without ever constructing a dense basis.

3.2. Enriched Dynamics with Constraints

In a general case, we consider inertial and elastic effects defined at
both coarse and fine resolution, e.g., for our codimensional sim-
ulation examples. Then, we define kinetic energy 1

2 u̇c Mc u̇c +

1
2 u̇M f u̇, with coarse and fine mass matrices Mc and M f respec-
tively, and elastic energy Uc(uc)+U f (u). Note that fine-mesh ki-
netic energy depends on full fine node velocities u̇, not just enrich-
ment velocities u̇ f .

Without loss of generality, we formulate dynamics using the op-
timization formulation of backward Euler integration [MTGG11,
GSS∗15]. We denote as uc∗ and u∗ the explicit update of coarse
and fine displacements, and h the time step. The update of coarse
displacements and fine enrichments is computed as the constrained
optimization

(uc,u f ) =argmin
1

2h2 (uc−uc∗)T Mc (uc−uc∗)+Uc(uc)

+
1

2h2 (u−u∗)T M f (u−u∗)+U f (u), (4)

s.t. BT u f = 0,

with fine displacements u defined as in (2).

This type of constrained dynamics problem is typically solved
using Lagrange multipliers, e.g., as in [BMWG07]. However, con-
straints such as (3) can also be enforced using a projection opera-
tion [BW98], which leads to the definition of kinematic filters.

3.3. Solver with Kinematic Filter

Let us define filtered enrichments ũ f as those closest to tentative
enrichments u f , but which satisfy the constraint (3). Formally, this
can be expressed as ũ f = argmin‖ũ f −u f ‖2, s.t. BT ũ f = 0. The
result is given by filtered enrichments ũ f = Fu f , with a kinematic

filter F = I−B
(

BT B
)−1

BT .

The enriched kinematics (2) are reformulated as:

u = Buc +Fu f . (5)

Note that the filter projects the enrichment to the nullspace of the
coarse basis functions, and this effectively removes the redundancy
in the kinematic representation.

With the filtered kinematics, the constrained dynamics (4) can be
reformulated as an unconstrained optimization:

(uc,u f ) =argmin
1

2h2 (uc−uc∗)T Mc (uc−uc∗)+Uc(uc)

+
1

2h2 (u−u∗)T M f (u−u∗)+U f (u), (6)

with fine displacements u now defined as in (5).

Computing the gradient of the objective (6) yields the backward
Euler update:

M
(

∆uc

∆u f

)
=−h2

(
∇Uc +BT ∇U f

FT ∇U f

)
, (7)

with M =

(
Mc +BT M f B BT M f F

FT M f B FT M f F

)
.

Applying Newton-type methods yields a Hessian of the objec-
tive that is not full rank, due to the kinematic filter. However,
the resulting linear system can be solved robustly and efficiently
with the modified preconditioned conjugate gradient (MPCG)
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Figure 2: In this test, we spin a deformable square coupled to a
rod. On top, we use naïve enrichment as described in Section 4.1
to define the kinematics of the rod. When the rod spins with con-
stant angular velocity, it produces a deformation on the square.
Due to ghost forces, the square oscillates and cannot spin. In the
bottom, we use centroidal Voronoi enrichment, and the square spins
correctly. At the beginning it shows some deformation energy, pro-
duced by the initial acceleration. The snapshots are taken at the
instants marked by the black lines in the plot.

method [AB03]. On each iteration of conjugate gradient, the en-
richments are filtered with the filter F.

In the examples shown in the paper, we also add damping to the
dynamics. We do this using the first-order-accurate extension of
backward-Euler optimization proposed by Brown et al. [BOFN18],
and with damping models designed using the dissipation potentials
proposed by Sánchez-Banderas and Otaduy [SBO18].

3.4. Discussion and Desiderata

The cost of solving enriched dynamics with kinematic filters is de-
termined by the number of iterations of MPCG and the cost per it-
eration. Each iteration requires a matrix-vector multiplication with
the Hessian of (6) and with the filter. This multiplication with the
filter requires in turn a reduction of fine node enrichments, followed
by a solution of a coarse linear problem with the matrix BT B, and
finally an expansion back to fine displacements. In previous kine-
matic filters for deformation gradients [MGL∗15] or barycentric
interpolation [CCR∗20], solving the linear system with BT B be-
comes a bottleneck as the resolution of the coarse discretization
grows.

In designing enrichment functions, we wish to fulfill two goals:
(1) The cost of the resulting kinematic filter F should be minimized.
(2) The coarse basis B should preserve rigid motion, to ensure that
spurious deformations are not injected between the coarse and fine
discretizations.

4. Centroidal Voronoi Enrichment

In this section, we describe our simulation enrichment method. We
start by formulating Voronoi enrichment as a method to maximize
the efficiency of kinematic filters. Then we impose rigid invari-
ance, which leads to centroidal Voronoi enrichment. We conclude
the section with a discussion of implementation details of the dis-
cretization.

4.1. Voronoi Enrichment

We can maximize the efficiency of kinematic filters by choosing
simple zeroth-order coarse basis functions. Specifically, we set the
support of each coarse node x j as its Voronoi region; i.e., the ba-
sis function of x j is identity at all fine nodes xi within its Voronoi
region:

Bi j =

{
I, if j = argmin j |x̄i− x̄ j|
0, otherwise

(8)

The use of zeroth-order functions introduces discontinuities in how
the coarse displacement field is interpolated to the fine nodes, but
the fine displacement field does not suffer discontinuties, thanks to
the enrichment degrees of freedom.

With these basis functions, the product with the resulting kine-
matic filter has a negligible cost. BT B is a diagonal matrix, with en-
tries N j (the number of fine nodes in each coarse node’s Voronoi re-
gion), hence it is trivially invertible. In practice the global Voronoi
filter is composed of compact separable filters (i.e., small and un-
coupled), one for the Voronoi region of each coarse node. Given
tentative fine enrichments u f , filtering amounts to computing the
average enrichment per Voronoi region, and subtracting these aver-
ages from the enrichments. As we discuss in the results section, the
cost of this operation is negligible in practice.

We can also analyze the effect of Voronoi filters on the full fine
node displacements {ui}. Applying the constraint (3) with the ba-
sis (8), we obtain ∑i u f

i = 0, i.e., the average enrichment is zero.
Substituting this into the expression of the fine node displace-
ment (1), and averaging over all fine nodes, we obtain:

uc
j =

1
N j

∑
i

ui. (9)

In other words, with Voronoi filters, the displacement of a coarse
node is the average displacement of the fine nodes within its
Voronoi region.

4.2. Rigid Invariance

To blend elasticity models defined at different scales or on codi-
mensional domains, we also wish to preserve rigid modes on both
the fine and coarse discretization. Unfortunately, with a naïve im-
plementation of enrichment, based on zeroth-order coarse basis
functions, a rigid motion of the fine nodes could inject non-rigid
motion on coarse nodes through the filter (see the averaging ef-
fect in (9), or viceversa. This would produce elastic energy on the
coarse model, and therefore ghost forces on the simulation. An ex-
ample is discussed in Fig. 2.

Next, we derive a sufficient and necessary condition on the un-
deformed positions of coarse nodes for the preservation of rigid
modes. In a nutshell, each coarse node must be located at the cen-
troid of its Voronoi region. Therefore, the coarse discretization de-
fines a discrete centroidal Voronoi tessellation [DFG99] of the fine
discretization.

Let us define a rigid transformation by a rotation matrix R and a
translation vector t. If both coarse and fine nodes are transformed
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Figure 3: This image shows the construction of a discretization
with Voronoi enrichment. A coarse triangle mesh is enriched with a
grid of rods, discretized at higher resolution. We color each coarse
node and the fine nodes in its Voronoi region with the same color.
To guarantee rigid-motion invariance, the coarse mesh constitutes
a centroidal Voronoi diagram.

with the same rigid transformation, we can obtain their displace-
ments as:

x j = x̄ j +uc
j = Rx̄ j + t ⇒ uc

j = (R− I) x̄ j + t (10)

xi = x̄i +ui = Rx̄i + t ⇒ ui = (R− I) x̄i + t. (11)

We know that, due to the Voronoi filter, the displacement of the
coarse node is the average displacement of fine nodes (9). Applying
this to (10) and (11), we obtain:

(R− I) x̄ j + t = 1
N j

∑
i
((R− I) x̄i + t) . (12)

From this, we derive a trivial condition on translations, which
is satisfied by construction, t = 1

N j
∑i t. Most importantly, we also

derive a condition on rotations, which leads to the constraint on
undeformed positions of coarse nodes:

(R− I) x̄ j = (R− I) 1
N j

∑
i

x̄i ⇒ x̄ j =
1

N j
∑

i
x̄i. (13)

As anticipated, to preserve rigid motion of coarse and fine dis-
cretizations, coarse nodes must lie at the centroid of their fine
nodes. In other words, rigid invariance is satisfied iff the unde-
formed coarse discretization defines a discrete centroidal Voronoi
tessellation of the undeformed fine discretization. The test in Fig. 2
works perfectly using centroidal Voronoi enrichment and Voronoi
filters.

4.3. Implementation of the Discretization

The implementation of the discrete centroidal Voronoi discretiza-
tion is simple, and it is outlined in Fig. 3. It involves remeshing the
interior of the coarse mesh as a discrete centroidal Voronoi diagram
of the fine mesh. Note that we do not remesh the boundary of the
coarse mesh, as we want to preserve this boundary.

Coarse nodes 544 2112 8320 33024
% of MPCG, baryc. filter 4.8 8.0 10.7 28.4

% of MPCG, Voronoi filter 2.2 2.8 2.1 3.1

Table 1: Comparison of cost per iteration of modified conju-
gate gradient [AB03] between barycentric filters [CCR∗20] and
Voronoi filters, for different numbers of coarse nodes.

First, we initialize both a coarse and a fine discretization, simply
by sampling nodes at two different resolutions in the region of inter-
est. Without loss of generality, we consider the coarse discretization
as a substrate that samples the complete simulation domain (i.e., the
complete deformable object), while the fine discretization is possi-
bly confined to a region in the domain.

Then, we select the coarse nodes within the fine discretiza-
tion domain, excluding boundary coarse nodes, and we initialize a
Voronoi diagram, i.e., for each fine node we find the closest coarse
node. Subsequently, we turn it into a discrete centroidal Voronoi
diagram using Lloyd’s method [Llo82] on the fine nodes, as shown
in Fig. 3. During Lloyd iterations, if a coarse node does not govern
any fine node, i.e., N j = 0, it remains fixed.

5. Experiments and Results

We have tested centroidal Voronoi enrichment on different simula-
tion examples, which cover coupling of codimensional phenomena,
hybrid simulation with different models, and simulation enhance-
ment through mesh refinement.

5.1. Performance Analysis

We have used the example in Fig. 1 to compare the cost of Voronoi
filters to barycentric filters [CCR∗20]. As discussed in Section 3.4,
barycentric filters introduce a small overhead when the coarse mesh
is small, but the overhead grows as the nodes in the coarse mesh
grow. We have confirmed this observation, by comparing simula-
tions with barycentric and Voronoi filters on coarse meshes of dif-
ferent sizes. Eventually, barycentric filters can become the bottle-
neck of a simulation, while Voronoi filters keep a very small and
constant cost.

Table 1 lists the percentage of cost of both filters per iteration of
conjugate gradient solve, for different numbers of coarse nodes. As
noted in the results, Voronoi filters bear a practically constant cost
of just 3% of the conjugate gradient iteration.

5.2. Embedding Codimensional Phenomena

As discussed in the introduction, one of the target applications of
our enrichment method is the simulation of embedded codimen-
sional objects. In other simulation methods this requires (a) the
use of constrained optimization methods, or (b) designing meshes
where the discretizations of codimensional objects are conforming.
Centroidal Voronoi enrichment largely simplifies the coupling of
codimensional simulation models.
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Figure 4: The images show three deformable squares: with no em-
bedded rods (left), with a rod embedded in the horizontal direction
(middle), and with a rod embedded in the vertical direction (right).
The rod is stiffer than the material of the square; therefore, it affects
the overall deformation mechanics. Coupling is implemented with
centroidal Voronoi enrichment.

Fig. 4 and Fig. 5 show simple examples of embedding stiff one-
dimensional rod objects into two-dimensional objects. These exam-
ples are simulated in 2D. We use a Saint Venant-Kirchhoff (StVK)
energy model [OH99] for the substrate elastic energy Uc, and a
discrete rod model [BWR∗08] for the rod energy U f . We simply
evaluate each energy on its corresponding discretized domain and
we add both energies together; the enriched kinematics produce
the coupling between both models. In Fig. 4, a deformable square
is pulled with different rod embeddings, showing how the embed-
ding direction affects the overall deformation pattern. In Fig. 5, em-
bedded rods increase the overall bending stiffness of the cantilever
beam. For the horizontal rod in Fig. 4, a slight lack of symmetry
is perceived in the final deformation, which is caused by the asym-
metry in the underlying coarse mesh, and the stiff embedded rod
brings out this asymmetry by choosing a preferred deformation.

The embedding of codimensional effects can produce interesting
nonlinear behaviors on the overall simulation. Fig. 6 shows one
example, where we embed a zigzagging stiff rod on a rectangular
patch. When the patch is pulled, the asymmetric layout of the rod
produces nonlinear wavy deformations.

Real-world composite materials are often produced by embed-
ding codimensional objects inside two- or three-dimensional sub-
strates. Notable examples are thin shells reinforced with carbon
fiber. The proposed centroidal Voronoi enrichment offers an ex-

Figure 5: The images compare a cantilever beam with two embed-
ded rods (right) and no rods (left). The rods are stiffer than the
substrate material of the beam; therefore, they increase its overall
bending stiffness.

Figure 6: This example showcases the interesting deformation ef-
fects that can be produced with embedded codimensional objects.
We embed a stiff zigzagging rod inside the rectangular patch. When
the patch is pulled, the rod produces a highly nonlinear wavy de-
formation.

cellent framework to simulate such composite materials. In Fig. 7
we show an example that mimics a sheet of material reinforced
with carbon fiber. We model the coarse substrate energy Uc using
StVK with discrete shells bending [GHDS03], and the fine energy
U f with a grid of discrete elastic rods [BWR∗08]. When the sheet
is sheared, the carbon fiber reinforcement prevents the creation of
folds and wrinkles, and stiffens the overall behavior as expected.

5.3. Hybrid Simulation

The simulation of hybrid or mixed models can also benefit from
the proposed centroidal Voronoi enrichment. Inspired by the work
of Casafranca et al. [CCR∗20], we consider an example of hy-
brid cloth simulation where triangle-based and yarn-based models
are mixed to combine their benefits: fast computation in regions
with smooth deformation, and high-resolution detail in regions
with wrinkles. For the coarse triangle-based model Uc, we use the
same StVK material with discrete shells bending as discussed ear-
lier, and for the fine yarn-based model U f we use an Eulerian-on-
Lagrangian approach with sliding persistent contacts [CLMMO14].
On a blending region, the triangle-based and yarn-based models are
smoothly blended, and we consider these blending weights as part
of the energies Uc and U f .

Fig. 8 compares simulation results with centroidal Voronoi en-
richment vs. the simulation method of Casafranca et al. The re-
sulting deformations are practically the same, although they con-

Figure 7: Centroidal Voronoi enrichment can be used for the sim-
ulation of real-world composite materials. In this example, we
demonstrate a sheet of material that mimics the construction of
carbon fiber composites. A woven structure of carbon fiber, mod-
eled as a grid of rods, is embedded in polymer resin, modeled as
a deformable thin shell. The images compare a shear deformation
with (right) and without (left) the carbon fiber reinforcement.
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Barycentric filter Centroidal Voronoi filter

Yarn-triangle blending

Voronoi regions

Figure 8: This figure shows an example borrowed from [CCR∗20], which combines triangle-based and yarn-level cloth simulation. The
chest area of the dress is simulated using yarns, while the rest of the dress is simulated using triangles. Both models are combined on a
blending region, shown on the top left (yarns in red, triangles in green, blending in between). We have simulated this test using centroidal
Voronoi enrichment, in contrast to the barycentric enrichment approach of Casafranca et al. [CCR∗20]. Both methods produce almost equal
results, although they converge to slightly different equilibria. However, thanks to its negligible filtering cost, centroidal Voronoi enrichment
cuts computation times to about one third, as shown in the plot on the right. The image in the bottom right shows the Voronoi regions of the
enrichment. The creases visible under the chest are due to seams, not a feature or limitation of our method.

verge to slightly different equilibria. Casafranca et al. used an en-
richment method based on barycentric basis functions, which pro-
duce a kinematic filter with a dense kernel. With centroidal Voronoi
enrichment, the filter kernel is diagonal and trivially invertible as
discussed in Section 3. As a result, the computation time of this
example is cut to one third, from 21 to 7 hours. The high cost
is dominated by the number of yarn-level nodes in the simulation
(over 114 K) and the small time step needed (1 ms). With centroidal
Voronoi enrichment, the kinematic filter takes a negligible cost of
5% per iteration of conjugate gradient. Note that in this example the
hybrid region is comparatively small, as depicted on the left images
in Fig. 8. The barycentric filter of Casafranca et al. would suffer an
increase of computational cost with a larger hybrid region, while
our centroidal Voronoi filter is barely affected.

5.4. Simulation Enhancement

One application of simulation enhancement is to execute coarse
simulations until the artist is satisfied with the overall outcome,
and then refine the discretization to obtain visual detail. However,
the fine and coarse simulations must be constrained to ensure that
the overall deformation is preserved when detail is added. Cen-
troidal Voronoi enrichment offers a very efficient way of refining
the discretization while satisfying such constraints. In the enriched
dynamics equations (7), the coarse displacements are simply pre-
scribed, and the constraints are enforced using the Voronoi filter.
In this enhancement application, in the formulation of dynamics as
in Section 3.2, we use coarse-mesh energies for the computation of
the coarse simulation, and only fine-mesh energies (with possible
blending weights) for the constrained refinement step.

In the example in Fig. 1, a cylinder is first manually animated,
and then this animation is used as a constraint for a high-resolution
simulation. This example is analogous to the ones demonstrated by
Bergou et al. [BMWG07]. The difference is in how we constrain
the coarse and fine simulations, with simple and efficient Voronoi
filters. In this example, the coarse mesh has only 544 vertices; the
fine mesh is simulated using a thin-shell model, and it has 8311
vertices.

In our final example, we consider a deformation problem that
combines discretizations at two different resolutions, to achieve
higher level of detail at localized regions of the simulation domain.
Then, coarse and fine deformation energies Uc and U f model the
same problem, and they must be blended at the boundary of the
fine discretization. In Fig. 9 we show a hand simulation enhanced
using our method. First, we execute a coarse simulation of a fin-
ger, meshed with 1400 tetrahedra, and with animated bone trans-
formations as boundary conditions. Then, we enrich one joint of
the finger with 110K tetrahedra, and we simulate the enriched dy-
namics with prescribed coarse displacements. We have used the
stable Neo-Hookean soft-tissue model of Smith et al. [SGK18],
which produces realistic tissue bulging at the joint. In this example,
the coarse simulation takes 3 minutes, and the enriched simulation
takes roughly 2 hours.

6. Discussion and Future Work

This paper introduces a novel approach to couple coarse and fine
discretizations. The discretizations may represent the same defor-
mation model at different resolutions, as in adaptive simulation, or
different deformation models, even of codimensional nature. The
proposed centroidal Voronoi enrichment method circumvents the
complexity of other methods, such as conformal mesh refinement
or constraint-based optimization. It allows standard definition of
the coarse and fine deformation energy models, and coupling is
achieved through the enriched kinematic definition and the use
of Voronoi kinematic filters during the runtime solve. The paper
demonstrates the diversity of simulation examples that could ben-
efit from our flexible enrichment method, such as the simulation
of composite materials, hybrid simulations, or simulation enhance-
ment. Furthermore, the implementation of the method is simple,
and a prototype will be released.

In all the examples shown in the paper, the enrichment is fixed
over time. However, the enrichment could also be updated over
time to enable adaptive discretization of the simulation domain. To
do this, we suggest initializing the coarse and fine discretizations
once as a preprocess, and at runtime select in an adaptive man-
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coarse enriched

Figure 9: We enrich a coarse tetrahedral simulation of a hand with high-resolution tetrahedra at a finger joint (right), and we compare
the rendered triangle mesh before and after applying enrichment. With our Voronoi enrichment method, we can efficiently produce realistic
high-resolution detail as a post-process simulation, without the need for conforming meshes or costly constrained optimizations.

ner the coarse nodes that are enriched. Our enrichment technique
is an alternative to adaptive remeshing on domains or discretiza-
tion methods where remeshing is complex. Centroidal Voronoi en-
richment could also be implemented on multiple discretization lev-
els. In this case, one would start computing the centroidal Voronoi
diagram on the finest discretization, and progressively move to a
coarser level.

These extensions proposed above also evidence, however, the
main limitation of the method. The need to compute a centroidal
Voronoi diagram complicates runtime updates to the discretization.
Therefore, the method is limited to simulations where the enriched
discretization remains fixed over time, as shown in the examples in
the paper, or where precomputation of the centroidal Voronoi dia-
gram can be leveraged, as discussed in the paragraph above. It is
unclear how to design the enrichment functions at runtime. In the
same line, the method is not well suited for simulations with topol-
ogy changes resulting from fracture or cutting, as they would also
need a recomputation of the centroidal Voronoi diagram.

Another limitation of the method is that it is not perfectly com-
patible with direct solvers, e.g., based on Cholesky factorization.
Note that, due to the kinematic filter, the system matrix is consider-
ably denser than in the unfiltered version. This is not an issue with
iterative solvers such as conjugate gradient, because the application
of the filter at runtime is very efficient, without building the system
matrix explicitly. With direct solvers, it would be convenient to de-
sign a factorization method that does not require explicitly building
the system matrix. But even in that case, the resulting factorization
would be considerably denser than in the unfiltered case.
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