
Eurographics Symposium on Geometry Processing 2022
M. Campen and M. Spagnuolo
(Guest Editors)

Volume 41 (2022), Number 5

Precise High-order Meshing of 2D Domains with Rational Bézier
Curves

Jinlin Yang Shibo Liu Shuangming Chai† Ligang Liu Xiao-Ming Fu

University of Science and Technology of China

Abstract
We propose a novel method to generate a high-order triangular mesh for an input 2D domain with two key characteristics: (1)
the mesh precisely conforms to a set of input piecewise rational domain curves, and (2) the geometric map on each curved
triangle is injective. Central to the algorithm is a new sufficient condition for placing control points of a rational Bézier triangle
to guarantee that the conformance and injectivity constraints are theoretically satisfied. Taking advantage of this condition, we
provide an explicit construct that robustly creates higher-order 2D meshes satisfying the two characteristics. We demonstrate the
robustness and effectiveness of our algorithm over a data set containing 2200 examples.

CCS Concepts
• Computing methodologies → Shape modeling;

1. Introduction

High-order meshes consist of curved elements rather than linear
elements with straight edges, which are widely used in physics
simulation, geometric modeling, animation, and nonphotorealistic
rendering [HSG∗19]. Many previous literatures have discussed and
demonstrated that high-order meshes possess potential superiority
over linear meshes [Zlá73, WFA∗13]. Thus, high-order meshing is a
fundamental task in physical simulation and geometric modeling.

Many methods have been proposed for high-order meshing. Most
of them are able to either generate valid curved meshes or conform
to given input domain curves. A high-order mesh is said to be valid
if the geometric map of each curved element is injective, i.e., the
Jacobian of the geometric map is strictly positive definite everywhere
within the domain. Two recently proposed algorithms take both
validity and conformance constraints into account [MC20, MC21];
however, only polynomial curves are considered in their work.

We study high-order meshing conforming to piecewise rational
curves for 2D domains (Figure 1). Although geometric designs
using higher-order rational curves are less common, it is common
to elevate the order of the curve to achieve higher-order meshes for
higher simulation accuracy of finite element analysis [SB21].

This is not a straightforward extension from polynomial curves
to rational curves due to the following two reasons. It is difficult to
find a sufficient condition to ensure the validity for rational inputs,

† The corresponding author

Figure 1: Given input conics, cubic rational curves (red), and
polynomial curves (green), our method generates valid high-order
meshes conforming the input curves. We show the meshes in different
resolutions. Rational curves have weights ranging from 1 to 10.

and it is even more complicated to construct a valid curved mesh ac-
cording to the sufficient condition. In [EE20], a sufficient condition
is proposed to check the validity of rational Bernstein-Bézier ele-
ments, but it does not provide a geometrically intuitive and explicit
way to construct control points while guaranteeing validity. To the
best of our knowledge, no previous methods generate valid meshes
that precisely conform to rational Bézier domain curves, especially

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.14604

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-9475-7906
https://orcid.org/0000-0001-8479-0107
https://doi.org/10.1111/cgf.14604

J. Yang & S. Liu & S. Chai & L. Liu & X.-M. Fu / Precise High-order Meshing of 2D Domains with Rational Bézier Curves

conics and cubic rational curves widely used in industry and design,
with a theoretical guarantee.

In this paper, we propose a novel and efficient method to generate
high-order triangular meshes that (1) have an injective geometric
map on each curved triangle and (2) precisely conform to the input
rational Bézier domain curves. By revisiting [JW94] that only calcu-
lates a sufficient condition to injectivity of rational quadratic Bézier
triangles, we state and prove a new sufficient condition for rational
Bézier triangles with arbitrary orders and positive weights. After em-
bedding our condition into the Bézier guarding framework [MC20],
we place the control points of quadratic and cubic curved triangles
to meet the conformance and injectivity constraints, thereby con-
structing a valid high-order mesh. Then, the valid mesh is improved
in reducing geometric map distortion by several developed practical
strategies. We demonstrate the effectiveness and robustness of our
method over a data set containing 2200 examples.

2. Related work

High-order curved mesh generation methods have gained increased
popularity during the last decade owing to the potential of provid-
ing higher accuracy [DOS99]. We briefly review the most relevant
work about high-order mesh generation considering injectivity and
conformance constraints.

To theoretically guarantee injective geometric maps, the com-
mon high-order meshing methods first create a linear triangula-
tion and then deform the linear mesh to be curved while aligning
with the input curves and preserving injectivity [ADF14, DOS01,
DOS99,HSG∗19,MEK∗16,GB12,CCM∗04,LSO∗04,SFJ∗05,FP16,
PP09, PSG16, RGPS11, RGSR16, SP02, TGRL13, TLR16, TPM18,
XSHM14, XC14, LSL∗21]. These methods mainly differ in the use
of different methods and energies to drive the deformation. When
preserving injectivity is a hard constraint of the deformation, there
is no theoretical guarantee that the conformance constraint is always
satisfied.

Using a curved mesh that strictly conforms to the characteris-
tic curve and boundary has a lot of advantages as the geometry
approximation errors are eliminated [SRH16, DOS99, EE16, JQ14,
RL14, ADF14]. For instance, an accurate representation of the ge-
ometry enables to propagate vortices over long distances in fluid
mechanics [SFMH08, SRH16]. In linear elasticity problems, when
the order of the geometric approximation is lower than the order
of the functional interpolation, the numerical solution has sizable
errors [LSR01]. To theoretically guarantee that the conformance
constraint is strictly satisfied, methods create elements with curved
edges along the input curves (similar to linear advancing front meth-
ods) [DOS99] or directly fit (or snap) the nodes of a curved mesh to
those of the input curves [GTNI16]. If the mesh is invalid, the untan-
gling (or removing flipped mappings) techniques [TGRL13,TLR16]
can be used to remove the invalid curved elements. However, these
methods cannot theoretically guarantee that there are no invalid
curved elements for any input curves [SRH16].

The recently proposed approaches [MC20, MC21] have a theoret-
ical guarantee to generate valid 2D high-order meshes, which do not
violate the injectivity or conformance constraints. However, they do
not support rational curves, such as arcs and general conics, which

(0,0) (1,0)

(0,1)

𝜙

𝑷00 𝑷𝑛0

𝑷0𝑛

Figure 2: A rational Bézier map 𝜙 (cubic in this example) from
a reference unit triangle to the planar three-sided domain. A blue
triangle in the parameter domain (left) corresponds to a straight
triangle in the computational domain (right).

are practically important. We generalize [MC20] to rational Bézier
curves via a new explicit construction method based on a sufficient
condition, while still ensuring injectivity and conformance. There is
a concurrent work that solves the same problem [KMC22].

3. Problem statement

Input Our input is a set of curves 𝐶, called domain curves, con-
taining line segments, polynomial curves of arbitrary orders, conic
sections, and cubic rational curves. We assume that the parame-
ter 𝑡 of each domain curve 𝒄 ∈ 𝐶 is defined on [0,1], and each
control point has a positive weight. To ensure validity, we further
assume each domain curve 𝒄 meets the following conditions: (1)
∥𝒄′ (𝑡)∥ ≠ 0,∀𝑡 ∈ [0,1], (2) there is no degeneracy, i.e., two curves
do not form an angle-zero corner at coincident endpoints, and (3)
the curve intersects with other curves only at the endpoints.

Goal Our goal is to construct a valid planar high-order mesh 𝑀 =

(𝑉,𝐸, 𝐹) such that: (1) it conforms to a given domain formed by all
the domain curves, i.e., the edges 𝐸 are line segments or rational
Bézier curves, and (2) each triangle element in 𝐹 can be represented
as a planar rational Bézier triangle with a valid geometric map,
i.e., the Jacobian of the geometric map is strictly positive definite
everywhere within the triangle.

Challenges The main challenges are twofold. First, there is no
existing suitable condition to guarantee injectivity for rational Bézier
triangles due to the complexity of the Jacobian. Second, it is non-
trivial to use this condition to construct a valid geometric map on
each triangular element. To overcome these challenges, we introduce
an explicit construction method for the control point placement
(Section 5.2) based on the sufficient condition (Section 4).

4. A sufficient condition for validity

Preliminaries Let 𝑇 be a unit isosceles right triangle in the pa-
rameter domain R2 with barycententric coordinates 𝜉 = (𝜉1, 𝜉2, 𝜉3),
𝜉1 +𝜉2 +𝜉3 = 1. Denote 𝜙 : 𝑇 → R2 as a rational Bézier map [Far86]
of degree 𝑛 from the parameter domain to the computational domain:

𝜙(𝜉) =
∑

|𝜆 |=𝑛𝑤𝜆𝑷𝜆𝐵
𝑛
𝜆
(𝜉)∑

|𝜆 |=𝑛𝑤𝜆𝐵
𝑛
𝜆
(𝜉) , (1)

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

80

J. Yang & S. Liu & S. Chai & L. Liu & X.-M. Fu / Precise High-order Meshing of 2D Domains with Rational Bézier Curves

where 𝜆 = (𝑖, 𝑗 , 𝑘), 𝑖, 𝑗 , 𝑘 ∈ {0,1 . . . , 𝑛}, |𝜆 | B 𝑖+ 𝑗 + 𝑘 , 𝑷𝜆 = (𝑥𝜆, 𝑦𝜆)
are control points, with associated weights 𝑤𝜆, and the basis func-
tions 𝐵𝑛

𝜆
(𝜉) = 𝑛!

𝜆! 𝜉
𝑖
1𝜉
𝑗

2 𝜉
𝑘
3 , where 𝜆! B 𝑖! 𝑗!𝑘!. Sometimes, we also

use the subscript (𝑖, 𝑗) instead of (𝑖, 𝑗 , 𝑘).

The map (1) can be written in a homogeneous manner:

𝜙(𝜉) = (𝑋 (𝜉),𝑌 (𝜉),𝑊 (𝜉)) =
∑︁
|𝜆 |=𝑛

𝑷̃𝜆𝐵
𝑛
𝜆 (𝜉), (2)

where 𝑷̃𝜆 = (𝑤𝜆𝑥𝜆,𝑤𝜆𝑦𝜆,𝑤𝜆). The “Dir” function is defined
as [SWS95]:

Dir(𝑷̃𝜆1 , 𝑷̃𝜆2) B 𝑤𝜆1𝑤𝜆2 (𝑷𝜆2 − 𝑷𝜆1).

This function can be applied to any two homogeneous coordinates.
Then, we use the “Dir” function to calculate the partial derivatives:

𝜙𝜉1 (𝜉) =
𝜕

𝜕𝜉1

(
𝑋 (𝜉)
𝑊 (𝜉) ,

𝑌 (𝜉)
𝑊 (𝜉)

)
=

Dir(𝜙(𝜉), 𝜙𝜉1 (𝜉))
(𝑊 (𝜉))2 . (3)

Analogously, we have:

𝜙𝜉2 (𝜉) =
Dir(𝜙(𝜉), 𝜙𝜉2 (𝜉))

(𝑊 (𝜉))2 . (4)

In addition, we use det(𝜆1,𝜆2,𝜆3) to denote the mixed product,

det(𝜆1,𝜆2,𝜆3) =

������ 𝑖1 𝑖2 𝑖3
𝑗1 𝑗2 𝑗3
𝑘1 𝑘2 𝑘3

������ .
In [JW94], a sufficient condition for injectivity of quadratic ratio-

nal Bézier triangles is calculated with the help of the Maple algebraic
manipulation language. We generalize the condition to any order 𝑛.

Theorem 1 Suppose a rational Bézier triangle map 𝜙 of order 𝑛
satisfies the following conditions:

1. The weights {𝑤𝜆} are positive;
2. No degeneracy at corners, i.e. det(𝑷̃00, 𝑷̃10, 𝑷̃01) > 0,det

(𝑷̃0𝑛, 𝑷̃0(𝑛−1) , 𝑷̃1(𝑛−1)) > 0,det(𝑷̃𝑛0, 𝑷̃ (𝑛−1)1, 𝑷̃ (𝑛−1)0) > 0;
3. det(𝜆1,𝜆2,𝜆3) det(𝑷̃𝜆1 , 𝑷̃𝜆2 , 𝑷̃𝜆3) ≥ 0 for arbitrary three control

points 𝑷𝜆1 ,𝑷𝜆2 ,𝑷𝜆3 .

Then 𝜙 is valid, i.e. det 𝐽𝜙 > 0 for any 𝜉 in 𝑇 .

Proof The homogeneous Bézier map and its partial derivatives are
written as

𝜙(𝜉) = 𝜉1𝐹̃1 (𝜉) + 𝜉2𝐹̃2 (𝜉) + 𝜉3𝐹̃3 (𝜉),

𝜙𝜉1 (𝜉) = 𝑛(𝐹̃1 (𝜉) − 𝐹̃3 (𝜉)),

𝜙𝜉2 (𝜉) = 𝑛(𝐹̃2 (𝜉) − 𝐹̃3 (𝜉)),

with

𝐹̃1 (𝜉) =
∑︁

|𝜇 |=𝑛−1
𝑷̃𝜇+𝑒1𝐵

𝑛−1
𝜇 (𝜉) ≜ (𝑋̃1,𝑌1,𝑊̃1),

𝐹̃2 (𝜉) =
∑︁

|𝜇 |=𝑛−1
𝑷̃𝜇+𝑒2𝐵

𝑛−1
𝜇 (𝜉) ≜ (𝑋̃2,𝑌2,𝑊̃2),

𝐹̃3 (𝜉) =
∑︁

|𝜇 |=𝑛−1
𝑷̃𝜇+𝑒3𝐵

𝑛−1
𝜇 (𝜉) ≜ (𝑋̃3,𝑌3,𝑊̃3),

where 𝜇 = (𝑖, 𝑗 , 𝑘), 𝑒1 = (1,0,0), 𝑒2 = (0,1,0), and 𝑒3 = (0,0,1).
With the properties of the “Dir” function, we have:

det 𝐽𝜙 =

���� 𝜕𝜙(𝜉)𝜕𝜉1

𝜕𝜙(𝜉)
𝜕𝜉2

����
=

1
(𝑊 (𝜉))4

��Dir(𝜙(𝜉), 𝜙𝜉1 (𝜉)) Dir(𝜙(𝜉), 𝜙𝜉2 (𝜉))
��

=
𝑛2

(𝑊 (𝜉))3

(
𝑊̃3

����𝑋̃1 𝑋̃2
𝑌1 𝑌2

����+𝑊̃2

����𝑋̃3 𝑋̃1
𝑌3 𝑌1

����+𝑊̃1

����𝑋̃2 𝑋̃3
𝑌2 𝑌3

����)
=

𝑛2

(𝑊 (𝜉))3

∑︁
|𝜇1 |=𝑛−1

∑︁
|𝜇2 |=𝑛−1

∑︁
|𝜇3 |=𝑛−1

[
𝑐𝜇1𝜇2𝜇3

𝐵𝑛−1
𝜇1 (𝜉)𝐵𝑛−1

𝜇2 (𝜉)𝐵𝑛−1
𝜇3 (𝜉)

]
,

(5)

where the coefficient

𝑐𝜇1𝜇2𝜇3 = 𝑤𝜇1+𝑒1𝑤𝜇2+𝑒2𝑤𝜇3+𝑒3

(��𝑷𝜇1+𝑒1 𝑷𝜇2+𝑒2

��
+
��𝑷𝜇3+𝑒3 𝑷𝜇1+𝑒1

��+ ��𝑷𝜇2+𝑒2 𝑷𝜇3+𝑒3

��)
= det(𝑷̃𝜇1+𝑒1 , 𝑷̃𝜇2+𝑒2 , 𝑷̃𝜇3+𝑒3).

Hence, by introducing an auxiliary subscript 𝜇 = 𝜇1 + 𝜇2 + 𝜇3, the
summation in (5) is reorganized as

det 𝐽𝜙 =
𝑛2

(𝑊 (𝜉))3

∑︁
|𝜇 |=3𝑛−3

𝐶𝜇𝐵
3𝑛−3
𝜇 (𝜉), (6)

where

𝐶𝜇 =
𝜇!(𝑛−1)!3

(3𝑛−3)!
∑︁

𝜇1+𝜇2+𝜇3=𝜇
|𝜇1 |=|𝜇2 |=|𝜇3 |=𝑛−1

det(𝑷̃𝜇1+𝑒1 , 𝑷̃𝜇2+𝑒2 , 𝑷̃𝜇3+𝑒3)
𝜇1!𝜇2!𝜇3!

. (7)

We merge (7) with different triangles. Consider a subset of subscripts
{(𝜇1, 𝜇2, 𝜇3), (𝜇1, 𝜇3+𝑒3−𝑒2, 𝜇2+𝑒2−𝑒3), (𝜇2+𝑒2−𝑒1, 𝜇1+𝑒1−
𝑒2, 𝜇3), (𝜇2 + 𝑒2 − 𝑒1, 𝜇3 + 𝑒3 − 𝑒2, 𝜇1 + 𝑒1 − 𝑒3), (𝜇3 + 𝑒3 − 𝑒1, 𝜇1 +
𝑒1 − 𝑒2, 𝜇2 + 𝑒2 − 𝑒3), (𝜇3 + 𝑒3 − 𝑒1, 𝜇2, 𝜇1 + 𝑒1 − 𝑒3)}, denoted as Ω.
By summing them up, we have:∑︁
(𝜇̄1 , 𝜇̄2 , 𝜇̄3) ∈Ω

det(𝑷̃ 𝜇̄1+𝑒1 , 𝑷̃ 𝜇̄2+𝑒2 , 𝑷̃ 𝜇̄3+𝑒3)
𝜇̄1!𝜇̄2!𝜇̄3!

=
det(𝜇1 + 𝑒1, 𝜇2 + 𝑒2, 𝜇3 + 𝑒3) det(𝑷𝜇1+𝑒1 ,𝑷𝜇2+𝑒2 ,𝑷𝜇3+𝑒3)

(𝜇1 + 𝑒1)!(𝜇2 + 𝑒2)!(𝜇3 + 𝑒3)!
.

Then, (7) has the form:

𝐶𝜇 =
𝜇!(𝑛−1)!3

(3𝑛−3)!
∑︁

𝜆1+𝜆2+𝜆3=𝜇+1
|𝜆1 |=|𝜆2 |=|𝜆3 |=𝑛

det(𝜆1,𝜆2,𝜆3) det(𝑷̃𝜆1 , 𝑷̃𝜆2 , 𝑷̃𝜆3)
𝜆1!𝜆2!𝜆3!

.

(8)

where 1 = (1,1,1) and 𝜆1 < 𝜆2 < 𝜆3 in the lexicographical order.
The positive weights 𝑤𝑖 𝑗 in the condition (1) imply that 𝑊 (𝜉) is
positive for all 𝜉 in𝑇 . The condition (3) implies that all𝐶𝜆 ≥ 0, while
condition (2) further ensures that 𝐶00(3𝑛−3) , 𝐶0(3𝑛−3)0, 𝐶(3𝑛−3)00
are nonzero, and thus det 𝐽𝜙 > 0.

Remark Note that this theorem is the general form of the second-
order case in [JW94]. If the subscript 𝜆 = (𝑖, 𝑗 , 𝑘) is considered as a

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

81

J. Yang & S. Liu & S. Chai & L. Liu & X.-M. Fu / Precise High-order Meshing of 2D Domains with Rational Bézier Curves

𝑷00

𝑷10

𝑷21

𝑷00 𝑷10

𝑷21

Figure 3: Two cubic rational Bézier triangles’ control nets. The con-
trol points have arbitrary positive weights. The area of △𝑷00𝑷10𝑷21
is negative (left), so Theorem 1 cannot be used to show that the map
is valid. The control net on the right with straight boundary edges is
uniform, so the map is valid.

planar point (𝑖/𝑛, 𝑗/𝑛) in the parameter domain 𝑇 , then all the sub-
scripts are uniform nodes in the parameter domain 𝑇 , as illustrated
in Figure 2 - Left. The triangle formed by arbitrary three nodes in 𝑇
corresponds to a straight-edge triangle in the computational domain,
as illustrated in Figure 2 - Right. From a geometric point of view,
det(𝜆1,𝜆2,𝜆3) equals to the signed area of △𝜆1𝜆2𝜆3 multiplied by
2𝑛 in the parameter domain, and det(𝑷̃𝜆1 , 𝑷̃𝜆2 , 𝑷̃𝜆3) equals to the
signed area of △𝑷𝜆1𝑷𝜆2𝑷𝜆3 multiplied by 2𝑤𝜆1𝑤𝜆2𝑤𝜆3 in the com-
putational domain. Thus, condition (3) in Theorem 1 is equivalent
to that the sign of the corresponding triangle areas in the parameter
and computational domains must be the same, or either of the area
is zero. In other words, any pair of corresponding triangles have the
same orientation. Since the orientations of triangles in the param-
eter domain are all fixed, we only need to check the orientations
of triangles in the computational domain. We list in Appendix B
the triangles that need to be checked for the quadratic case. This
is a rather strict condition, but we develop an explicit construction
method for conic and cubic rational curves, and it provides a poten-
tial construction in the case of a higher order. We show an example
of a violation of the theorem in Figure 3.

5. High-order meshing

If the input Bézier curves only contain polynomial curves, the Bézier
guarding algorithm [MC20] can generate satisfactory results. We
first briefly review its key concepts and then introduce our algorithm.

5.1. Bézier guarding

Guardable curve Let 𝒑𝑖 , 𝑖 ∈ {0, . . . , 𝑛}, denote the control points
of an order-𝑛 Bézier curve 𝒄, forming the control polygon 𝑷𝑐 . The
weight corresponding to each point is 𝑤𝑖 . For a polynomial curve,
the weight of each point is 1. The control vectors of 𝒄 are 𝒔𝑖 =
𝒑𝑖+1 − 𝒑𝑖 . If there is a vector 𝒅 so that 𝒅𝑇 𝒔𝑖 > 0 for all 𝑖, the curve
𝒄 is called guardable, and the vector 𝒅 is called an axis of the curve.

Guarding triangle and envelope For a guardable curve 𝒄 with
axis 𝒅, let 𝒔+ be the control vector minimizing 𝒅𝑇 𝒔𝑖 that points
counterclockwise relative to 𝒅, and 𝒔− the minimizer that points
clockwise. Let 𝒙 be the intersection point of 𝑳+ and 𝑳− , where 𝑳+

is a line through 𝒑0 in direction 𝒔+, and 𝑳− is a line through 𝒑𝑛

𝒑0

𝒑𝑛

𝒔+
𝒔−

𝒅

𝒑0

𝒑𝑛

𝒅

𝒐𝑙

𝑥

𝐿+
𝐿−

𝒑0

𝒑𝑛

𝒅

𝒐𝑙

𝒐𝑟

Figure 4: Construction of a curve envelope (right). A guarding
triangle (middle) above a guardable curve (left) with an axis 𝒅.
Point 𝒐𝑙 and 𝒐𝑟 are guard points on each side of the curve.

in direction 𝒔− . If 𝑳+ = 𝑳− , we let 𝒙 be the midpoint of 𝒑0 and
𝒑𝑛. For each side of the curve 𝒄, we construct a guard point 𝒐 by
adding some amount of translation on 𝒙 in normal direction. We
define 𝒐 as 𝒙 +0.01(𝑤2/𝑤̂)𝒏, where 𝑤 = | | 𝒑0 − 𝒑𝒏 | | is the width of
the curve, 𝑤̂ denotes the curve’s initial width and 𝒏 is a unit vector
perpendicular to and counterclockwise of 𝒅. The triangular region
formed by 𝒄, 𝒑0𝒐, and 𝒑𝑛𝒐 admits a regular geometric map, which
is called this side’s guarding triangle. The curve 𝒄 is contained in
the quadrilateral formed by the two guarding triangles, and we call
the quadrilateral the envelope of 𝒄, denoted as 𝐸 (𝒄) (Figure 4).

Workflow The Bézier guarding algorithm works as follows to build
an initial mesh:

1. Bisect non-guardable curves 𝒄 into guardable curves, then repa-
rameterize each sub-curve to 𝑡 ∈ [0,1].

2. When there is a pair of guardable curves whose envelopes inter-
sect except at the curves’ endpoints, bisect the one with a larger
envelope.

3. Triangulate a bounding polygon encompassing all envelopes that
has all envelopes as holes.

In our algorithm, we use a similar workflow to generate guarding
triangles and envelopes for inputs of rational Bézier curves, and
show that these steps terminate after a finite number of iterations.

Proposition 1 Steps (1) and (2) terminate.

Proof The termination of steps (1) and (2) for polynomial curves
has been stated in [MC20]. A rational curve converges to piecewise
polynomial curves after repeated bisection(Appendix C), and thus
steps (1) and (2) terminate.

The difference with respect to [MC20] is that the input curves
contain rational curves. Therefore, for some control points of mesh
elements, we need to specify weights to achieve conforming, and
modify the structure of geometric mapping. We describe the modifi-
cations in the following section.

5.2. Meshing triangles

We now explain how to construct control points on each Bézier
triangle to serve as a valid geometric map for a guarding triangle
above each domain curve. To conform to the domain curves, the
control points and weights on the side corresponding to the domain
curve in the guarding triangle are the same as the curve. We need to
specify additional weights to the other control points for the guard-
ing triangle on the rational curve. We adopt different construction
methods for guarding triangles above different kinds of curves.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

82

J. Yang & S. Liu & S. Chai & L. Liu & X.-M. Fu / Precise High-order Meshing of 2D Domains with Rational Bézier Curves

Figure 5: A guarding triangle above a rational cubic curve (red).
One interior point has a weight of 8, and the others are all 1. We
use several barycentric iso-curves (blue) to represent the geometric
map. Left: map constructed by Bézier guarding, which is not valid.
Right: map constructed by our method.

The same construction strategy [MC20] is adopted for polynomial
curves. For rational curves, the guarding triangles above the curves
can be represented as rational Bézier triangles. The polynomial
version of the construction method cannot guarantee validity of the
map (Figure 5). We solve this problem based on Theorem 1.

Reparameterization In order to ensure that each point on the mesh
has a unique weight, some preprocessing needs to be performed first
on the rational curves. When two rational curves share the same
endpoint, they may have different weights. Therefore, we adopt the
following parameter transformation for each rational Bézier curve
so that the weights at the endpoint of the curve are 1 [Far02]:

𝑡 =
𝑎𝑡

𝑎𝑡 + 𝑏(1− 𝑡) . (9)

If we choose 𝑎 as 𝑤−1/𝑛
0 and 𝑏 as 𝑤−1/𝑛

𝑛 , then 𝑤0 = 𝑤𝑛 = 1, and
𝑤𝑖 = 𝑤𝑖𝑏

𝑖𝑎𝑛−𝑖 . This substitution is also beneficial for constructing
maps on straight-edge triangles.

To construct a rational Bézier triangle map satisfying our suffi-
cient condition, we need to check the orientations of straight-edge
triangles on the control net, as stated in the remark in Section 4. The
triangles for the quadratic cases are listed in Appendix B.

5.2.1. Conic sections

For guarding triangles above conic sections, we only need to se-
lect the control points on the two straight edges. On the straight
edge 𝒑0𝒐, we select a point such that it is located on the left side
of the control vectors 𝒔0 and 𝒔1, denoted as 𝒒1. Then we select
a point on the straight edge 𝒑2𝒐 analogously, denoted as 𝒒2. In
practice, we define 𝒒1 = 0.8𝒊1 +0.2𝒐 and 𝒒2 = 0.8𝒊2 +0.2𝒐, where
𝒊2 is the intersection of 𝒑0 𝒑1 and 𝒑2𝒐, 𝒊1 is the intersection of
𝒑2 𝒑1 and 𝒑0𝒐. We set all the weights of 𝒒1, 𝒒2, 𝒐 to 1, which is
beneficial for subsequent constructions. Figure 6 (middle) illustrates
the construction.

Proposition 2 If the conic control net is constructed by the above
procedure, then the geometric map is valid.

Proof According to the construction of our guard point 𝒐, the 3
triangles △𝒐 𝒑0 𝒑1, △𝒐 𝒑0 𝒑2, △𝒐 𝒑1 𝒑2 has the correct orientations.
The construction of the control point 𝒒1 ensures that the 5 triangles
△𝒒1 𝒑0 𝒑1, △𝒒1 𝒑0 𝒑2, △𝒒1 𝒑1 𝒑2, △𝒒1 𝒑1𝒐, △𝒒1 𝒑2𝒐 has the correct
orientations. The construction of the control point 𝒒2 ensures that the
9 triangles △𝒒2 𝒑0 𝒑1, △𝒒2 𝒑0 𝒑2, △𝒒2 𝒑1 𝒑2, △𝒒2𝒒1 𝒑0, △𝒒2𝒒1 𝒑1,

𝒑0

𝒑1

𝒑2

𝒒1
𝒒2

𝒊1 𝒊2

𝒐

𝒑0

𝒑1

𝒑2

𝒒1

𝒒2

𝒐

Figure 6: Construction of a geometric map for a guarding triangle
above a conic curve (middle). Each triangle has the same orientation
as the corresponding triangle in the parametric domain, such as the
blue triangles. The right figure shows an invalid construction.

𝒑0

𝒑1

𝒑2
𝒑3

𝒒1

𝒒2
𝒒3

𝒐

𝒑0

𝒑1

𝒑2
𝒑3

𝒒1 𝒒2

𝒒3

𝒐

𝒒4
𝒒5

Figure 7: Construction of a geometric map for a guarding trian-
gle above a cubic curve (right). We construct control points layer
by layer and always keep sufficient conditions satisfied. For in-
stance, we ensure the orientations of blue triangles are correct when
constructing the points in the second layer, and so are the purple
triangles when constructing the points in the third layer.

△𝒒2𝒒1 𝒑2, △𝒒2𝒐 𝒑0, △𝒒2𝒐 𝒑1, △𝒒2𝒐𝒒1 has the correct orientations.
Thus all 17 triangles have the correct orientations, which satisfies
our sufficient condition and is valid.

5.2.2. Cubic rational curves

We need to determine the positions of five additional control points
on the guarding triangles above cubic rational curves. We select a
point on the straight edge 𝒑0𝒐, such that it is located on the left
side of the vectors 𝒔0, 𝒔1 and 𝒔2, denoted as 𝒒1. Then we select
a point on the straight edge 𝒑3𝒐 analogously, denoted as 𝒒3. The
selection method is similar to the conic sections. The segment 𝒑1𝒐
has one intersection point with 𝒒1𝒒3, and the segment 𝒑2𝒐 has one
intersection point with 𝒒1𝒒3. We select a point on the line segment
formed by these two intersection points, denoted as 𝒒2. Let 𝒒4 be
the intersection point of 𝒑0𝒐 and the line through 𝒑2 and 𝒒2, let
𝒒5 be the intersection point of 𝒑3𝒐 and the line through 𝒑1 and
𝒒2. Figure 7 illustrates the construction. We set the weight of 𝒒1,
𝒒3, 𝒒4, 𝒒5, 𝒐 to 1. The weight of 𝒒2 can be specified arbitrarily.
In our algorithm, we set this weight as the average of the other
weights, making the distortion lower, especially when the difference
in weights is large.

To evaluate our algorithm, we construct geometric maps on guard-
ing triangles of 10000 random rational cubic guardable curves and
show the scaled-Jacobian values in Figure 8.

Proposition 3 If the cubic control net is constructed by the above
procedure, then the geometric map is valid.

Proof A straightforward way is that we can check the orientations
of all triangles. Due to the construction of the guarding triangle,
many triangles already satisfy the condition by default. We adopt a

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

83

J. Yang & S. Liu & S. Chai & L. Liu & X.-M. Fu / Precise High-order Meshing of 2D Domains with Rational Bézier Curves

100 10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9

Average
One

1000

2000

3000

4000

Figure 8: The weight of each control point ranges from 1 to 10.
The scaled-Jacobian values (defined as min | det 𝐽𝜙 |

max | det 𝐽𝜙 | , where 𝐽𝜙 is the
Jacobian matrix of 𝜙) are all positive. The horizontal axis is the
scaled-Jacobian values, and the vertical axis is the number of maps
in the corresponding range. The weight of the interior point is one
or the average of the other weights.

layer-by-layer construction and guarantee that our sufficient theorem
holds when constructing each control point.

Degree elevation Suppose the order of the rational Bézier triangle
map is less than the specified order 𝑛. We perform degree elevation
until the order becomes 𝑛 after constructing the control points and
weights on the guarding triangle above a rational curve. In that case,
the new control points and weights are what we finally constructed.

Due to the construction and reparameterization (9), the weights
of the control points on the straight edges of the triangle are all 1.
Therefore, for straight-edge triangles, we can take advantage of the
sufficient conditions in polynomial situation [MC20] to construct a
valid map.

5.2.3. Straight elements

We furthermore need to construct a valid geometric map for straight-
edge triangles. To ensure 𝐶0-continuity across edges, if an edge is
adjacent to a guarding triangle, we adopt the edge control points
constructed for this guarding triangle. As mentioned above, these
weights are all 1. Due to the manner in step (2), each straight-
edge triangle is adjacent to at most two guarding triangles. Given
a straight-edge triangle with corner point 𝒂, 𝒃, 𝒄. We uniformly
distributed control points if the straight triangle is not adjacent to
any guarding triangle. If there is only one edge (𝒂, 𝒃) adjacent to
other guarding triangle with non-uniform prescribed control points
𝒑0, . . . , 𝒑𝑛 (𝒑0 = 𝒂 and 𝒑𝑛 = 𝒃), we define Bézier triangle control
points as

𝒑𝑖 𝑗𝑘 =


𝒑𝑖 , 𝑗 = 0,
𝑘

𝑛
𝒂 + 𝑖

𝑛
𝒃 + 𝑗

𝑛
𝒄, 𝑗 > 0.

If edge (𝒂, 𝒄) is adjacent to another guarding triangle at the same
time, with prescribed control points 𝒒0, . . . , 𝒒𝑛 (𝒒0 = 𝒂 = 𝒑0 and
𝒒𝑛 = 𝒄), let 𝐾𝑖 be the line parallel to 𝒑0 𝒑𝑛, passing through point
𝒒𝑖 ,1 ≤ 𝑖 < 𝑛. Let 𝒓𝑖 be the intersection of 𝐾𝑖 and 𝒑𝑛𝒒𝑛, and we
uniformly distributed points on the line segment 𝒒𝑖 𝒓𝑖 as inner control
points. To conclude the construction, we define Bézier triangle

𝒑0 𝒑𝑛

𝑐

𝒑0 (𝒒0) 𝒑𝑛

𝒒𝑛

𝒓𝑛−1

𝒓1
𝐾1

𝐾𝑛−1

Figure 9: Bézier control points for a straight-edge triangle. Left:
triangle adjacent to one guarding triangle. Right: triangle adjacent
to two triangles. All 1-vectors 𝒑𝑖 (𝑗+1) − 𝒑𝑖 𝑗 points counterclockwise
relative to 0-vectors 𝒑 (𝑖+1) 𝑗 − 𝒑𝑖 𝑗 .

𝑇

Figure 10: Non-uniform control points on gray edges and curved
edges (black). There exists a straight-edge triangle (for example
𝑇) that is not adjacent to any guarding triangle, with non-uniform
control points on three edges (left). We split some special triangles
via green dotted lines (right), then these green edges have uniform
control points.

control points as

𝒑𝑖 𝑗𝑘 =



𝒑𝑖 , 𝑗 = 0,
𝒒 𝑗 , 𝑖 = 0,

𝒓 𝑗 , 𝑘 = 0, 𝑖 ≠ 0, 𝑗 ≠ 0,
𝑖

𝑛− 𝑗 𝒒 𝑗 +
𝑘

𝑛− 𝑗 𝒓 𝑗 , 𝑖, 𝑗 , 𝑘 > 0.

These control points are illustrated in Figure 9, and all weights are
set to 1.

Note that if the element is a guarding triangle or a straight-edge
triangle adjacent to two guarding triangles, the control points on the
straight edges are usually non-uniform. In order to prevent the ap-
pearance of a straight-edge triangle with three non-uniform control
points on the three sides, we take the following measures. Let S
denote the set of all straight-edge triangles adjacent to two triangles.
For any triangle 𝑡 in S, denote the edge adjacent to a straight triangle
as 𝑒, the adjacent triangle as 𝑡1. If 𝑡1 adjacent to another triangle
belonging to 𝐴, we split the triangle 𝑡 at 𝑒 (Figure 10). We perform
it before constructing geometric maps.

Another strategy is to split triangles that are edge-adjacent to two
guarding triangles so that each straight-edge triangle is adjacent to
at most one guarding triangle, but this may result in more triangles,
increasing the complexity of subsequent mesh optimizations.

5.2.4. Curves of arbitrary order

For rational curves of arbitrary order 𝑛, one possible approach is
to use the strategy in [MC21] to construct triangles and use gen-

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

84

J. Yang & S. Liu & S. Chai & L. Liu & X.-M. Fu / Precise High-order Meshing of 2D Domains with Rational Bézier Curves

(a) (b) (c) (d)
Figure 11: Approach overview. Input curves (a) include polynomial curves, conic sections, and cubic rational curves. Construct guarding
triangles on each sub-curve and perform triangulation (b). Construct control points on each element to serve as a valid geometric map (c).
Finally, some optimization strategies are used to improve the mesh quality (d).

eralized barycentric coordinates for placing control points. Then,
we check whether the triangle is valid and bisect the curve if not.
This strategy has proven effective for polynomial curves in [MC21].
In Proposition 1, we introduced that rational curves will converge
to piecewise polynomial curves after repeated bisection. So the
strategy is also feasible for rational curves. On the other hand, the
triangle converges to a linear reference configuration under repeated
bisection, i.e., converges to a state of uniformly distributed control
points [MC21], and our sufficient condition is satisfied after a suf-
ficient number of subdivisions, just like the example in Figure 3 -
Right. It is a posterior-based strategy, i.e., construct first and then
check. A construction method based on sufficient conditions can
avoid additional validity checks.

5.3. Our meshing algorithm

The above construction method strictly guarantees that the mesh
is valid and conforms to the input domain curves, but the quality
is uncontrolled. Many previous methods have been proposed for
mesh optimization [HSG∗19, Pan20, BK04, MC20]. We take use of
previously proposed techniques based on two ways, combinatorial
and geometric mesh improvement [MC20, LSL∗21]. Since our con-
tribution is not in the mesh optimization, we restrict ourselves to
briefly describing and discussing some modifications.

5.3.1. Combinatorial Optimization

We use an edge-length driven strategy [BK04], and assign a target
edge length 𝑙 to each edge. The length of an edge between vertices
𝑝 and 𝑞 is denoted as 𝑙 (𝑝, 𝑞), and it is approximated by 𝑙 (𝑝, 𝑞) =
∥𝑝− 𝑞∥. Then we perform the following steps.

Edge split If 𝑙 (𝑝, 𝑞) > 4
3 𝑙, we split the edge by bisecting the ad-

jacent triangles using Bézier triangle bisection [FH99], which
yields control points and corresponding weights for the new trian-
gles. When we split a domain curve, the weight of the new point
is usually not one. In this case, we perform a reparameterization
on each new triangle such that each triangle’s endpoint has a
weight of one.

Edge collapse In order to maintain conformance, an edge is con-
sidered “collapsible” if this collapse operation does not cause

movement of the domain curves. For example, vertices represent-
ing the endpoints of domain curves are never collapsed, and those
in the interior of domain curves are only collapsed along edges
on domain curves. We collapse the edge if it is “collapsible” and
𝑙 (𝑝, 𝑞) < 4

5 𝑙.
Edge flip Analogously, edges representing domain curves are never

flipped. We flip those edges if that reduces the deviation from
valence 6 (or 4 on boundaries).

After each operation, we perform a quasi-uniform distribution for
each changed triangle except for the edges representing domain
curves. To ensure that the mesh is valid, we perform an injectivity
test [HMESM06] on each locally modified area. If there exists an
invalid triangle, we reject this operation.

5.3.2. Geometric Optimization

In order to promote equilateral elements, we apply a second-order
solver [SPSH∗17] on a scale invariant conformal distortion mea-
sure [HG00], computed from the map’s Jacobian 𝐽𝜙 (with singular
values Σ, 𝜎):

𝐸conf = (Σ2 +𝜎2)/Σ𝜎.

It is numerically integrated over the triangles using a quadrature
scheme [WV15, MC20]. Preservation of validity is ensured by the
injectivity test in the line search in Newton method during optimiza-
tion. All edges are free to curve, which contributes to distortion
reduction in the optimization.

5.3.3. Complete meshing algorithm

Then, we have the following steps, as shown in Figure 11. The target
edge length is 𝑙, and the order of the mesh is 𝑛. The output is a mesh
conforming input curves with a valid geometric map.

1. Building the initial mesh as described in Section 5.1.
2. Reparameterize each curve so that each endpoint has a weight of

1.
3. Construct Bézier control points per guarding triangle. For the

guarding triangles above rational curves, we elevate the order to
𝑛.

4. Construct Bézier control points for straight-edge triangles.
5. Perform geometric and combinatorial optimization.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

85

J. Yang & S. Liu & S. Chai & L. Liu & X.-M. Fu / Precise High-order Meshing of 2D Domains with Rational Bézier Curves

Dataset: (A) (B) (C) (D)

FLOAT
FAILURE 0 0 0 4
SUCCESS 500 400 500 796

EXACT
FAILURE 0 0 0 0
SUCCESS 500 400 500 800

Table 1: In the EXACT version, we generate a valid mesh for each
example in the dataset. For the FLOAT version, a few examples have
invalid triangular elements in the mesh due to numerical errors.

Figure 12: Examples generated by our algorithm. The upper row
shows the initial valid meshes, and the bottom row shows a remeshed
version.

Remark Except the reparameterization step in our algorithm, other
steps can be performed using exact rational operations. Specifically,
the reparameterization step, which ensures that each vertex has the
same weight and that all straight-edged triangles are non-rational,
contains a mathematical power expression with a fractional power,
thereby bringing a truncation error. The error is about the floating
point precision. When we mention EXACT below, it means that we
perform a floating-point operation in the reparameterization step
and exact rational operations in other steps.

6. Experiments and evaluations

Our method is implemented in C++, and all the experiments are
performed on a desktop PC with a 4.00 GHz Intel Core i7-4790K
and 16 GB of RAM.

We test our algorithm on the dataset of random domain curves
provided by [MC20], which are divided into four groups: (A) curves
forming a closed 𝐶0 domain boundary loop with corners; (B) curves
forming a closed 𝐶1 domain boundary loop without corners; (C)
isolated random curves, spread uniformly over a rectangular domain;
(D) curves forming a curve network, generated by intersecting ran-
dom curves. We randomly assign weights to the control points of
each curve, ranging from 1 to 10. Since adding weights may gener-
ate some bad data like degenerate curves or overlapping curves, we
generate 2200 data after removing those.

We tested our algorithm in both exact rational numbers and stan-

10-5

10-4

10-3

10-2

10-1

100

10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100

Figure 13: Logarithmic histogram of scaled-Jacobian values (hori-
zontal axis) of the initial meshes.

1 5 10 50 100 200 450
0

0.2

0.4

0.6

0.8

1

2

After Optimization

Before Optimization

Figure 14: Cumulative distribution functions of 𝐸conf before and
after optimization. The minimally possible value of 𝐸conf is 2 (for an
ideal equilateral element). Most of the values are less than 5 after
optimization.

Figure 15: Curves with different weights. The weights of the inner
points increase from left to right. The maximum weight of control
points is 100000.

dard double precision numbers, and presented the statistics of the
results in Table 1. In Figure 12, we show three resulting meshes
generated from the dataset.

The distribution of the scaled-Jacobian values, which aggregate
over all elements of the initial meshes of the datasets, is shown in
Figure 13. As guaranteed by our algorithm, these values are strictly
positive (here > 10−9), such that the meshes are valid starting points
for validity preserving optimization. In Figure 14, we show the
cumulative distribution functions of 𝐸𝑐𝑜𝑛 𝑓 . There may exist highly
distorted elements of strongly varying sizes in initial meshes, which
will be greatly reduced after optimization.

In Figure 15, we demonstrate that the proposed method is able to
properly handle curves with extremely large weights. Though large
weights rarely appear in real-world data, this experiment illustrates
the reliability of the method.

In Table 2, we record the timing of our implementation of the

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

86

J. Yang & S. Liu & S. Chai & L. Liu & X.-M. Fu / Precise High-order Meshing of 2D Domains with Rational Bézier Curves

FLOAT EXACT

#Curves ∼50 ∼100 ∼200 ∼50 ∼100 ∼200

STEP (1) 91.8 143.6 249.1 116.8 217.7 284.9
STEP (3)+(4) 3.4 5.5 8.8 80.0 179.6 184.0

TOTAL 95.2 149.1 257.9 196.8 397.3 468.9

STEP (5) 44000.0 72000.0 108000.0 - - -

Table 2: Timings of our algorithm (Section 5.3) in milliseconds. Ob-
tained by averaging over runs on the input domains of the datasets
containing ∼50, ∼100, and ∼200 curves (±%10), respectively.

algorithm. The time difference from the polynomial case mainly
comes from the clipping of the rational curve. The optimization
running time is greatly affected by the quality of input curves and
the target length. We perform optimization under floating-point
arithmetic and detect validity using exact rational computation.

7. Conclusion and Discussion

We propose a sufficient condition for the injectivity of rational Bézier
triangles of arbitrary order. Our method uses this sufficient condition
in combination with the algorithm stated in [MC20] to generate a
valid mesh that conforms to domain curves, including rational and
non-rational curves. It is effective for curves with arbitrary weights.

Tightness of our sufficient condition Our sufficient condition is
sometimes too restrictive to be used for extremely higher-order cases.
A general construction of valid geometric maps for guarding trian-
gles above rational curves of arbitrary order is an obvious avenue
for future work.

Guaranteed quality Furthermore, generating quality-guaranteed
higher-order mesh by extending the method stated in [MC21] is
another interesting research direction. It is also beneficial to consider
the optimization of weights. In [EE20], a new set of quality metrics
for curvilinear finite elements and a new mesh optimization are
proposed, which can be taken into account as well.

Intersection of rational curves In our work, the input curves are
assumed to only intersect at endpoints. If the input curves have
general intersections, the algorithm cannot generate a mesh that pre-
cisely conforms to the input since the intersection point is computed
by solving nonlinear equations, which is not a rational operation.
Thus, when applying our algorithm to intersected curves, we pro-
pose to split curves at the intersection points and approximate them
by rounding to limited precision numbers.

Acknowledgements

We would like to thank the anonymous reviewers for their
constructive suggestions and comments. The work is sup-
ported by Anhui Center for Applied Mathematics, the Major
Project of Science and Technology of Anhui Province (No.
202203a05020050), and the National Natural Science Foundation
of China (62025207).

References
[ADF14] ABGRALL R., DOBRZYNSKI C., FROEHLY A.: A method for

computing curved meshes via the linear elasticity analogy. Int. J. Numer.
Methods Fluids 76, 4 (2014), 246–266. 2

[BK04] BOTSCH M., KOBBELT L.: A remeshing approach to multires-
olution modeling. In Proceedings of the 2004 Eurographics/ACM SIG-
GRAPH Symposium on Geometry Processing (New York, NY, USA,
2004), Association for Computing Machinery, pp. 185–192. 7

[CCM∗04] CARDOZE D., CUNHA A., MILLER G. L., PHILLIPS T.,
WALKINGTON N.: A Bézier-based approach to unstructured moving
meshes. In Proceedings of the Twentieth Annual Symposium on Computa-
tional Geometry (New York, NY, USA, 2004), Association for Computing
Machinery, pp. 310–319. 2

[DOS99] DEY S., O’BARA R. M., SHEPHARD M. S.: Curvilinear mesh
generation in 3D. In Proceedings of the 8th International Meshing
Roundtable (1999), pp. 407–417. 2

[DOS01] DEY S., O’BARA R. M., SHEPHARD M. S.: Towards curvilin-
ear meshing in 3D: the case of quadratic simplices. Comput. Aided Des.
33, 3 (2001), 199–209. 2

[EE16] ENGVALL L., EVANS J. A.: Isogeometric triangular Bernstein-
Bézier discretizations: Automatic mesh generation and geometrically
exact finite element analysis. Comput. Methods Appl. Mech. Engrg. 304
(2016), 378–407. 2

[EE20] ENGVALL L., EVANS J. A.: Mesh quality metrics for isogeometric
bernstein bézier discretizations. Comput. Methods Appl. Mech. Engrg.
371 (2020), 113305. 1, 9

[Far86] FARIN G.: Triangular Bernstein-Bézier patches. Comput. Aided
Geom. Des. 3, 2 (1986), 83–127. 2, 10

[Far02] FARIN G.: Curves and surfaces for CAGD: A practical guide,
5th ed. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2002. 5

[FH99] FARIN G., HANSFORD D.: Discrete coons patches. Computer
Aided Geometric Design 16, 7 (1999), 691 – 700. 7

[FP16] FORTUNATO M., PERSSON P.-O.: High-order unstructured curved
mesh generation using the Winslow equations. J. Comput. Phys. 307
(2016), 1–14. 2

[GB12] GEORGE P., BOROUCHAKI H.: Construction of tetrahedral
meshes of degree two. Int. J. Numer. Methods Eng. 90 (06 2012), 1156–
1182. 2

[GTNI16] GHASEMI A., TAYLOR L. K., NEWMAN III J. C.: Massively
parallel curved spectral/finite element mesh generation of industrial CAD
geometries in two and three dimensions. In Proceedings of the ASME
2016 Fluids Engineering Division Summer Meeting (07 2016), p. 50299.
2

[HG00] HORMANN K., GREINER G.: MIPS: An efficient global
parametrization method. In Curve and Surface Design: Saint-Malo 1999.
Vanderbilt University Press, 2000, pp. 153–162. 7

[HMESM06] HERNANDEZ-MEDEROS V., ESTRADA-SARLABOUS J.,
MADRIGAL D. L.: On local injectivity of 2D triangular cubic Bézier
functions. Investigación Operacional 27, 3 (2006), 261–276. 7

[HSG∗19] HU Y., SCHNEIDER T., GAO X., ZHOU Q., JACOBSON A.,
ZORIN D., PANOZZO D.: TriWild: Robust triangulation with curve
constraints. ACM Trans. Graph. 38, 4 (2019), 52:1–52:15. 1, 2, 7

[JQ14] JAXON N., QIAN X.: Isogeometric analysis on triangulations.
Comput. Aided Des. 46 (2014), 45–57. 2

[JW94] JOE B., WANG W.: Reparameterization of rational triangular
Bézier surfaces. Comput. Aided Geom. Des. 11, 4 (1994), 345–361. 2, 3

[KMC22] KHANTEIMOURI P., MANDAD M., CAMPEN M.: Rational
Bézier Guarding. Computer Graphics Forum 41, 5 (2022). 2

[LSL∗21] LIU Z.-Y., SU J.-P., LIU H., YE C., LIU L., FU X.-M.:
Error-bounded edge-based remeshing of high-order tetrahedral meshes.
Computer-Aided Design 139 (2021), 103080. 2, 7

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

87

J. Yang & S. Liu & S. Chai & L. Liu & X.-M. Fu / Precise High-order Meshing of 2D Domains with Rational Bézier Curves

[LSO∗04] LUO X.-J., SHEPHARD M., O’BARA R., NASTASIA R.,
BEALL M.: Automatic p-version mesh generation for curved domains.
Engineering with Computers 20 (09 2004), 273–285. 2

[LSR01] LUO X., SHEPHARD M., REMACLE J.-F.: The influence of
geometric approximation on the accuracy of higher order methods. Tech.
rep., Scientific Computation Research Center, Rensselaer Polytechnic
Institute, 2001. 2

[MC20] MANDAD M., CAMPEN M.: Bézier guarding: precise higher-
order meshing of curved 2D domains. ACM Trans. Graph. 39, 4 (2020),
103:1–103:15. 1, 2, 4, 5, 6, 7, 8, 9

[MC21] MANDAD M., CAMPEN M.: Guaranteed-quality higher-order
triangular meshing of 2D domains. ACM Trans. Graph. 40, 4 (2021),
154:1–154:14. 1, 2, 6, 7, 9

[MEK∗16] MOXEY D., EKELSCHOT D., KESKIN U., SHERWIN S. J.,
PEIRÓ J.: High-order curvilinear meshing using a thermo-elastic analogy.
Comput. Aided Des. 72 (2016), 130–139. 2

[Pan20] PANETTA J.: Analytic eigensystems for isotropic membrane
energies, 2020. arXiv:2008.10698. 7

[PP09] PERSSON P.-O., PERAIRE J.: Curved mesh generation and mesh
refinement using Lagrangian solid mechanics. In Proceeding of the 47th
AIAA Aerospace Sciences Meeting including The New Horizons Forum
and Aerospace Exposition (2009). 2

[PSG16] POYA R., SEVILLA R., GIL A. J.: A unified approach for
a posteriori high-order curved mesh generation using solid mechanics.
Comput. Mech. 58 (2016), 457–490. 2

[RGPS11] ROCA X., GARGALLO-PEIRÓ A., SARRATE J.: Defining qual-
ity measures for high-order planar triangles and curved mesh generation.
In Proceedings of the 20th International Meshing Roundtable (2011),
pp. 365–383. 2

[RGSR16] RUIZ-GIRONÉS E., SARRATE J., ROCA X.: Generation of
curved high-order meshes with optimal quality and geometric accuracy.
Procedia Engineering 163 (2016), 315–327. 2

[RL14] RANGARAJAN R., LEW A. J.: Universal meshes: A method for
triangulating planar curved domains immersed in nonconforming meshes.
Int. J. Numer. Methods Eng. 98, 4 (2014), 236–264. 2

[SB21] SZABÓ B., BABUŠKA I.: Finite Element Analysis: Method, Ver-
ification and Validation, 2nd Edition. John Wiley & Sons Inc., 2021.
1

[SFJ∗05] SHEPHARD M. S., FLAHERTY J. E., JANSEN K. E., LI X.,
LUO X., CHEVAUGEON N., REMACLE J.-F., BEALL M. W., O’BARA
R. M.: Adaptive mesh generation for curved domains. Appl. Numer.
Math. 52, 2 (2005), 251–271. 2

[SFMH08] SEVILLA R., FERNÁNDEZ-MÉNDEZ S., HUERTA A.:
NURBS-enhanced finite element method (NEFEM). Int. J. Numer. Meth-
ods Eng. 76, 1 (2008), 56–83. 2

[SP02] SHERWIN S. J., PEIRÓ J.: Mesh generation in curvilinear domains
using high-order elements. Int. J. Numer. Methods Eng. 53, 1 (2002),
207–223. 2

[SPSH∗17] SHTENGEL A., PORANNE R., SORKINE-HORNUNG O., KO-
VALSKY S. Z., LIPMAN Y.: Geometric optimization via composite
majorization. ACM Transactions on Graphics 36, 4 (2017), 1–11. 7

[SRH16] SEVILLA R., REES L., HASSAN O.: The generation of triangu-
lar meshes for NURBS-enhanced FEM. Int. J. Numer. Methods Eng. 108,
8 (2016), 941–968. 2

[SWS95] SAITO T., WANG G.-J., SEDERBERG T. W.: Hodographs and
normals of rational curves and surfaces. Comput. Aided Geom. Des. 12, 4
(1995), 417–430. 3

[TGRL13] TOULORGE T., GEUZAINE C., REMACLE J.-F., LAM-
BRECHTS J.: Robust untangling of curvilinear meshes. J. Comput. Phys.
254 (2013), 8–26. 2

[TLR16] TOULORGE T., LAMBRECHTS J., REMACLE J.-F.: Optimizing
the geometrical accuracy of curvilinear meshes. Journal of Computational
Physics 310 (2016), 361–380. 2

[TPM18] TURNER M., PEIRÓ J., MOXEY D.: Curvilinear mesh gener-
ation using a variational framework. Comput. Aided Des. 103 (2018),
73–91. 2

[WFA∗13] WANG Z., FIDKOWSKI K., ABGRALL R., BASSI F.,
CARAENI D., CARY A., DECONINCK H., HARTMANN R., HILLE-
WAERT K., HUYNH H., KROLL N., MAY G., PERSSON P.-O., VAN
LEER B., VISBAL M.: High-order CFD methods: current status and
perspective. Int. J. Numer. Methods Fluids 72, 8 (2013), 811–845. 1

[WV15] WITHERDEN F., VINCENT P.: On the identification of symmetric
quadrature rules for finite element methods. Computers & Mathematics
with Applications 69, 10 (2015), 1232–1241. 7

[XC14] XU J., CHERNIKOV A. N.: Automatic curvilinear quality mesh
generation driven by smooth boundary and guaranteed fidelity. Procedia
Engineering 82 (2014), 200–212. 2

[XSHM14] XIE Z. Q., SEVILLA R., HASSAN O., MORGAN K.: The
generation of arbitrary order curved meshes for 3D finite element analysis.
Comput. Mech. 51 (2014), 361–374. 2

[Zlá73] ZLÁMAL M.: The finite element method in domains with curved
boundaries. Int. J. Numer. Methods Eng. 5, 3 (1973), 367–373. 1

Appendix A: Details of theorem 1

Bernstein polynomials satisfy the following recursion [Far86]:

𝐵𝑛𝜆 (𝜉) = 𝜉1𝐵
𝑛−1
𝜆−𝑒1

(𝜉) + 𝜉2𝐵
𝑛−1
𝜆−𝑒2

(𝜉) + 𝜉3𝐵
𝑛−1
𝜆−𝑒3

(𝜉).
𝜕

𝜕𝜉1
𝐵𝑛𝜆 (𝜉) = 𝑛(𝐵

𝑛−1
𝜆−𝑒1

(𝜉) −𝐵𝑛−1
𝜆−𝑒3

(𝜉)).

𝜕

𝜕𝜉2
𝐵𝑛𝜆 (𝜉) = 𝑛(𝐵

𝑛−1
𝜆−𝑒2

(𝜉) −𝐵𝑛−1
𝜆−𝑒3

(𝜉)).

Substitute them into (2), we get the recursion of 𝜙(𝜉), 𝜙𝜉1 (𝜉) and
𝜙𝜉2 (𝜉).

The determinant is related to the area as follows:

det(𝑷̃𝜆1 , 𝑷̃𝜆2 , 𝑷̃𝜆3) = 𝑤𝜆1𝑤𝜆2𝑤𝜆3

������𝑥𝜆1 𝑥𝜆2 𝑥𝜆3
𝑦𝜆1 𝑦𝜆2 𝑥𝜆3
1 1 1

������
= 2𝑤𝜆1𝑤𝜆2𝑤𝜆3 area(△𝑷𝜆1𝑷𝜆2𝑷𝜆3).

This area is positive if three vertices are in counterclockwise order;
negative if they are in clockwise order; and zero if they are collinear.

Appendix B: Triangles that need to be verified

For the quadratic case, we need to ensure that the areas of the
following 17 triangles are non-negative, that is, the vertices of the
triangles are in counterclockwise order or they are collinear.

△𝑷00𝑷10𝑷01, △𝑷00𝑷10𝑷11, △𝑷00𝑷10𝑷02, △𝑷00𝑷20𝑷01,

△𝑷00𝑷20𝑷11, △𝑷00𝑷20𝑷02, △𝑷10𝑷20𝑷01, △𝑷10𝑷20𝑷11,

△𝑷10𝑷20𝑷02, △𝑷00𝑷11𝑷01, △𝑷00𝑷11𝑷02, △𝑷10𝑷11𝑷01,

△𝑷10𝑷11𝑷02, △𝑷20𝑷11𝑷01, △𝑷10𝑷02𝑷01, △𝑷20𝑷02𝑷01,

△𝑷01𝑷11𝑷02.

Appendix C: Bisection of Rational Curves

W.l.o.g consider the first sub-curve of a curve after ℓ bisections. Its
𝑘-th weight is 𝑤′

𝑘
=
∑𝑘
𝑖=0𝑤𝑖𝐵

𝑘
𝑖
(0.5ℓ). As ℓ→∞, 𝑤′

𝑘
→ 𝑤′

0, which
shows convergence to a polynomial curves.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

88

http://arxiv.org/abs/2008.10698

