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Figure 1: Given an input fractured shape, we provide a novel approach to automatically infer a latent code and predict a restoration from
the code. Our approach encourages that the predicted restoration avoid overlap with the fractured shape regenerated using the latent code,
and that the predicted restoration and fractured shapes join to form a complete shape estimated from the code. Our approach provides

restorations that show a close join to the fractured shape.

Abstract

We provide a novel approach to perform fully automated generation of restorations for fractured shapes using learned im-
plicit shape representations in the form of occupancy functions. Our approach lays the groundwork to perform automated
object repair via additive manufacturing. Existing approaches for restoration of fractured shapes either require prior knowl-
edge of object structure such as symmetries between the restoration and the fractured object, or predict restorations as voxel
outputs that are impractical for repair at current resolutions. By leveraging learned occupancy functions for restoration
prediction, our approach overcomes the curse of dimensionality with voxel approaches, while providing plausible restora-
tions. Given a fractured shape, we fit a function to occupancy samples from the shape to infer a latent code. We apply a
learned transformation to the fractured shape code to predict a corresponding code for restoration generation. To ensure
physical validity and well-constrained shape estimation, we contribute a loss that models feasible occupancy values for
fractured shapes, restorations, and complete shapes obtained by joining fractured and restoration shapes. Our work over-
comes deficiencies of shape completion approaches adapted for repair, and enables consumer-driven object repair and cul-
tural heritage object restoration. We share our code and a synthetic dataset of fractured meshes from 8 ShapeNet classes at:
https://github.com/Terascale-All-sensing-Research-Studio/MendNet.
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1. Introduction

There is a wealth of examples in the real world of objects with
functional, historical, or sentimental value that have undergone
damage and are in need of repair. Damage occurs in many forms.
During normal use an object may be dropped, causing it to frac-
ture. Objects may disassembled and their parts mislaid resulting
in part loss. Objects may undergo heavy use or suffer damage
from the elements causing deformation and weathering. Fractured
objects may be reassembled if their parts can be found, though
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in some cases part loss also occurs, e.g. the broken fish in Fig-
ure 2. The fracturing process may crush parts, creating fragments
that are too small to be reassembled and leaving gaps between
larger parts, as occurs for the sugar jar in Figure 2. Objects with
weathering damage must be manually rebuilt using other materi-
als. Users are likely to attempt to repair objects with sentimental
value or with functional use if the repair process requires min-
imal effort. However, the majority of current work in shape re-
pair requires a user to generate a repair part manually, e.g. for
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Figure 2: Examples of objects that have undergone fracture dam-
age. Image links and licensing information are provided in the Ap-
pendix. Fractured objects may have sentimental value to the owner,
such as the plate, cup, and grave marker. Parts may be lost or de-
stroyed when the fracture takes place, as occurs for the fish, mar-
ble table, flowerpot, and sugar jar. Objects may be fractured and
eroded, as occurs for the grave marker and Calyx Krater. Special-
ized users with modeling experience may attempt to repair dam-
aged objects manually with other materials, e.g. the Calyx Krater.

a terracotta artifact [SCC*11], a silver crown [SAF*18], a fruit
bowl [AES*11], a dinosaur vertebra [SJW*14], a dental prosthe-
sis [RMV*10], or the Calyx Krater [Mus22] shown in the bottom
right of Figure 2, which requires expertise in 3D modeling or artis-
tic design that is out of the scope of the average consumer. Ad hoc
object repairs by users without specialized experience are unlikely
to be sustainable. Some approaches propose domain-specific re-
pair pipelines, e.g. for aerospace components [GCYGO08; ZLC06],
or medical implants [HHNO7; WKCF16], which are unlikely to
generalize to objects outside of that domain. The scientific study
of damage is largely restricted to microscale analysis in material
sciences [ANZ06; ZQ18; SMZG18; FLF*19], while consumer-
oriented repair of damaged objects remains an understudied field.
A gap remains in the macroscopic analysis of shape to enable rapid
consumer-driven repair of damaged objects.

In this work we present MendNet, a fully automated approach
that generates restoration 3D models for 3D shapes, as shown on
the right of Figure 1, corresponding to 3D models that have un-
dergone fracture-based damage by learning the relationship be-
tween fractured, restoration, and complete shapes. The restoration
of fractured shapes has significant impact in fields such as in-
dustrial recycling [ZLCO06], cultural heritage [LKL*20; PSA*17;
SCC*11; SAF*18], paleontology [SJW*14], medical applications
such as dentistry, orthopedics and reconstructive surgery [HHNO7;
RMV#*10; WKCF16], and consumer-focused repair.

A related though fundamentally different problem than frac-
tured shape repair that has seen substantial prior work is incom-
plete shape completion [PFS*19; YWC*21; TTG*20; ZYDL21;
DWM*22; LWL20; HASB20; CZ19; BLRW16; SGF16; WZX*16;
SM17; DRB*18; FMJIB16; YWW*17; SG20; LPS*16; SG18;
MHLZ20; MON*19; PNM*20; CAP20; GCV*19; GCS*20]. Ap-
proaches to perform incomplete shape completion assume that the

(a) Complete Shape

(b) Incomplete Shape

(c) Fractured Shape (d) Real Fracture

Figure 3: (a) Compared to the complete shape, (b) the incomplete
shape is a open manifold that is a strict subset of the complete
shape. (c) The fractured shape includes novel geometry at the frac-
ture region not present in the complete shape. We use synthetic frac-
tures that mimic the geometry of (d) real fractures.

input to the approach is an incomplete shape observation, such as
a single image, a depth map, or an open manifold such as the one
shown in Figure 3(b), which are strict subsets of the correspond-
ing complete shape, shown in Figure 3(a). Our approach addresses
the challenge that fractured shapes introduce a novel fracture re-
gion, shown in Figure 3(c), that is not present in the corresponding
complete shape, by learning to infer a restoration shape code from
an input fractured shape, as shown on the left of Figure 1. Though
a small body of prior work exists to generate restorative parts for
fractured objects, these approaches depend on prior knowledge of
shape structure, e.g., a precise pre-existing 3D replica [LBB19]
that may not always exist, or require that the object be symmet-
rical and the damage occur asymmetrically [SLL*08; GSP*14;
PSA*17]. The work of Hermoza and Sipiran [HS18] is the only
known approach to generate repair parts for damaged shapes with-
out structural constraints. The approach uses voxel representations
with outputs that are too coarse for repair. MendNet generates high-
resolution restorations by leveraging learned continuous domain
representations that implicitly represent shape surfaces, i.e., occu-
pancy functions, using deep networks.

The first novel contribution of our work in restoration gener-
ation is the formalization of logical relationships that (a) ensure
the restoration is physically valid, i.e., that it does not intersect
with the fractured shape, and that (b) impose bounds on restora-
tion shapes learned from small datasets by leveraging the complete
shape, whose space is easier to span with limited data. We impose
boundedness by encouraging that the occupancy set of a complete
shape is the union of occupancy sets of fractured and restoration
shapes. To represent the relationship between fractured and restora-
tion, and fractured and complete shapes, our second contribution is
a set of deep networks that map the fractured shape code inferred
using learned occupancy functions to latent codes for the restora-
tion and complete shapes. We use the occupancy function to rep-
resent shapes, instead of the more common signed distance func-
tion (SDF), to apply logical relationships of validity and bound-
edness to the restoration shape. Our third contribution is a set of
loss functions that simultaneously estimate parameters for occu-
pancy and latent code transformation networks, and that encode
point occupancy feasibility for predicted restoration shapes using a
T-norm [GQ91] relaxation of our formalized logical relationships.
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Collecting a dataset of real-world fractured and correspond-
ing complete shapes is challenging due to the time-consuming
nature of 3D scanning and the difficulty of aligning fractured
and complete shapes. Since no large-scale real-wold dataset ex-
ists, we create a novel dataset of synthetically generated fractured
shapes spanning 8 classes from the ShapeNet dataset [CFG*15].
We generate synthetic fractures, e.g. Figure 3(c), that mimic the
texture of fractures that occur for brittle materials such as ce-
ramic or clay, e.g. Figure 3(d). We use the mugs, jars, and
bottles classes to represent common household objects that can
suffer damage, and the cars, planes, sofas, chairs, and tables
classes to capture objects of diverse geometry. We demonstrate
results of using a ShapeNet-trained network to generate restora-
tion shapes for synthetically fractured models from the QP cultural
heritage dataset [KPA*09]. We provide an evaluation of our ap-
proach against 3D-ORGAN [HS18] and baseline approaches based
on shape completion and subtraction using DeepSDF [PFS*19]
and PoinTr [YRW#*21] with ConvONet [PNM*20]. We pro-
vide a quantitative analysis of the failure cases of our ap-
proach, and an ablation study justifying our loss functions. We
share our synthetic dataset and code at: https://github.com/
Terascale-All-sensing-Research-Studio/MendNet.

2. Related Work
2.1. Automated Fractured Shape Restoration

Despite its impact in repair, limited work exists on automated
restoration of fractured shapes. Some approaches restore fractured
shapes by leveraging complete shapes generated automatically us-
ing symmetries [SLL*08; GSP*14; PSA*17]. They fail if dam-
aged parts of the shape are non-symmetric to intact regions of the
shape. The 3D-ORGAN approach of Hermoza and Sipiran [HS18]
uses a generative adversarial network to predict voxelized complete
shapes that may be used to restore fractured shapes. However, the
voxel grids in their approach lack the resolution required to produce
physically realizable restoration shapes. The implicit shape repre-
sentation in our work removes reliance on voxel space and enables
tractable high-resolution mesh generation.

2.2. Incomplete Shape Completion

Unlike fractured shapes whose fracture surface distinguishes them
from their complete counterparts, incomplete shapes consist of
open surfaces that are subsets of complete shapes. Most voxel-
based incomplete shape completion methods [BLRW16; SGF16;
WZX*16; SM17; DRB*18; FMIB16; YWW*17; SG20; LPS*16;
SG18] struggle to predict high-resolution outputs due to the curse
of dimensionality. Though some advancements have been made in
computational efficiency of voxel-based methods using hierarchi-
cal models [DDN20; DRB*18] or sparse convolutions [DDN20;
YGF21], these approaches still require a pre-discretization of
the domain, and even using scalable voxel-based approaches the
level of resolution required to accurately represent the fracture
region may be infeasible. While more efficient, point cloud ap-
proaches [ADMG18; SLK19; LSY*20; SK20; LCL18; YRW*21]
require mesh generation to be usable for repair. The resulting
meshes may not satisfy non-intersection with the fractured shape.
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Learned implicit shape representations, such as deep net-
works for signed distance functions (SDFs) [PFS*19; SCT*20;
YWC*21; TTG*20; ZYDL21; LWL20; MHLZ20], occupancy
functions [MON*19; CZ19; PNM*20; JK20; CAP20; LESP21;
LDG18], level sets [GCV*19; GCS*20], signed directional func-
tions [ZA21] and unsigned distance functions [TLX*21] have
gained traction due to the compactness of their representations
compared to voxels, and their capture of bulk shape in con-
trast to point clouds. Park et al. [PFS*19] provide an autode-
coder architecture to represent SDF in terms of latent shape codes.
They provide shape completion by inferring a latent code based
on point samples of an incomplete shape. Later approaches im-
prove autodecoder inference speed using meta-learning [SCT*20]
and use novel samples to tune latent codes and network param-
eters [YWC*21]. Hierarchical approaches combine intermediate
implicit shape representations, representing object regions with
global functions that represent shapes as structured sets of ele-
ments [GCS*20; GCV*19], or represent shapes as a function of
multiple deformable patches [TTG*20]. Approaches using learned
occupancy functions [MON*19; CZ19; PNM*20; LWL20] recon-
struct complete shapes from point clouds, voxel grids, or images.

While restoration approaches apart from the low-fidelity method
of 3D-ORGAN are non-existent, one may imagine a multi-stage
restoration generation approach, where the fracture region is re-
moved from the fractured shape and the fractured shape is fed to a
shape completion approach or where a shape completion approach
is trained to generate complete shapes from fractured shapes, and
a restoration shape is generated by subtracting the fractured shape
from the predicted complete shape. However, as we demonstrate in
Section 7, deviations in the inferred complete shape from the input
fractured shape introduce small artifacts on the surface of the frac-
tured shape. Artifacts cannot be avoided unless the complete shape
is predicted such that it represents the fractured shape in the non-
fractured region with perfect accuracy, which is computationally
intractable. Precise cleanup of artifacts requires manual interven-
tion, or relies on heuristics such as thresholds for small component
removal. Manual cleanup techniques are impractical for propaga-
tion to consumer spaces where users lack 3D shape manipulation
expertise, and approaches based on heuristics are unlikely to gener-
alize. We provide a fully automated approach that leverages shape
relationships to generate artifact-free restorations.

3. Functional Shape Representation

We define a shape as a closed set S of points in 3D space. For a
3D point x € R?, the occupancy og(x) € {0,1} at point x is 1 if
X is in the interior of S and 0 otherwise. S € {F,R,C} where F,
‘R and C are the fractured, restoration, and complete shapes respec-
tively. We use the autodecoder architecture of DeepSDF [PFS*19]
to represent the occupancy os(x) as a function, i.e., as

05(x) = fo(zs,x), )]

where fg is parametrized on the point x and a latent code zs repre-
senting the shape S. We represent fg using a multilayer percep-
tron (MLP) with weights ® based on the autodecoder architec-
ture of DeepSDF. The autodecoder architecture encodes a shape
by performing optimization during inference over observations of
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Figure 4: Network architecture. The occupancy function fg is
trained to output an occupancy value or, or, and oc from the
3D point x and the latent codes 7, 7, and z¢c respectively. The
networks g, and ge. transform zx to zr and z¢. Backpropaga-
tion updates the gradients of the network weights during training,
and the gradients of Zr during training and inference.

a shape to obtain a latent code. We use the MLP autodecoder archi-
tecture, instead of e.g. a convolutional architecture, as it allows our
approach to apply constraints to the restoration shape during the
optimization process at inference time, as discussed in Section 5.
Our motivation to set the output of fg to occupancy instead of SDF
as in DeepSDF is to represent the occupancy relationships between
F, R, and C discussed in Section 4. Similar to DeepSDF, we infer
zr € R” using observations of the input fractured shape F where
p represents the dimension of zx. Since R and C are not known for
an input F, we express the latent codes of R and C, zg € R” and
z¢ € R?, using transformation functions g, and g, where

IR = 8dp (Z]:7 X)7 and e = 8@, (Z]:,X). (2)

Similar to fg, we represent gg., and g using MLPs with weights
@ and ®;. Though zi and z¢ represent global shape descriptors,
we find that conditioning them on the input point x yeilds a lower
chamfer distance. Figure 4 shows our network architecture. Net-
work fg provides the latent code and the 3D point x to 11 dense
layers. Layers 1 to 5 and 7 to 11 contain 512 units each and layer 6
contains 509 — p units with a skip connection. We use the leaky rec-
tified linear unit (ReLU) for intermediate layer activations, and sig-
moid for the last layer. Networks g, and g each have 5 dense
layers with 512 units per layer and leaky ReL.U for activation.

4. Occupancy Relationships

Shape sets F, R, and C are related by the conditions that F and
‘R should not intersect, i.e., F MR = () and that C is a union of F
and R, i.e.,C = FUR. Ata point X, the set conditions impose that
feasible options for o, o, and o¢ are that they are either all 0,
or one of or and o is 1 for mutual exclusion, in which case o¢
is 1. Figure 5(a) illustrates feasible relationships for various points
in the space containing the three shapes. As shown in Figure 5(b),
all other choices of values for o r, o, and o¢ are physically in-
feasible. Figure 5(c) shows the truth table for the feasibility of each
choice of 0 r, 0, and o¢ as a binary value. To leverage the feasibil-
ity conditions in a loss function, we obtain the Boolean expression
corresponding to the feasibility captured by Figure 5(c) as

(mor A—or A—o¢e)V (oF A—oR Noc)V
(moF Nog Noc) =1, ©)

[ F Fractured Shape [R Restoration Shape |+| C Complete Shape Il Fracture/Restoration Overlap | [07[0r[0c[Feas.

J l 00| 1

0
=nill
Lo
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0
1
0

0
0
0
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0
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FUR=CFNR=0 FUR#C FURACFNR#D 1
(a) Feasible Relationships (b) Infeasible Relationships () Truth Table

Figure 5: (a) Occupancy values for feasible relationships between
the fractured F, restoration R, and complete C shapes. The non-
intersection and union conditions impose that occupancy values
are either all 0, or one of F and 'R have occupancy of 1 in which
case the occupancy of C is 1. (b) Occupancy values for infeasible
relationships. Overlap causes F and R to have occupancy of 1.
When the union condition is not met, occupancy of C is opposite
of that for feasible triplets with occupancies of F and R. (c) Truth
table showing feasibility (Feas.). Feasible choices are in gray.

where operators A, V, and — represent logical and, or, and not.
To use the expression in Equation (3) with the continuous values
provided as the output of fg in Equation (1), we relax the logical
relationship using the product T-norm [GQ91], as

hteas(0F,0R,0¢) = (1 —oF) (1 —or) (1 —0c))+
(or (1—-or)oc)+((1—oF)oroc). “

We predict occupancy values for F, R, and C so that we can use
Equation (4) to constrain the restoration shape during inference.

5. Network Optimization and Inference

We use a dataset of training tuples, (F,R,C), of fractured, restora-
tion, and complete shapes to estimate the weights of the networks
fo. 8o and go . , and the fractured shape codes. We use the Adam
optimizer [KB14] to optimize the loss

J :ZZ]:EZ (Jdata + IR + Meas Treas + A‘reg._/]reg) ©)

over the set Z of latent codes for all training fractured shapes and
over @, &, and . In Equation (5), Jyara, represented as

Jiata = Lxex | (fo(zr,X),07(x)), (6)

models the loss of reconstructing the ground truth occupancy of F
from a sampling of points X" around each shape. Jrc, given as

JIre = Lxex Lse{rcy ! (fo(gas (zF,%),x),05(x)),  (7)

models the data loss of reconstructing R and C. Function / repre-
sents the binary cross entropy loss, and o s (x) represents the ground
truth occupancy for shape S € {F,R,C}. Jteas in Equation (5) in-
duces the feasibility function /y.,s from Equation (4) to be 1 to sat-
isfy the feasibility condition expressed by Equation (3). We replace
the occupancy values in the expression for hg,s in Equation (4)
with the functional representations from Equations (1) and (2), and
set up the feasibility loss as

Tteas = ZXGX l(hfeas (f@(z]:vx)v
fo(gar (zr.X).X), fo(ga. (zF,X),X)),1). ®)
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Figure 6: Ground truth fractured and restoration meshes, in gray
and red, using simple ceramic fractures.

The regularizer, Jreg, forces latent encodings to be concentrated
according to a zero mean Laplacian distribution as

Treg = 2zl + ),
Se{R.C}

Hgd)s(z}—7x)Hl' )]

Hyperparameters Age,s and Areg represent the weights on the feasi-
bility loss and regularizer.

During inference, given a fractured shape F and a point sam-
pling X, we infer the latent code zx by optimizing the loss

J= jdata + 7\'feas ~7feas + 7\«reg«,,]reg + }\rnzrjnzr (10)

in zr. In some cases we find that all occupancy values for the
restoration are predicted as zero if the predicted complete and frac-
tured shapes are similar to each other, or if the optimization process
fails to converge. We include a non-zero loss Jnzr,

jnzr:erxl(.f@(gtbn(z]:vx)vx)’l)7 (In

that discourages all zero restorations by encouraging restoration
occupancy values to be high. Hyperparameter An,r represents the
weight on the non-zero loss. After inferring zr, we generate zg
and z¢ using Equation (2). To obtain predicted fractured, restora-
tion, and complete meshes we use fg to estimate occupancy values
for 256° points sampled uniformly in a 1.1 unit cube, apply March-
ing Cubes [LC87] to the predicted values, and extract the 0.5 iso-
surface. Latent code inference and mesh reconstruction take 53 and
8.8 seconds respectively on an 8-core Intel desktop with 1 NVIDIA
RTX 3090. We discuss our implementation in the supplementary.

6. Datasets and Data Preparation

Since no ground truth dataset of real-world fractured object mod-
els exists, we generate a dataset of synthetically fractured shapes.
We use the method described by Lamb et al. [LWL*21] to syn-
thetically fracture a mesh by subtracting a subdivided and random-
ized geometric primitive from the mesh so that between n,;, and
nmax vertices are removed, which we term simple ceramic fracture
meshes. We use a cube or icosahedron with edges subdivided O, 1,
or 2 times for the geometric primitive. To create low-frequency sur-
face variation, we apply a random translation to the vertices of the
primitive. To create high frequency surface variation, we subdivide
the edges to be less than 0.025 units and apply a second random
translation to the vertices. We perform a retention test where, if the
mesh cannot be fractured such that between n,;, and nmax vertices
are removed after 15 attempts, we discard it. Before fracturing we

© 2022 The Author(s)
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Figure 7: Ground truth fractured and restoration meshes, in gray
and red, using hard plastic and complex ceramic fractures.

waterproof and normalize each mesh with respect to the unit cube.
For fracturing we set np,j, and nmax to 5% and 20% of all vertices.
We show example ground truth fractured meshes in Figure 6.

We test the generalizability of our approach by training on sim-
ple ceramic fractures and testing on synthetic hard plastic fractures
and complex ceramic fractures. To simulate hard plastic fractures
that break cleanly without surface roughness, we generate frac-
tured shapes using a geometric primitive without high-frequency
surface variation, i.e. with low-frequency surface variation only.
We simulate complex ceramic fractures by subtracting two slightly
offset geometric primitives from the complete shape. Subtracting
two primitives generates fractured shapes with concavities and of-
ten generates multiple fractured surfaces. We show example hard
plastic and complex ceramic fractured meshes in Figure 7.

We generate fractured, restoration, and complete meshes by frac-
turing 3D models from two publicly available datasets.

1. ShapeNet. To evaluate our approach on household objects that
are susceptible to damage we use 3D models from the bottles,
jars, and mugs classes from the ShapeNet [CFG*15] dataset. To
demonstrate restoration results on objects of more complex ge-
ometry, we include 5 additional classes, i.e., planes, cars, chairs,
sofas, and tables. As the jars, bottles, and mugs classes from
ShapeNet contain fewer than 600 complete meshes, we fracture
meshes from these classes 3, 3, and 7 times respectively. We frac-
ture meshes from all other classes once. We generate simple ce-
ramic fractures for 1,788 jars, 1,494 bottles, 1,498 mugs, 4,045
planes, 6,000 chairs, 3,514 cars, 6,000 tables, and 3,173 sofas
from ShapeNet. Of the models fractured, 1,534 jars, 1,376 bot-
tles, 1,074 mugs, 3,938 planes, 5,555 chairs, 3,307 cars, 5,614
tables, and 3,051 sofas pass the retention test giving us a total of
25,449 out of 27,512 meshes. We generate hard plastic and com-
plex ceramic fractures for the test set of each ShapeNet class.

2. QP Cultural Heritage Dataset. The QP cultural heritage
dataset [KPA*09] contains 408 artist-designed 3D meshes in the
style of ancient Greek pottery. We fracture each mesh once with
simple ceramic fractures. We retain 317 of the 408 meshes.

We associate each fractured-restoration pair with its correspond-
ing original complete shape to create tuples for training and eval-
uation with respect to ground truth. We use the implementation of
Mescheder et al. [MON*19] to compute ground truth occupancy
values. For shapes from the ShapeNet dataset, we perform an 80%-
20% training and testing split. We train one network per class.



70 N. Lamb, S. Banerjee, and N. K. Banerjee / MendNet: Restoration of Fractured Shapes Using Learned Occupancy Functions

Figure 8: Ground truth input fractured shape in gray, restoration
predicted using MendNet in red, and predicted restoration joined
to ground truth fractured shape for a variety of objects spanning 8
classes from the ShapeNet dataset.

7. Results

We show input fractured shapes, restoration shapes predicted by
MendNet opened to reveal the surface in common with the frac-
tured shape, and the restorations joined to the fractured shapes in
Figure 8. Our approach generates restoration shapes that match
closely to the fracture region of the fractured shape. Predicted
restorations do not show connected or disconnected artifacts, mak-
ing restoration shapes generated using our approach ideal for phys-
ical object repair. As shown by the opened restorations, our ap-
proach is able to generate plausible fracture surface counterparts
on the restoration, enabling smooth joins. Our approach reproduces
the overall shape of complex missing components, e.g., airplane tail
fins in the bottom left of Figure 8, and produces restoration parts
even when the fractured object has elongated components broken
off, e.g., the sofa in the bottom right of Figure 8. We generate feasi-
ble restoration shapes when multiple parts are broken off, e.g., the
plane and the car on the bottom of Figure 8. Our approach is able
to generate restorations for fractured shapes that have asymmetrical
fractures, such as the bottom sofa, the planes, and the cars in Fig-
ure 8. Existing approaches based on symmetry [SLL*08; GSP*14;
PSA*17] are unable to handle asymmetrical restorations.

In Figure 9, we show restoration shapes generated for the QP
cultural heritage dataset [KPA*09] using MendNet trained using
the bottles class from ShapeNet. We synthesize fractures for QP
meshes using the approach discussed in Section 6. Our approach is
able to generalize to cultural heritage objects even though the net-
work is trained without cultural heritage samples. As shown in Fig-
ure 9, restoration shapes generated using our approach fit closely

Figure 9: Input fractured shapes of a Greek amphora and two al-
abastrons from the QP dataset, restorations predicted using our
approach trained on bottles, and ground truth restoration.

NFRE = 0.004

NFRE = 0.051 NFRE =0.015 NFRE = 0.021
e S &
Ground Truth  DeepSDF Cleaned Ours Ground Truth

DeepSDF Cleancd Ours

Figure 10: Non-fractured region error (NFRE) for predicted
restoration shapes joined to input fractured shapes using DeepSDF
with cleanup and using our approach.

to the fractured cultural heritage objects and restore the fractured
shapes to their original structure. Restoration shapes generated us-
ing MendNet may be used to aid in the repair of historical artifacts,
e.g., the Calyx Krater shown at the bottom of Figure 2.

7.1. Metrics

We introduce two metrics based on the intersection over union
(IoU) to evaluate predicted restoration shapes. The Intersection
Score (IS) captures the physical validity of a predicted restoration
shape by measuring the degree of overlap with the fractured shape.
We compute the IS as the IoU of the predicted restoration and the
input fractured shape. The Union Score (US) captures constrained
shape estimation via the complete shape by measuring its overlap
with the fractured and restoration shapes. We compute US by per-
forming a union of the predicted restoration and input fractured
shape, and taking the IoU of the union with the ground truth com-
plete shape. For physical validity the IS should be low while the
US should be high. The non-zero percentage (NZ%) indicates
the percentage of restoration shapes that are generated by a given
approach, i.e. the percentage that are not predicted as all zero.

When comparing our approach to 3D-ORGAN [HS18] and the
baseline approaches, we use the chamfer distance (CD) as a mea-
sure of geometric similarity. The CD is defined as the average
distance from every point in one mesh to the closest point in an-
other mesh in both directions. Approaches based on subtraction
produce restoration shapes that exhibit protruding artifacts on the
surface of the fractured shape. To quantify protrusion geometry
we use the non-fractured region error (NFRE), which measures
the percentage of the non-fractured surface of the fractured shape
that is covered by artifacts. We compute the NFRE by sampling n
points on the non-fractured region of the fractured mesh, the pre-
dicted restoration mesh, and the ground truth restoration mesh, and
computing the percentage of points on the non-fractured region of
the fractured mesh that have a nearest neighbor in the predicted
restoration closer than 1, and a nearest neighbor in the ground truth
restoration farther than 7). Predicted restorations that demonstrate
artifacts on the surface of the fractured mesh outside of the frac-
tured region will have a high NFRE. For computing the NFRE we
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Fracture | Hard Plastic Complex Ceramic Simple Ceramic
Metric |NZ% CD |NZ% CD NZ%  CD
bottles | 81.8 0.078| 71.0  0.122 784  0.081
cars 57.3 0.035[56.6  0.032 579 0.024
chairs | 97.7 0.168| 97.3 0.176 96.7 0.171
jars 96.6 0.118/97.0  0.158 98.0 0.128
mugs 79.8 0.052| 71.7 0.098 78.6  0.074
planes | 92.8 0.066(93.6  0.074 939 0.091
sofas 784 0.173| 73.5 0.199 72.7  0.188
tables | 96.5 0.185| 95.7 0.206 943  0.208
Mean | 85.1 0.109]| 82.1 0.133 83.8 0.121

Table 1: Percentage of non-zero restorations (NZ%), and chamfer
distance (CD) for different fracture types.
n n
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Figure 11: Input fractured shapes and predicted restorations, in
gray and red, for hard plastic and complex ceramic fractures.

use N = 0.02 and n = 30,000. We show restoration shapes and cor-
responding NFRE values generated using DeepSDF with cleaning
and generated using MendNet in Figure 10.

7.2. Restoring Hard Plastic and Complex Ceramic Fractures

In Figure 11 we show results for training our approach on sim-
ple ceramic fractures and testing our approach on hard plastic and
complex ceramic fractures. As shown in Figure 11, though our ap-
proach is trained on fractures that mimic ceramic, MendNet is able
to generate closely fitting restoration shapes for hard plastic frac-
tures, including for shapes that cannot be repaired using symmetry
such as the mug, car, planes, chair, and sofa. We also show fea-
sible and artifact-free restorations for more complex ceramic frac-
tures, including for multi-component fractures, e.g., the table. Ta-
ble 1 shows that at 0.133 the CD for complex ceramic fractures
is higher than for simple ceramic fractures at 0.121. As we train
our approach on simple ceramic fractures with few concave re-
gions, MendNet sometimes struggles to generate restorations that
fit closely to the fracture region for highly concave fractures, such
as the mug shown in Figure 11. However, using mesh deforma-
tion techniques [SCL*04], the restoration may be automatically ex-
panded to fit the surface of the fracture yielding a closer fit.

7.3. Evaluation of Inference Losses
We study the impact of the feasibility and non-zero losses intro-

duced in Section 5, i.e., Jfeas and Jnzr, using the intersection score
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Method Jdata Tdata, Inzr Tdatas Treas  Tdatas Tnzrs Tteas
Metric [NZ% IS US|NZ% 1S US|NZ% IS US|NZ% IS US
bottles | 76.3 0.02 0.95| 85.6 0.21 0.80( 77.0 0.00 0.95| 78.4 0.03 0.92
cars 50.8 0.00 0.95| 71.4 0.20 0.84| 40.1 0.00 0.96| 57.9 0.00 0.95
chairs | 84.4 0.01 0.87| 98.8 0.14 0.16| 56.4 0.00 0.90| 96.7 0.03 0.48
jars 98.3 0.02 0.92| 99.7 0.13 0.76| 92.2 0.01 0.93| 98.0 0.04 0.84
mugs | 79.5 0.01 0.95| 82.7 0.05 0.90( 75.9 0.00 0.95| 78.6 0.00 0.95
planes | 79.7 0.01 0.94| 99.2 0.14 0.16| 61.7 0.00 0.95| 93.9 0.01 0.78
sofas | 57.8 0.01 0.92( 89.4 0.27 0.41| 36.9 0.00 0.93| 72.7 0.02 0.79
tables | 80.3 0.01 0.87] 99.3 0.13 0.16| 58.2 0.00 0.90| 94.3 0.03 0.53

Mean |75.9 0.01 0.92 90.8 0.16 0.53] 62.3 0.00 0.93| 83.8 0.02 0.78

Table 2: Percentage of non-zero restorations (NZ%), intersection
score (1IS), and union score (US) for various loss function combi-
nations presented in our work. Bolded values are best across all
loss choices for corresponding metrics. Bold-italicized metric val-
ues correspond to where Jyaa; Tnzrs Treas performs second best.

Jaata, Ground

Fractured Jdata Jaatas Jnar Jaatas Treas  Jteass Inar Truth

Figure 12: Input fractured shape in gray, together with estimated
restoration shapes in red when using J a1 alone, using J 4, and
Tnzr, using Jgara and Jfeqs, and using all losses.

(IS) and union score (US). Table 2 summarizes IS and US values
over combinations of Jyata, Jnzr, and Jreas- The table also shows
the percentage of non-zero restorations (NZ%). Using Jgata alone
generates restorations with a low NZ% at 75.9%. As shown in the
second column of Figure 12, using Jga¢, alone sometimes produces
restoration shapes in the correct vicinity that lack connectivity and
protrude outside the complete shape boundary. Using Jnzr with
Jdata 1aises NZ% to 90.8%. However, it provides a lower US of
0.53, and a higher IS of 0.16, indicating that Jnzr produces restora-
tions that protrude into the fractured shape. Sometimes the restora-
tion may encompass the fractured shape, e.g., the car in Figure 12.

Using Jgata and Jreas induces the restoration shape to remain
inside the complete shape, and produces restoration shapes with the
lowest IS and highest US. However, it reduces NZ% to 62.3%. For
instance, a restoration is not generated for the bottle in the fourth
column of Figure 12. Using all three losses, our approach predicts
restoration shapes that remain within the complete shape and join
smoothly with the fractured shape as shown in the fifth column of
Figure 12. Though using all three losses shows a lower US than
using Jgaia alone, we observe that complete shapes predicted using
all three losses are usually slightly larger than when using Jgata
alone, as shown in Figure 12, resulting in slightly larger restoration
shapes that are disproportionately penalized by the IoU, which is
based on volume. As shown in Table 2, we show higher NZ% than
when Jyat, 15 used alone or with Jfeas, at 83.8%, and a lower mean
IS and higher mean US than when Jn,r is used.
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Method Jdata Taata, Tnzr Tdatas Tnint  Tdatas Tnzr, Tnint
Metric [NZ% IS US|[NZ% IS US|NZ% 1S US|NZ% IS US
bottles | 75.2 0.04 0.95| 78.8 0.22 0.76| 55.4 0.01 0.95| 53.2 0.00 0.95
cars 47.0 0.01 0.95| 68.8 0.27 0.78| 27.2 0.00 0.94| 41.0 0.00 0.95
chairs | 69.9 0.01 0.90] 99.7 0.19 0.21| 31.6 0.00 0.90| 75.9 0.00 0.85
jars 88.8 0.02 0.94| 94.6 0.14 0.78| 65.1 0.00 0.94| 73.9 0.00 0.93
mugs | 72.3 0.01 0.94| 74.1 0.05 0.91| 68.2 0.00 0.93| 70.5 0.00 0.94
planes |79.3 0.01 0.94| 99.2 0.19 0.25| 53.1 0.00 0.93| 88.1 0.00 0.90
sofas | 54.4 0.01 0.92{ 97.7 0.35 0.48| 17.6 0.00 0.91| 47.1 0.00 0.91
tables | 77.3 0.00 0.89| 98.8 0.15 0.23| 50.2 0.00 0.89| 85.0 0.00 0.74
Mean | 70.5 0.01 0.93] 89.0 0.19 0.55] 46.1 0.00 0.93] 66.8 0.00 0.89

Table 3: Percentage of non-zero restorations (NZ%), intersection
score (1IS), and union score (US) with loss functions for our ap-
proach that predicts the restoration directly. Best values are in bold.

Feyre g

Ourszr Ourszre Ground Truth Oursrr Ourszre  Ground Truth

Figure 13: Restoration shapes generated using our approach that
predicts the restoration directly, Ours rr, and our approach that
predicts all three shapes, Ours rRrc, both with all three losses.

7.4. Evaluation of Predicting Restoration Shape Directly

We can predict the restoration shape directly by removing the
complete latent transformation branch of the network, ge., and
replacing Jreas With a non-intersection constraint, Jpin, Which
penalizes intersection of the fractured and restoration shapes,
i.e. encodes the relationship (or A og) = 0. However, we find
that disabling the network from predicting values for the com-
plete shape, and by extension removing the union condition of
Jteass shown in Figure 5(a), increases the frequency of all zero
restoration shapes. To train the network variation we use the
loss J = Jgata + IR + Jreg, Where Jg is derived from Equa-
tion (7), computed over R instead of over R and C. We use
Jhint = ZXGXl(f@(zf7X)f®(g¢‘R (Z]:7X)>X)7O)’ computed over
set of inference-time sample points X'. We show results using com-
binations of Jyata, Jnzr, and Jyine in Table 3. We refer to our ap-
proach that predicts the restoration directly as Ours # and our ap-
proach that predicts all shapes as Ours rc.

Using Ours rr with Jgu, alone shows similar IS and US scores
to Ours rrc With Jgaa and a lower NZ% at 70.5%. Adding the
non-zero loss increases the NZ%, though it produces restorations
with a higher IS and lower US than using Jg,¢, alone. Using Jine
with Jgaa has little effect on the IS or US and decreases NZ% to
46.1% compared to using Jga, alone, as Jpin, forces the restoration
away from the fractured shape. As shown on the right of Table 3,
using all three losses with Ours 7 still shows a low NZ% com-
pared to using Jg,, alone, and may predict restoration shapes that
do not fully join to the fractured shape, as occurs with the mug in
Figure 13. Though Jreas and Jpine both penalize intersection of the
predicted restoration and fractured shape, Jpeas also encourages in-
tersection of the complete shape and restoration shape, providing a
reduced space for the restoration to occupy and aiding in latent code
convergence, giving a high NZ%. As shown by the rightmost super-
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Figure 14: For each object, from left to right, we show the input
[fractured shape, voxel restoration using 3D-ORGAN, restoration
using our approach, and the ground truth restoration.

columns of Table 2 and Table 3, with all losses Ours rr ¢ achieves
a majority of physically valid restoration shapes with a high NZ%
of 83.8%, while Ours z shows a NZ% of 66.8%.

7.5. Comparison to 3D-ORGAN

We compare our work to the voxel-based approach of 3D-
ORGAN [HS18], the only prior method to perform shape com-
pletion using fractured shapes as input. 3D-ORGAN takes a vox-
elized fractured shape as input and predicts a corresponding com-
plete shape. The density of voxel grids required to acquire high-
resolution restoration outputs prohibits tractable learning using
modern hardware, and requires a quantity of training data that is
unreasonable in real-world environments. We use the original voxel
grid resolution used by 3D-ORGAN, which takes 323 fractured
voxel grids as input and produces 323 complete voxel grids as out-
put. We adapt 3D-ORGAN to generate restoration meshes by sub-
tracting the input fractured voxel grid from the complete voxel grid
predicted by the network during inference and applying Marching
Cubes to the subtracted voxel grid to reconstruct a mesh. During in-
ference we run 3D-ORGAN for two iterations by feeding the pre-
dicted complete voxel grid from the first iteration as input to the
second iteration, as recommended by the authors.

As shown in first row of Table 4, we use the CD and NFRE to
compare our approach to 3D-ORGAN (3DO). We summarize met-
rics over all shapes with non-zero restorations over all approaches.
Our approach outperforms 3D-ORGAN overall with a mean CD
of 0.122 and NFRE of 0.076 compared to 0.241 and 0.160 respec-
tively, outperforms for all classes individually in terms of CD, and
for all classes except cars and tables in terms of NFRE. While the
NFRE for our approach on cars is higher than for 3D-ORGAN, we
find that 3D-ORGAN is successful at generating non-zero restora-
tions for only 21.73% of car shapes. We observe that 3D-ORGAN
produces physically unrealizable restorations with a high number
of surface artifacts, as shown in Figure 14. 3D-ORGAN often pre-
dicts restoration shapes that are in the wrong location or are sparse
and have many disconnected voxel elements, making them unus-
able for shape repair.

7.6. Comparison to Baseline Approaches using Shape
Completion followed by Subtraction

Since 3D-ORGAN produces low-fidelity results, we sought to com-
pare our method to high-resolution restoration generation as a base-
line for fair evaluation. For the baselines, we predict a complete

© 2022 The Author(s)
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Figure 15: Input (a) fractured shape and (b) incomplete shape
and cross-sections showing point observations for MendNet and
DeepSDF. For DeepSDF, we remove sample points with nearest
neighbors on the fractured shape in the fracture region. (c) Pre-
dicted complete shape with elements of the fracture that results
from using a fractured shape as input for DeepSDF.

shape using a shape completion approach and generate the restora-
tion using subtraction. We use the SDF based DeepSDF [PES*19],
and the point cloud based PoinTr [YRW*21] followed by the oc-
cupancy function based ConvONet [PNM*20] as baselines. For the
baselines we obtain the restoration by subtracting the input frac-
tured shape from the predicted complete shape in occupancy space.

DeepSDF. DeepSDF operates on open incomplete shapes, and
is not structured to work directly on closed fractured shapes. The
autodecoder framework that DeepSDF uses is similar to an autoen-
coder, i.e. using the fractured shape as input directly would cause
the network to reconstruct the input fractured shape instead of pre-
dicting a complete shape, as occurs for Figure 15(c). To perform
inference on fractured shapes, we obtain an incomplete shape for
each test fractured shape by removing the fracture surface, thereby
emulating an error-free fracture detection classifier. As shown in
Figure 15(b), we do not input sample points that have a nearest
neighbor in the fractured shape belonging to the fracture region. To
obtain a complete shape during inference we use DeepSDF to esti-
mate a latent code given incomplete observations of the incomplete
shape. To convert to occupancy, we give negative SDF values an
occupancy of 1 and all other values an occupancy of 0.

PoinTr+ConvONet (PTR+CON). We also create a baseline
that performs point cloud completion for an input fractured point
cloud followed by surface reconstruction using the occupancy func-
tion. We use PoinTr for point cloud completion and ConvONet for
surface reconstruction. We train PoinTr to predict complete point
clouds from input fractured point clouds. We train on simple ce-
ramic fractures for 800 epochs. To obtain occupancy values we in-
put the complete point cloud predicted by PoinTr to ConvONet. For
ConvONet we use pre-provided weights obtained by training on
planes, benches, cabinets, cars, chairs, displays, lamps, loudspeak-
ers, rifles, sofas, tables, telephones, and vessels from ShapeNet.

For each baseline we obtain the restoration shape using March-
ing Cubes over 256° sample points. To mitigate artifacting, we per-
form an automated post-subtraction cleanup for the baseline ap-
proaches by removing mesh components whose volume falls below
a threshold of €, where we set € to 0.01. If all disconnected compo-
nents have a volume less than €, we retain the largest component.
We provide an example of an alternative method of removing arti-
facts based on distance thresholding in the supplementary.

We compare MendNet to PTR+CON in the second and third
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Method  |Metric|bottles cars chairs jars mugs planes sofas tables| Mean

CD | 0.15 0.28 0.18 0.26 0.23 0.17 0.32 0.33 | 0.24

3DO NFRE| 0.07 0.00 0.59 0.04 0.05 0.19 0.20 0.14]|0.16

CD | 0.09 0.13 0.15 0.11 0.14 0.09 0.12 0.15]0.12

PTR+CONINFRE| 041 054 021 034 038 050 039 025 | 0.38

PTR+CON| CD | 0.07 0.09 0.20 0.11 0.10 0.05 0.09 0.15]0.11
Cleaned |NFRE| 0.11 0.25 0.10 0.15 0.17 0.11 0.17 0.12|0.15

CD | 0.08 0.12 0.15 0.12 0.13 0.10 0.13 0.18|0.13

DeepSDF | \ERE| 0.59 073 0.64 071 0.55 083 048 047 | 0.62

DeepSDF | CD | 0.02 0.04 0.08 0.10 0.05 0.02 0.04 0.08 | 0.05
Cleaned |NFRE| 0.07 0.20 0.18 0.16 0.04 0.05 0.09 0.15]0.12

MendNet | CD | 0.08 0.04 0.17 0.13 0.07 0.09 0.19 0.21 |0.12
(Ours) NFRE| 0.04 0.03 0.14 0.03 0.01 0.07 0.08 0.20 | 0.08

Table 4: Chamfer distance (CD) and non-fractured region error
(NFRE) comparing our approach against 3D-ORGAN (3DO) and
subtraction-based restoration generation using PoinTr with Con-
vONet (PTR+CON) and DeepSDF. We summarize metrics over all
non-zero shapes for all approaches. Best values are in bold.

rows and to DeepSDF in the fourth and fifth rows of Table 4. Our
approach performs comparably to DeepSDF and PTR+CON be-
fore cleanup in terms of CD and outperforms for all classes and
overall in terms of NFRE. Though we observe that DeepSDF with
cleanup shows a CD score lower than ours, since the cleanup does
not eliminate protrusions that are connected to the restoration, our
approach outperforms the baseline in terms of the NFRE on 6 of
the 8 classes, and outperforms in terms of the NFRE overall, with a
value of 0.076 compared to DeepSDF with 0.116, and PTR+CON
with 0.146. As shown in Figure 16, while disconnected components
are reduced, for both baselines thin complex protrusions emanating
from the restoration on the exterior surface of the fractured shape
still remain. If the restoration is thin, i.e. the volume is low, auto-
mated cleanup may also discard elements of the restoration, e.g.
for the PTR+CON mug in Figure 16. MendNet produces restora-
tions that restore missing components and do not exhibit artifacts.
Though some restorations, e.g., for the plane, do not join exactly
to the fractured shape, gaps may be filled in with glue or other ad-
hesive without requiring manual editing. Artifacts generated by the
baseline approaches, e.g. by DeepSDF for the plane, car, mug, and
bottle and by PTR+CON for the plane and car in Figure 16, must
be manually removed, causing inconvenience to the end user and
preventing the baseline approaches from being used at scale.

7.7. Latent Code Interpolation

To explore the space of latent codes learned by our approach, we
interpolate between codes from different test shapes in Figure 17.
We obtain intermediate codes by performing linear interpolation
of the values between two fractured codes, and reconstruct the
restoration, fractured, and complete meshes for the intermediate
codes. In Figure 17(a), we interpolate between two fractured shapes
that are derived from the same complete shape. We observe that
while the complete mesh, shown on the bottom, does not change,
the predicted restoration interpolates smoothly, suggesting that the
transformation network for fractured to complete codes, gg,., has
learned to map multiple fractured shapes to the single complete
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Figure 16: For each shape, from left to right, we show restorations obtained using PoinTr with ConvONet (PTR+CON) with and without
cleaning, using DeepSDF with and without cleaning, using our approach, and the ground truth. The baseline approaches generate artifacts
that are not eliminated by cleanup, as shown by the insets. Restorations generated using our approach lack small artifacts.
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Figure 17: Meshes generated by interpolating latent codes
(a) across two fractures within the same complete shape, and
(b) across two fractures within different complete shapes.
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shape. We also observe the fractured and restoration meshes corre-
spond closely to the same fracture, indicating that gg, has learned
to map the input fractured shape to the singular corresponding
restoration shape. When we interpolate between codes for two dif-
ferent shapes, e.g. Figure 17(b), we observe that our approach has
learned an embedding that maps similar objects closely in latent
space, evidenced by the smooth transition between meshes.

7.8. Evaluating Failure Cases

As shown in Table 2, our approach predicts restorations as all zero
for 16.2% of shapes. In Table 5 we classify predicted fractured,
restoration, and complete shape tuples, i.e., Rp, Fp, and Cp into
one of 5 possible cases in terms of their relationship to the ground
truth fractured, restoration, and complete shapes, i.e., Rgt, Fegt, Cat.

e Case 1: The restoration is zero, the predicted fractured shape is
more similar to the ground truth fractured shape than the ground
truth complete shape, and the predicted complete shape is more
similar to the ground truth complete shape than the ground truth
fractured shape, i.e. Rp = 0, Fp = Fgt, Cp = Cqt.

e Case 2: The restoration is zero, the predicted fractured shape is
more similar to the ground truth complete shape than the ground
truth fractured shape, and the predicted complete shape is more
similar to the ground truth complete shape than the ground truth
fractured shape, i.e. Rp =0, Fp = Cgt, Cp = Cqgt.

e Case 3: The restoration is zero, the predicted fractured shape is
more similar to the ground truth fractured shape than the ground
truth complete shape, and the predicted complete shape is more
similar to the ground truth fractured shape than the ground truth
complete shape, i.e. Rp =0, Fp =~ Fgt, Cp = Fgt.

Case |Casel Case?2 Case3 Case4 Case5

bottles| 7.9% 13.7% 0.0% 0.0% 78.4%
cars |245% 16.8% 0.8% 0.0% 57.9%
chairs | 1.0% 23% 0.0% 0.0% 96.7%
jars 03% 17% 0.0% 0.0% 98.0%
mugs | 41% 164% 0.5% 0.5% 78.6%
planes | 4.5% 1.6% 0.0% 0.0% 93.9%
sofas [15.5% 11.4% 03% 0.0% 72.7%
tables | 1.0% 4.6% 0.0% 0.1% 94.3%
Mean | 74% 8.6% 02% 0.1% 83.8%

Table 5: Percentage of shape tuples belonging to each case as de-
fined in Section 7.8. Cases that occur most often are bolded.

e Case 4: The restoration is zero, the predicted fractured shape is
more similar to the ground truth complete shape than the ground
truth fractured shape, and the predicted complete shape is more
similar to the ground truth fractured shape than the ground truth
complete shape, i.e. Rp =0, Fp ~ Cgt, Cp = Fgt.

e Case 5: The restoration is non-zero, i.e. Rp # 0.

We compute shape similarity using the CD, e.g. if CD(Fp, Fgt) <
CD(Fp,Cqt) then the predicted fractured shape is more similar to
the ground truth fractured shape than the ground truth complete
shape. We show the frequency of each case in Table 5.

Cases 1 and 2 occur for 7.4% and 8.6% of shapes. Though pre-
dicted shape tuples belonging to case 2 are incorrect, they corre-
spond to a configuration that fulfills the feasibility requirement, as
Fp ~ Cqt, which will force Rp = 0. In case 2, the network fails to
optimize for a fractured code z r that accurately represents the frac-
tured shape, though it still predicts a feasible output. In case 1, the
network fails to optimize for a restoration code g, (z7,X) that ac-
curately represents the fractured shape, and produces an infeasible
output. Occurrences of case 1 are likely attributable to the network
needing to optimize for three shapes simultaneously, and to opti-
mize for a zx that converges with respect to all three shapes in or-
der to produce a high quality result. Though requiring the network
to converge with respect to all three shapes produces restoration
shapes with high confidence, the complexity of the multi-objective
optimization problem makes convergence difficult in some cases.
Cases 1 and 2 may be recovered from using subtraction of the in-
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Figure 18: (a) Since our approach estimates complete shape, if
restorations are predicted as zero, we can fall back to generating
restorations using a subtraction. (b) For a fractured shape with thin
structures (top-left), the approach may predict bulky restorations
(right) by leveraging voluminous complete shape (bottom-left).
(c) Restoration generated away from fracture surface. (d) Physi-
cal constraints and printing expansion generate 3D prints that do
not fit in the damaged region without modification.

put fractured shape from the predicted complete shape. Cases 3 and
4 cannot be recovered from, as a legitimate complete shape is not
generated. However, cases 3 and 4 occur in only 0.3% of shapes.

8. Limitations and Future Work

The primary limitation of our approach is that, as shown in Ta-
ble 2, restorations are predicted as all zero for 16.2% of shapes.
As discussed in Section 7.8, restorations are most often predicted
as zero when the fractured or complete shapes are predicted as be-
ing similar to the ground truth complete shape, i.e. cases 1 and 2.
However, in both cases, since the complete shape is generated with
high accuracy, our method enables fallback to using subtraction to
generate the restoration shape, as shown in Figure 18(a). Though
non-recoverable cases do occur, i.e. cases 3 and 4, these cases are
infrequent, only occurring 0.3% of the time. A second limitation
is that the non-zero loss may cause restorations to be predicted as
bulky, e.g., for shapes with fine structures in Figure 18(b). Bulky
restorations are encouraged by the binary occupancy function that
pushes network outputs toward O and 1. In future, we will encode
shape relationships using continuous functions, i.e. the SDF, to mit-
igate all zero and bulky restorations. We will also explore high fi-
delity implicit shape representations to improve restoration resolu-
tion, e.g. using normal vectors [VSG*20] and predicting at multiple
resolutions using hierarchical decoders [CZG*21].

To perform restoration generation for real-world objects, a num-
ber of challenges need to be surmounted. We observe that canonical
misalignments, e.g., the mug shown in Figure 18(c), cause restora-
tions to be predicted in the incorrect location. As misalignment may
occur frequently for real objects due to the difficulty of precisely
orienting the fractured shape after scanning, in future we will im-
prove the robustness of our approach to misalignment by random-
izing the orientation of training and testing shapes. To study the
geometry of real fractures we damaged and scanned a real-world

© 2022 The Author(s)
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ceramic mug, shown in Figure 18(d). We observe that the frac-
ture edges are smooth, have a curved profile, and demonstrate sharp
cusps and turns. The smooth transitions between fracture and intact
regions may cause fracture-surface classifiers to fail, i.e., rendering
methods based on incomplete shape completion and subtraction un-
usable. When we use our approach trained on synthetic fractures to
predict a restoration shape, while our approach creates a restora-
tion that fills most of the fracture region it struggles to fill in the
sharp curve at the bottom left. As a further challenge, when we 3D
print the generated restoration, it cannot be ‘snapped’ into the dam-
aged region, due to the physical constraints imposed by the negative
space and the expansion of the restoration part during 3D printing.
As part of future work, we will investigate ways to repair tight-
fitting fractures using the feasibility condition as a hard constraint
and adopting a sculpting approach that accommodates printer tol-
erance to refine the restoration in a post-step. We will also explore
performing jigsaw carving of the restoration geometry to enable
repair of narrow damage regions, such as the one in Figure 18(d).

Currently the biggest challenge to progress in the field of fracture
repair is the dearth of real data, with the largest existing dataset of
real fractured objects with complete counterparts containing only
22 samples [LBB19]. The generalizability of our approach to real
fractures may be limited by the simple structure of objects from
ShapeNet, which are derived from computer aided design (CAD)
models. Our fracturing approach also simulates the subset of possi-
ble fractures that can be generated using subtraction with a ran-
domized geometric primitive, i.e., it does not fully capture the
variety and complexity of real fractures. Prior work in physics-
based fracturing is focused on providing visually appealing frac-
tures [BHTF07; CCL*22; WFL*19; WDG*19], is overly simplis-
tic [ESW20; LWL*21; GBS*15], or is focused on micro-scale anal-
ysis of fracture from a material science perspective [ANZ06; ZQ18;
SMZG18; FLF*19]. To capture the complexity of real fractures it
is necessary to obtain a dataset of real fractured objects.

As part of ongoing work, we are actively collecting a dataset
of real fractured objects with ground truth complete counterparts,
going well beyond the object, material, and fracture-type sets in
Lamb et al. [LBB19]. We are generating fractures for common ma-
terials and fracture types, e.g., ceramic chipping, wood splinter-
ing, wood shearing along grains, and large fractures for ceramic,
clay, hard plastic, and concrete. Our dataset will enable restora-
tion evaluation when significant portions of the object are eroded
away as may occur with, e.g., wood or concrete. One challenge
that we expect to face is that despite expansion efforts, datasets of
real-world fractured objects are unlikely to approach the scale of
synthetic datasets, due to the time consuming nature of 3D scan-
ning—often taking 1 to 2 hours per sample—and the infeasibility
of comprehensively spanning the fracture space even for a single
object. In future, we will contribute probabilistic generative mod-
els that enable sampling fracture surface parameters to generate re-
alistic synthetic fractures from traditional synthetic and real-world
non-fractured datasets, facilitating continued research in learning-
driven realistic fractured object restoration.
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9. Conclusion

In this paper, we provide a fully automated approach to generate
a restoration directly from a learned occupancy representation of a
fractured shape by leveraging transformations between latent shape
encodings. Our approach provides a single-step estimation of frac-
tured shape code, and does not require knowledge of the fracture
geometry. We show results for a variety of shapes spanning 8 ob-
ject classes in ShapeNet, some of which, such as mugs, bottles, and
jars represent objects that traditionally undergo damage. By gen-
erating restorations using occupancy functions that facilitate physi-
cally plausible mesh reconstruction, our work overcomes the disad-
vantages of existing voxel-based methods, and plays an important
role in enabling rapid consumer-driven object repair, restoration of
cultural heritage articles, and minimization of environmental waste.
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