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In this supplementary, we provide a derivation of the feasibility
loss used in the paper in Section 1. We discuss our sampling method
and implementation details in Section 2. We give an overview of the
hardware we used and the runtimes for our approach and baseline
approach using DeepSDF [PFS*19] in Section 3. Section 4 gives
the number of hard plastic and complex ceramic fractures we gen-
erate for testing the generalizability of our approach. In Section 5
we give additional implementation details for 3D-ORGAN [HS18].
In Section 6 we show restoration shapes generated using the base-
line approach of DeepSDF discussed in Section 7.5 of the main
paper with Boolean subtraction in mesh space, and artifact cleanup
using Euclidean distance thresholding. We show complete, frac-
tured, and restoration meshes reconstructed by our approach and
complete meshes reconstructed by the baseline approaches, corre-
sponding to examples shown in the paper, in Section 7.

1. Expression for Feasibility Loss

In this section, we provide the derivation for the feasibility loss
Jfeas provided in Equation (8) in the main paper. As discussed in
Section 3 of the paper, the equations

oS(x) = fΘΘΘ(zS ,x), (1)

zR = gΦΦΦR(zF ,x), and (2)

zC = gΦΦΦC (zF ,x) (3)

provide the functional representation for occupancy values oS for a
shape S ∈ {F ,R,C}, and the transformations for obtaining zR and
zC from zF , where F , R, and C are fractured, restoration, and com-
plete shapes respectively. The functional form for oF is expressed
using Equation (1) as

oF (x) = fΘΘΘ(zF ,x). (4)

The forms for oR and oC can be expressed as

oR(x) = fΘΘΘ(zR,x), and (5)

oC(x) = fΘΘΘ(zC ,x). (6)

By substituting the expression for zR from Equation (2) into Equa-
tion (5), we obtain

oR(x) = fΘΘΘ(gΦΦΦR(zF ,x),x). (7)

Similarly, we re-write the expression for oC by substituting Equa-
tion (3) into Equation (6), as

oC(x) = fΘΘΘ(gΦΦΦC (zF ,x),x). (8)

The following equation

hfeas(oF ,oR,oC) = ((1−oF )(1−oR)(1−oC))+

(oF (1−oR)oC)+((1−oF )oRoC) . (9)

provides the expression for the feasibility function hfeas in terms
of the occupancy values for F , R, and C as discussed in Section 4
of the paper. The loss Jfeas forces hfeas to 1 to encourage feasible
occupancy values, as

Jfeas(zF ,W) =

∑x∈X l(hfeas(oF (x),oR(x),oC)(x),1), (10)

where X represents the point sampling, l represents the cross-
entropy function, and W represents the weights of the networks.
During optimization, the feasibility loss is aggregated over zF esti-
mates for all training samples. We substitute Equations (4), (7), and
(8) into Equation (10) to obtain

Jfeas(zF ,W) = ∑x∈X l(hfeas( fΘΘΘ(zF ,x),
fΘΘΘ(gΦΦΦR(zF ,x),x), fΘΘΘ(gΦΦΦC (zF ,x),x),1). (11)

Equation (11) provides the expression for the feasibility loss as
used in the paper.

2. Implementation Details

To obtain the set of sample points X , discussed in Section 5 of
the main paper, for a given shape S during training and testing,
we sample n points where 4n

5 points lie on or near the surface of
the shape and n

5 are uniformly sampled around the shape. We en-
sure that of the n points, at least m points are from the interior of
the shape and m points are from the exterior. During training, we
combine the point sets for the fractured shape F , the restoration
shape R, and the complete shape C, to obtain X , whereas during
inference X is obtained only from F . We set the value of n to be
5,461 for F and R and 5,462 for C during training, and 8,000 for
F during inference. We set m to n

6 during training and n
2 during

inference. To initialize gradient descent, we randomly set the value

submitted to Eurographics Symposium on Geometry Processing (2022)

https://orcid.org/0000-0002-6000-4658
https://orcid.org/0000-0003-3085-056X
https://orcid.org/0000-0001-7730-7754


2 N. Lamb, S. Banerjee, & N. K. Banerjee / Supplementary Material for “MendNet: Restoration of Fractured Shapes”

of the latent fracture code, zF , according to a Gaussian distribu-
tion centered at zero mean with standard deviation of 0.01 during
training and 10−4 during inference. During training we set λfeas,
the scalar multiplier for the training feasibility loss term, to 1.0 and
λreg, the scalar multiple for the training regularization loss term, to
10−4. During inference we set λfeas, the scalar multiplier for the
inference feasibility loss term, to 1.0, λreg, the scalar multiple for
the inference regularization loss term, to 10−4, and λnzr, the scalar
multiple for the non-zero loss term, to 0.5. We use the Adam opti-
mizer to estimate network weights during training, and latent codes
during training and inference, and perform optimization by running
gradient descent for 2,000 epochs with a learning rate of 5×10−3.
We set the size of the latent codes to be p = 256 for jars, bottles,
and mugs, and p = 400 for the remaining classes.

3. Hardware and Runtime

We train our approach on 40-core Intel Xeon servers with 2
NVIDIA RTX 3090s, with 3 NVIDIA RTX 3090s, and with 4
NVIDIA Volta v100s. Training our approach takes approximately
56 hours per 1000 training samples on a 40-core Intel Xeon server
with 2 RTX 3090s. Training the baseline approach using DeepSDF
takes approximately 32 hours per 1000 training samples on a 40-
core Intel Xeon server with 2 NVIDIA RTX 3090s. Performing la-
tent code inference using the baseline approach of DeepSDF takes
approximately 21 seconds per sample, performing mesh recon-
struction using an inferred code takes approximately 5.1 seconds
per sample, and discarding disconnected components from a re-
constructed mesh takes approximately 1.5 seconds per sample.

4. Shape Counts for Hard Plastic and Complex Ceramic
Fractures

As discussed in Section 7 of the main paper, to evaluate the gen-
eralizability of our approach we generate synthetic fractures that
simulate hard plastic fractures and complex ceramic fractures with
concavities for testing. Our ShapeNet test set contains 278, 661,
1,106, 295, 220, 797, 612, and 1,123 shapes for the bottles, cars,
chairs, jars, mugs, planes, sofas, and tables before fracturing. Of
the shapes we retain 275, 653, 1,100, 294, 257, 791, 612, and 1,123
hard plastic fractured shapes after fracturing for the bottles, cars,
chairs, jars, mugs, planes, sofas, and tables classes from ShapeNet.
We retain 279, 664, 1,106, 297, 258, 798, 611, and 1,122 com-
plex ceramic fractured shapes after fracturing for the bottles, cars,
chairs, jars, mugs, planes, sofas, and tables classes from ShapeNet.

5. Implementation Details for 3D-ORGAN

We compare our approach to 3D-ORGAN [HS18], the only exist-
ing approach to generate complete shapes given fractured shapes
as input, in Section 7.4 of the paper. To create fracture samples,
we use the approach of Hermoza and Sipiran [HS18], which gen-
erates novel fractures at training time. We trained three variations
of the generative adversarial network (GAN) architecture proposed
by Hermoza and Sipiran including the GAN architecture with and
without skip connections, and the architecture with skip connec-
tions and with Squeeze-and-Excite [HSS18] layers after each 3D
convolutional layer. For each training class we trained an additional
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of Mesh Points
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Figure 1: Given a fractured shape, we show a complete
proxy generated using the shape completion approach of
DeepSDF [PFS*19] on an incomplete shape without the fracture, a
restoration generated by Boolean subtraction in mesh space, and a
restoration generated by removing vertices in the restoration mesh
obtained by subtraction in SDF space that are close to the fractured
shape. Note the surface artifacts generated on the restoration that
protrude onto the fractured shape and the non-smooth join caused
by thresholding the Euclidean distance.

variation of the network using the architecture with skip connec-
tions and Squeeze-and-Excite layers where half of the fractured
shapes for the training set were selected from the fractures gen-
erated using our fracturing approach, and half were generated ran-
domly at runtime using the approach of Hermoza and Sipiran. We
trained an additional variation where we combined the bottles, jars,
and mugs classes and used the architecture with skip connections
and Squeeze-and-Excite layers. For all variations we use a gradient
penalty of λ = 10, and a completion loss coefficient of k = 100 as
suggested by Hermoza and Sipiran. Each variation we tested per-
formed comparably to the results shown in Section 7 of the paper.

6. Restoration Generation using Boolean Subtraction and
Artifact Cleanup using Euclidean Distance Thresholding

As discussed in the main paper, to compare our approach to a
restoration generated by subtracting the fractured shape from a
complete proxy, we implement subtraction in occupancy space
rather than use traditional Boolean subtraction in mesh space due to
its computational infeasibility. In Figure 1(c) we show an example
restoration mesh generated by performing Boolean subtraction in
mesh space of a complete proxy, shown in Figure 1(b) from an in-
put fractured mesh, shown in Figure 1(a), where the complete proxy
is generated from an incomplete input using the baseline approach
with DeepSDF discussed in Section 7.5 of the main paper. Simi-
lar to the artifacts generated by occupancy-space subtraction, exact
Boolean mesh-space subtraction also produces protrusion artifacts
that are challenging to clean up.

In addition to the baseline artifact removal technique described
in section Section 7.5 of the main paper, one may attempt to re-
move artifacts using an approximate subtraction in mesh space. In
Figure 1(d) we show a restoration mesh generated by thresholding
the Euclidean distance between points on the fractured mesh and
the complete mesh generated using DeepSDF, retaining points with
their corresponding mesh elements where the distance is higher
than a threshold, and manually remeshing the resulting mesh com-
ponents. As shown in Figure 1(d), a low threshold, e.g., 0.02 units
for the car, does not eliminate the artifacts completely, as shown by
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the remaining component in the middle of the car. The restoration
mesh also does not join smoothly to the fractured mesh, as the gap
between the exterior of the predicted restoration mesh and the frac-
ture region caused by removing close vertices has to be remeshed.
While a high threshold, e.g., 0.082 units, eliminates artifacts, it gen-
erates a restoration that is too far away from the fractured mesh and
shows a large gap at the intersection of the restoration mesh and
fractured mesh. As shown by the result in the top right of Figure 16
of the main paper, our approach automatically produces restora-
tions devoid of artifacts that demonstrate a close join to the original
shape.

7. Complete set of Inputs and Outputs for Results in Paper

We show the complete set of inputs and outputs for various results
shown in the paper. In Figure 2, we show the ground truth (GT)
complete, fractured, and restoration meshes and the complete, frac-
tured, and restoration meshes reconstructed using our approach cor-
responding to Figure 1 in the paper. In Figure 3 we show the com-
plete and restoration meshes reconstructed by our approach and
by the shape completion approaches using PoinTr [YRW*21] with
ConvONet [PNM*20] and using DeepSDF, and fractured meshes
reconstructed by our approach. Meshes shown correspond to the
meshes in Figure 16 of the main paper. In Figure 4 we show com-
plete, fractured, and restoration meshes reconstructed using vari-
ous loss combinations, corresponding to Figure 12 of the main pa-
per. From left to right we show meshes reconstructed using Jdata,
where we use only the data loss during inference, Jdata,Jnzr, where
we use weighted combination of the data loss and the non-zero
loss, Jdata,Jfeas, where we use a weighted combination of the data
loss and the feasibility loss, and Jdata,Jnzr,Jfeas, where we use a
weighted combination of the data loss, the non-zero loss, and the
feasibility loss. In Figure 5 we show the GT complete, fractured,
and restoration meshes and the complete, fractured, and restoration
meshes reconstructed using our approach corresponding to Figure 8
in the paper.
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Figure 2: Predicted complete, fractured, and restoration meshes using our approach, shown with their corresponding ground truth (GT)
meshes, and the predicted restoration mesh from our approach shown joined with the ground truth fractured mesh. Meshes shown correspond
to Figure 1 in the paper. Complete and fractured meshes are shown in gray, restoration meshes are shown in red.

DeepDSF
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Our FracturedOur Complete GT Complete GT Fractured DeepSDF
Restoration

DeepSDF
Restoration Cleaned

Our Restoration GT RestorationPTR+CON
Complete

PTS+CON
Restoration

PTS+CON
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Figure 3: Predicted and ground truth complete (GT) meshes shown for the baseline subtraction approaches using PoinTr with ConvONet
(PTR+CON), using DeepSDF, and using our approach for the complete, fractured and restoration shapes. Meshes shown correspond to
Figure 16 of the paper. Complete and fractured meshes are shown in gray, restoration meshes are shown in red. Restoration meshes are
shown joined to the GT fractured shape.
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Figure 4: Predicted and ground truth (GT) complete, fractured, and restoration meshes using our approach with just data loss (Jdata), using
data loss and non-zero loss (Jdata,Jnzr), using data loss and feasibility loss (Jdata,Jfeas), and using data loss, non-zero loss, and feasibility
loss (Jdata,Jnzr,Jfeas) for a mug, a car and a bottle. Meshes shown correspond to Figure 12 of the paper. Complete and fractured meshes
are shown in gray, restoration meshes are shown in red. Restoration meshes are shown joined to the GT fractured shape.

submitted to Eurographics Symposium on Geometry Processing (2022)



6 N. Lamb, S. Banerjee, & N. K. Banerjee / Supplementary Material for “MendNet: Restoration of Fractured Shapes”

Predicted Complete GT FracturedGT Complete Predicted Fractured Predicted Restoration GT Restoration Predicted Restoration 
and GT Fractured

Figure 5: Predicted complete, fractured, and restoration meshes using our approach, shown with their corresponding ground truth (GT)
meshes, and predicted restoration meshes from our approach shown joined with the GT fractured mesh, corresponding to meshes shown in
Figure 8 in the paper. Complete and fractured meshes are shown in gray, restoration meshes are shown in red. Restoration meshes are shown
joined to the GT fractured shape.
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