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Figure 1: Left: diverse and visually plausible 3D shapes generated by SDF-StyleGAN. Right: the applications enabled by SDF-StyleGAN. (a)
Shape completion from partial point cloud inputs. (b) Shape generation from single-view images. (c) Chair arms and car roofs are generated
via shape style editing.

Abstract

We present a StyleGAN2-based deep learning approach for 3D shape generation, called SDF-StyleGAN, with the aim of reducing
visual and geometric dissimilarity between generated shapes and a shape collection. We extend StyleGAN2 to 3D generation and
utilize the implicit signed distance function (SDF) as the 3D shape representation, and introduce two novel global and local shape
discriminators that distinguish real and fake SDF values and gradients to significantly improve shape geometry and visual quality.
We further complement the evaluation metrics of 3D generative models with the shading-image-based Fréchet inception distance
(FID) scores to better assess visual quality and shape distribution of the generated shapes. Experiments on shape generation
demonstrate the superior performance of SDF-StyleGAN over the state-of-the-art. We further demonstrate the efficacy of SDF-
StyleGAN in various tasks based on GAN inversion, including shape reconstruction, shape completion from partial point clouds,
single-view image-based shape generation, and shape style editing. Extensive ablation studies justify the efficacy of our framework
design. Our code and trained models are available at https://github.com/Zhengxinyang/SDF-StyleGAN.

CCS Concepts
* Computing methodologies — Shape modeling; Volumetric models; Neural networks;

1. Introduction

T Work done during an internship at Microsoft Research Asia Automatic and controllable generation of high-quality 3D shapes
1 Corresponding author is one of the key tasks of computer graphics, as it is useful to
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enrich 3D model collections, simplify the 3D modeling and re-
construction process, and to provide a large amount of diverse 3D
training data to improve shape recognition and other 3D vision
tasks. Inspired by the success of generative models such as Varia-
tional AutoEncoder (VAE) [KW14], Generative Adversarial Net-
works (GAN) [GPAM* 14] in image generation and natural language
generation, the 3D shape generation paradigm has been shifted to
learning-based generative models in recent years.

Previous learning-based 3D generation works can be differenti-
ated by the chosen 3D shape representations and generative models.
Point cloud representation is popular in 3D generation. However,
due to its discrete nature, the generative shapes do not have con-
tinuous 3D geometry, and their conversion to 3D surfaces is also
non-trivial. Mesh representation overcomes this limitation by mod-
eling 3D shapes as a piecewise-linear surface, but the modeling
capability is usually restricted by the predefined mesh template
and cannot allow the change of mesh topology easily. Volumetric
occupancy or signed distance function treats 3D shapes as the isosur-
faces of an implicit function, and the recent development of neural
implicit representation such as DeepSDF [PFS*19] offers a conve-
nient shape representation for 3D generation. Popular generative
models such as VAE, GAN, flow-based generative models [RM15],
and autoregressive models [VOKK16] have been incorporated with
different 3D representations.

Despite the rapid development of 3D generative models, we ob-
served that there are clear visual and geometric differences, be-
tween generative shapes and real shape collection in existing ap-
proaches. For instance, shapes generated by many existing works
often exhibit bumpy and incomplete geometry, which can be found
in Fig. 6 and Fig. 7. In contrast to 3D generation, the gap between
real and generative data in the image generation domain becomes
much smaller by using more advanced generative models such as
StyleGAN [KLA19] and its successors [KLA*20, KAL*21]. We
attribute this performance gap in 3D generation to the following
three aspects. First, the design of current 3D generators is relatively
weaker than the state-of-the-art image generation networks; sec-
ondly, the works based on point cloud and mesh representation
have limited shape representation power; thirdly, the assessment
of generated shape quality that defines the discrimination loss of
GAN is not sensitive to visual appearance, which is important to
human perception. To this end, in the presented work, we use the
StyleGAN2 network [KLLA*20] to enhance the 3D shape generator,
employ grid-based implicit SDF to improve shape modeling ability,
and propose novel SDF discriminators that assess the SDF values
and its gradient values from global and local views to improve visual
and geometric similarity between the generated shapes and the train-
ing data. In particular, the use of SDF gradients greatly enhances
surface quality and visual appearance, as SDF gradients determine
surface normals that contribute to visual perception via rendering.

We validate the design choice of our 3D generative network
— called SDF-StyleGAN, through extensive ablation studies, and
demonstrate the superiority of SDF-StyleGAN to other state-of-
the-art 3D shape generative works via qualitative and quantitative
comparisons. To measure visual quality and shape distribution of the
generated shapes, we propose shading-image-based Fréchet incep-
tion distance (FID) scores that complement the evaluation metrics

for 3D generative models. We also present various applications
enabled by SDF-StyleGAN, including shape reconstruction, shape
completion from point clouds, single-view image-based shape gen-
eration, and shape style editing.

2. Related Work
2.1. 3D generative models

GAN-based models GAN models were first introduced to voxel-
based 3D generation by Wu ef al. [WZX*16] and their training was
improved by adapting the Wasserstein distance [SM17, HLXT19].
Achlioptas et al. [ADMG18] brought GAN to point cloud gener-
ation and also invented 1-GAN which first trains an autoencoder
(AE) and then trains a GAN on the latent space of AE. Jiang and
Marcus [JM*17] used both the low-frequency generator and the
high-frequency generator to improve the quality of the generated
discrete SDF grids. IMGAN [CZ19] integrated 1-GAN and neural
implicit representation to achieve better performance. Kleineberg et
al. [KFW20] experimented with both implicit SDF and point cloud
as shape representations in a GAN model, which uses a 3DCNN-
based discriminator or a PointNet [QSMG17]-based discriminator.
Hui et al. [HXX*20] proposed to generate multiresolution point
clouds progressively and use adversarial losses in multiresolution
to improve point cloud quality. Wen et al. [WYT21] also gener-
ated points progressively via a dual generator framework. Ibing et
al. [ILK21] localized 1-GAN on grid cells and used the implicit oc-
cupancy field as its shape representation. Li ef al. [LDPT19], Wu et
al. [WS20] and Luo et al. [LLZL21] used 2D differentiable render-
ing for training 3D GANs without any 3D supervision. The former
two works used silhouette images, while Luo ef al. used a designed
spherical map of the extracted mesh. Shu e al. [MWYG20] intro-
duced a tree-structured graph convolution network as the generator
to improve feature learning. For generating part-controllable shapes,
Wang et al. [WSH* 18] introduced a global-to-local GAN in which
the generator also produces segmentation labels and each local dis-
criminator is designed for each segmented part. Shape part informa-
tion was also utilized to train the network [DXA*19, LNX20] to gen-
erate semantically plausible shapes. To remove the requirement of
part annotation, the StyleGAN-like architecture was adapted for part-
level controllable point cloud generation [GBZCO21, LLHF21]. For
better controlling the generated 3D model, Chen et al. [CKF*21]
proposed a GAN model to refine a low-resolution coarse voxel
shape into a high-resolution model with finer details. With the use
of volume rendering and neural implicit 3D representations, GAN
models are also used to synthesize 3D-aware images such as human
faces [OELS*22, CMK*21] and achieve high quality results. In our
work, we also adapt the StyleGAN architecture to generate feature
vectors on grids that are mapped to implicit SDFs, and use SDF
gradients to guide the global and local discriminators to improve
shape quality and visual appearance.

Autoencoder-based models AtlasNet [GFK*18] encoded 3D
shapes into a latent space and took a collection of parametric sur-
face elements as shape representations for shape generation. Li
et al. [LXC*17] created a recursive network based on variational
autoencoder (VAE) to generate 3D shapes with hierarchical tree
structures. Mo et al. [MGY *19] encoded more structural relations
with hierarchical graphs and devised a Graph-CNN-based VAE for
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Figure 2: Overview of SDF-StyleGAN. The original StyleGAN2 generator is extended to 3D, and it outputs the feature volume in a unit box.
The feature vector 0(x) at any point x inside the volume is interpolated via trilinear interpolation and is mapped to SDF value via a shallow
MLP. The global discriminator takes the SDF values and gradients sampled at the grid centers as input, and the local discriminator takes the
SDF values and gradients at a local and random 3D box region near the surface as input. A few local box regions are illustrated on the above

chair example, in different colors.

shape generation. Gao et al. [GYW™19] proposed a two-level VAE
to learn the geometry of the deformed parts and the shape structure.
Jie et al. [YML*22] combined the advantages of the above two
approaches to learn the disentangled shape structure and geometry.
Wu et al. [WZX*20] used a Seq2Seq Autoencoder to generate 3D
shapes via sequential part assembly. In these works, part information
is needed for training. Li et al. [LLW?22] introduced superquadric
primitives in VAE learning to mimic shape parts for easy editing,
without real part annotation.

Other generative models By transforming a complex distribu-
tion to a simple and predefined distribution, diffusion-based gen-
erative models [SE19, HIA20] have been applied to point cloud
generation via learning the reverse diffusion process that maps a
noise distribution to a 3D point cloud [CYAE*20, LH21, ZDW21].
By explicitly modeling a probability distribution via normal-
izing flow, flow-based generative models [RM15] are also
popular in shape generation, especially point cloud genera-
tion [YHH*19, KBV20, KLK*20, PPMNF20, KMU21, PLS*21].
However, these works focus on point clouds and do not generate con-
tinuous shapes directly. By implicitly defining a distribution over se-
quences using the chain rule for conditional probability, autoregres-
sive models achieve their success in image generation [VOKK16].
They were also used in point cloud generation [SWL*20], oc-
tree generation [IKK21], polygonal mesh generation [NGEB20],
and SDF generation [MCST22]. By explicitly modeling a prob-
ability distribution in the form of the EBM [XLZW16], Xie et
al. [XZG*20, XXZ*21] used an energy-based generative model
to synthesize 3D shapes via Markov chain Monte Carlo sampling.

2.2. Evaluation metrics for 3D generation

To measure the similarity between the generated point cloud data
set Sg and the referenced point cloud data set Sy, Achlioptas et
al. [ADMG18] proposed three metrics: Coverage (COV) that is
the fraction of S, covered by Sg; Minimum Matching Distance
(MMD) that measures how well the covered shapes in S, are rep-
resented by Sg; and Jensen-Shannon Divergence (JSD) between
two probability distributions over Sg and S;. The distance between
two point clouds can be either the Chamfer distance (CD) or the
Earth Mover’s distance (EMD). Chen et al. [CZ19] replaced CD
and EMD with light-field-descriptor (LFD) [CTSOO03] for better
measuring the quality of the generated meshes. Noticing that COV,
MMD and JSD do not ensure a fair model comparison, Yang et
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al. [YHH"19] proposed 1-nearest neighbor accuracy (1-NNA) to
assess whether two distributions are identical. Ibing et al. [ILK21]
also adapted a robust statistical criterion — Edge Count Difference
(ECD) [CF17] to evaluate 3D generative models.

To mimic the Fréchet Inception Distance (FID) [HRU*17] that is
widely used in image generation for assessing image quality, Shu
et al. [SPK19] proposed the Fréchet Point Cloud Distance (FPD)
that computes the 2-Wasserstein distance between real and fake
Gaussian measures in the feature space extracted by a pretrained
PointNet [QSMG17]. Li et al. [LLHF21] replaced PointNet with a
stronger pretrained backbone — DGCNN [WSL*19] for FPD com-
putation.

In addition, some works propose task-specific metrics. Wang et
al. [WSH* 18] proposed the 3D inception score, the symmetry score,
and the distribution distance to measure the quality of the gener-
ated voxelized shapes and generated parts, Mo ef al. [MWYG20]
proposed the HierInsSeg score to measure how well the generated
point clouds satisty the part tree conditions they defined. Human
preference through user studies is also used for assessing the quality
of shape generation [KLK*20, LLHF21].

Other metrics based on shading images for measuring shape re-
construction quality, such as the mean square error defined over
per-pixel keypoint maps [JPXZ20], have potentials to be utilized
for evaluating 3D generation. In our work, we enrich the evaluation
metrics by introducing Fréchet Inception Distance on shading im-
ages, to better assess the visual appearance and data distribution of
3D generative models.

3. Design of SDF-StyleGAN
3.1. Overview

We design a StyleGAN2-based 3D shape generation architecture, as
illustrated in Fig. 2. We use feature-volume-based implicit signed
distance functions as shape representation to maximize implicit
representation capability (Section 3.2), leverage and extend the 2D
StyleGAN2 generator [KLA*20] to 3D to generate 3D feature vol-
umes (Section 3.3), and propose global and local discriminators
to distinguish fake SDF fields, including their gradients calculated
from global and local regions of the generated field, from the sam-
pled SDF field of the real shapes in the training set (Section 3.4).
We propose an adaptive training scheme to gradually improve the
quality of the generated shapes (Section 3.5).
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3.2. Feature-volume-based implicit signed distance functions

We represent 3D shapes as feature-volume-based implicit signed dis-
tance functions, in similar spirit to the grid-based implicit occupancy
function used in [JSM*20, PNM*20, ILK21].

We assume that a 3D shape S is generated inside abox B: [—1, l]3
and the box is divided as m x m x m grid cells with equal cell size.
A dual graph is constructed on
these grid cells, and on each
graph node c;, a feature vec-
tor ®; € R’ is stored. All fea- ...
ture vectors form a feature vol-
ume. For any 3D point x € B,
we assign a feature vector to
it, denoted as ®(x), via trilin-
ear interpolation in the feature : :
volume, i.e., using the feature vectors of the eight corners of the
dual cell where x is located. Due to the construction above, ®(x)
is a continuous function defined in B. A shallow multilayer percep-
tron (MLP) is used to map ®(x) to a signed distance value to the
shape. In this way, an SDF f(x) : x € R? — R is determined by
the feature volume and the MLP mapping. The zero isosurface of
the SDF defines the shape geometry. In the right inset, we illustrate
the concept of feature volume in 2D. The gray grid is a portion of
the primal grid cells and the dashed black grid is its dual graph. To
calculate the feature at point x, we first find the dual cell where x is
located and use the feature vectors @1, d,, Pz, Py at the dual cell
vertices to perform the interpolation.

In our implementation, m = 32, [ = 16 and the MLP has two
hidden layers. The feature volume is produced by the generator, and
the MLP parameters are learned via training.

3.3. SDF-StyleGAN generator

We adapt the StyleGAN2 architecture [KLA*20] to our feature
volume generator. In the original StyleGAN?2 architecture, a latent
vector z is first sampled from a high-dimensional normal distribution
and mapped to an intermediate latent space VV. A learned affine
transform and Gaussian noise are injected into a style block, and
multiple stacked style locks are used to predict the pixel colors. We
applied the following modifications to the original StyleGAN2’s
network structure. (i). The 2D convolution in each StyleGAN2
block is changed to 3D convolution with corresponding kernel size;
(ii). The stacked blocks are upsampled from 4 X 4 X 4 to m X m X m;
(iii). the size of the constant tensor fed to the first style block is set
to 256 X 4 x 4 x 4. The detailed structure of the network and our
changes are illustrated in Fig. 3-(a,b). With these modifications, the
generator output an m X m X m feature volume with / channels.

3.4. SDF-StyleGAN discriminator

We design two discriminators to evaluate the generated SDF on
the coarse scale and the fine scale: global discriminator and local
discriminator. Noticing that the visual appearance of the zero iso-
surface is affected by the surface normal, we also propose to take
both SDF values and SDF gradients on a grid region as input to
discriminators because the SDF gradients at the zero isosurface are

exactly shape surface normals, and the use of both zero-order and
first-order SDF information on a coarse grid can approximate SDF
values on a much denser grid.

3.4.1. Global discriminator

For a generated feature volume, we calculate the SDF values and
gradients in a coarse grid of [—1, 1]3 with resolution Kg x Kg x Kg.
The SDF values are evaluated directly via the network and SDF
gradients are calculated via finite differentiation. These samples
form a 4 X Kg X Kg x K¢ feature grid that can approximate the
shape roughly. For a real shape in the training set, we first build a
discrete SDF field with resolution 128 x 128 x 128, then sample the
SDF values on the same coarse grid via trilinear interpolation. The
corresponding SDF gradients are approximated via finite differenti-
ation. As SDF gradient vectors should be with unit length in theory,
we normalize the gradients before constructing the feature grid. In
our implementation, we set Kg = m = 32.

We adapt the discriminator architecture of StyleGAN2 to our
global discriminator D¢ by replacing the 2D convolution with the
corresponding 3D convolution, as illustrated in Fig. 3-(c). The dis-
criminator is used to distinguish between the synthesized shapes
and the shapes from the training set.

3.4.2. Local discriminator

The global discriminator focuses on shape quality in a coarse level.
Naively increasing K will lead to high computational and memory
costs due to the use of 3D convolution, and the discrimination of
real or fake SDF away from the zero isosurface has little impact
on the quality of shape surface. Instead, we pay more attention to
the local region close to the zero isosurface by introducing a local
discriminator Dy .

We choose a set of local regions as follows. We first evaluate
the SDF values on the cell centers of the coarse grid used in the
global discriminator and sort these cell centers in ascending order
according to their absolute SDF values. The first Ny cell centers are
selected as the centers of candidate local regions. We then randomly
select s cell centers from these candidates and construct a small
box with length L, centered at every selected center. For each small
box, we divide it as a K; X K x Ky, grid, sample the SDF values
and calculate gradients at the cell centers of this grid to construct
a4 x K; x Kp, x Ky, feature grid. The local discriminator takes the
feature grid as input, to distinguish whether it is real or fake.

Note that we did not choose the first s cell centers from the sorted
center list, as this greedy selection may result in clustered local
regions. Our random selection from a large candidate pool helps to
distribute local regions more evenly around the zero isosurface. In
our implementation, the indices of Ny candidates are randomized
directly for selection. It is possible to improve this randomization
by using the furthest point sampling strategy, but it requires more
computational time for training.

The network architecture of the local discriminator is similar
to that of the global discriminator. During training, each real or
generated shape provides s local regions to the local discriminator.
In our implementation, we set K; = 16, L, = 0.25, Ny = 2048 and
s = 16 by default. In Fig. 2, we illustrate some local region boxes in
the chair examples.
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Figure 3: (a): The revised StyleGAN2 generator for 3D feature volume generation. We used 3D convolution with kernel size 3 and four style
blocks corresponding to four-level resolution, up to 32 x 32 x 32. Mod and Demod are the modulation and demodulation modules adapted
from StyleGAN2. (b): The skip input for the generator. (c) The discriminator architecture. The tFeature module and the fFeature module convert
between the feature volume per grid cell and the high dimensional feature to/from 3D convolution. Up and Down denote the upsampling and
downsampling modules. The first block in (c) is removed from the local discriminator as its input feature grid resolution is 16 x 16 x 16.

3.5. SDF-StyleGAN training
3.5.1. Loss functions

The loss functions of our discriminators and generator are adapted
from StyleGAN2. The global discriminator loss EGD has the follow-
ing form:

L£H = Eor 2[6(D6(T 6(S(2))] + Esmpua[S(~Di(T6(S)))]
F RS~ paua (5:06)-

ey
Here, S(z) and S denote the generated SDF and the SDF of the
shape sampled from the training data set respectively. Dg(+) is the
output of the global discriminator, and T (-) denotes the feature
grid (SDF values & gradients) calculated in the coarse grid. {(x) =
log(14€"). Rsnpyue (S:®) is the Ry regularization term adapted
from [MGN18], where @ is the network parameters of Dg.

The local discriminator loss £%, is similar to £3.

LD = Epnz[{(DLTL(S(@))] +Esnpy, [L(-DLTL(S)))]
+ RSNPdara (8; ®L) .
@
Here Ty (-) is the feature grid calculated in the local region, and
O is the network parameters of the local discriminator.

The loss function of the generator Lg is defined as follows.

Lg =BLp+Enz[0(—D6(T6(S(2))))]

+0(t) Bz 2 [G(=DL(TL(S(2))))]-
Here, Ly is the path length regularization term used by StyleGAN2,
and B = 2. a(r) is the weight of the local discriminator and changed

during training. We also adopt the EMA scheme [YFW*18] to
stabilize the generator training.

3
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3.5.2. Adaptive training scheme

We propose the following adaptive scheme to train SDF-StyleGAN.
We first initialize the generator and discriminators with StyleGAN2’s
weight initialization, then update the global discriminator, the lo-
cal discriminator, and the generator in sequential order. During the
early training stage, we set a small o in generator training so that
the global discriminator dominates, and the network focuses on
generating rough SDF fields. We gradually increase o so that the
local discriminator can improve the geometry details while main-
taining the global shape structure. In our implementation, we set
0(f) = Omin + Olmax X 7/fmax, here ¢ is the current epoch number
and fmax is the maximum epoch number. Our default setting is
Omin = 0, Omax = 8, fmax = 200.

4. Experiments and Evaluation

Dataset and training We trained our SDF-StyleGAN with the
five shape categories selected from ShapeNet Core V1 [CFG*15]:
chair, table, airplane, car, and rifle, individually. We use the same
data split of [CZ19]: 70 % data as the training set, 20 % data as
the test set, and 10 % data as the validation set which is not used
in our approach. For each shape with triangle mesh format in the
training set, we normalize it into a [—0.8, 0.8}3 box, and use the SDF
computation algorithm of [XB14] to compute the discrete SDF field
with resolution 128% in [—1,1]3. This algorithm can remove nested
interior mesh facets, handle non-watertight meshes and meshes with
inconsistently oriented normals robustly. During training, we also
ensure that the centers of the selected local regions are contained
in [—1+1Ly/2,1—L,/2]3, so that all the selected local regions are
strictly within [—1,1]°. We conducted our experiments on a Linux
server with Intel Xeon Platinum 8168 CPU (2.7 GHz) and 8 Tesla
V100 GPUs (16 GB memory). The default batch size is 32. The
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training time (200 epochs) takes about 2 days on average. Fig. 1
illustrates a few plausible shapes generated by our approach.

Competitive methods We select the following representative
works that generate continuous 3D shapes for comparison: IM-
GAN [CZ19] and Implicit-Grid [ILK21] that use implicit occu-
pancy fields to represent 3D shapes, ShapeGAN [KFW20] that uses
implicit SDFs to represent 3D shapes. We reused the released check-
points of IMGAN and Implicit-Grid for evaluation. More specif-
ically, IMGAN [CZI19]’s chair and table categories were trained
on 64° resolution, while airplane, car and rifle categories were
trained on 128 resolution. For Implicit Grid [ILK21], we used the
checkpoints provided by the authors, trained on 256 resolution. As
the work of [KFW20] released the pre-trained networks in three
ShapeNetCore V2 shape categories only, for a fair comparison, we
retrain ShapeGAN on our processed data with the same training
strategy and parameters provided by the authors.

In the following subsections, we first present the evaluation met-
rics for 3D shape generation in Section 4.1, then provide a quantita-
tive and qualitative evaluation of our method and the competitive
methods in Section 4.2. Ablation studies on the design of SDF-
StyleGAN are presented in Section 4.3.

4.1. Evaluation metrics

As briefly reviewed in Section 2.2, proper evaluation criteria for 3D
generative models are still in active development. The shortcom-
ings of commonly used COV and MMD metrics [ADMG18] were
verified by [YHH* 19, ILK21], and replaced by 1-NNA [YHH*19]
or ECD [ILK21]. We follow their suggestions and use 1-NNA and
ECD as two of our evaluation metrics and also report COV and
MMD as a reference. The definitions of these metrics are at below.

Let Sg ~ IPg be the set of generated samples, S» ~ [P, be the set of
reference data, and D(-,-) : X x X — R be the distance function.

COV [ADMG18] For any X € Sg, its nearest neighbor ¥ € S
is marked as a match, and COV measures the fraction of Y € S,
matched to any element in Sg:

argmin D(X,)Y)|VX €S
COV(Sg,Sr)=|{ YES, |(Sr| )| o)l

“

MMD [ADMG18] MMD measures the average distance from any
Y € S to its nearest neighbor X € Sg:

MMD =— in D(X,Y).
(Sg,Sr) ‘Srl y;g }?gglg ( ) ) (5)

1-NNA [YHH"19] Let S_x = S,US, — {X} and Nx be the nearest
neighbor to X in S_x. 1-NNA is the leave-one-out accuracy of the
1-NN classifier:

_ Yxes, INx € Sg]+Eyes, I[Ny €5/]

1-NNA(Sg, Sr) = ISe|+ 5] )

where I[] is the indicator function.

ECD [ILK21] A k-minimum spanning tree of the neighborhood
graph of S, U S, is built. Three types of tree edges are defined:
connected within Sy, connected within S, connected between Sy

2718 2979 2661 2865

4185 3372 41%‘ 3458 -
g q{ﬁ o 7 ¢
/j:'{/ {\ e

,,,( |
ShapeGAN SDF-StyleGAN GT

IMGAN Implicit-Grid

Figure 4: lllustration of the drawback of LFD. The number above
the shape is the LFD between the shape and its GT counterpart.

and Sg. ECD is the weighted difference between the number of these
edges and the edge count if S, and S; are from the same distribution.
The exact formula of ECD can be found in the Appendix of [ILK21].

For COV, MMD, LFD and ECD computations, we follow
[CZ19, ILK21] to use mesh-based light-field-distance (LFD) as the
distance function D, as our method and all the compared methods
can extract mesh surfaces for evaluation.

Drawback of LFD Although the above metrics based on LFD is
recommended by previous 3D generation works [CZ19, ILK21], a
smaller LFD between shape A and shape B does not mean that their
visual similarity is better than that of shape A and another shape C
with a larger LFD, as LFD is based on silhouette images without
considering the fidelity of the local shape geometry. We illustrate this
drawback in Fig. 4 as follows. The shape in the rightmost column
is sampled from ShapeNet, denoted by GT. We select the shape
with the smallest LFD value to the GT shape for each method. The
numbers above these shapes are the LFD values. We can see that
some shapes with bumpy geometry have smaller LFDs although
they have a large visual difference from their GT counterparts. This
drawback indicates that the LFD-based evaluation metrics for 3D
shape generative networks are not sufficient to measure the visual
and geometry quality of generated shapes.

Shading-image-based FID To resolve the drawback of using LFD
and take human perception into consideration, we propose to adapt
Fréchet inception distance (FID) [HRU*17] on the shading images
of 3D shapes, as the visual quality of 3D shapes for humans is
mostly perceived from rendered view images. We name this met-
ric by shading-image-based FID. We normalize the surface mesh
into a unit sphere and render shading images from 20 uniformly
distributed views, here the view selection is the same as the LFD
algorithm [CTSOO03] (see the illustration in Fig. 5). For the gener-
ated data set and the training set, we compute the Fréchet inception
distance (FID) score based on their i-th view images, and average
20 FID scores to define the shading-image-based FID:

Qi e i i ivi)'/?

3 ety —will? +Te (Z+xh -2 (27x) ) [ )
i=1

where g and r denote the features of the generated data set and the

training set, ,uf, ¥! denote the mean and the covariance matrix of the
corresponding shading images rendered from the i-th view.

1
FID = —
20

Here, although the rendered images of 3D shapes are different
from natural images in ImageNet [DDS*09] trained for Inception-
V3 [SVI*16], we found that the shading-image-based FID is mean-
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Figure 5: Left: configuration of rendering views. 20 camera posi-
tions are illustrated as red points. Right: 20 rendered images for
computing FID, the image resolution is 299 x 299.

ingful, and the generated data set with a smaller FID has more
plausible and visually similar shapes to the training set.

FPD [SPK19] We also adapt Fréchet point cloud distance (FPD)
proposed by [SPK19] for evaluation. For any shape in Sg or S;, we
sample 2048 points on the mesh surface and pass them to a DGCNN
backbone network [WSL* 19, LLHF21] pre-trained with the shape
classification task. The output feature vectors of Sg and S, are used
to compute FPD. Small FPD values are better.

Evaluation setup For computing COV and MMD, we follow the
setting of [CZ19]: S, is formed by the original ShapeNet meshes
in the test dataset, 5|S,| shapes are generated as Sg. For computing
1-NNA and ECD, S, is not changed and |Sy| shapes are sub-sampled
from S as Sg. 1-NNA and ECD are evaluated 10 times between Sg
and Sy, and their average numbers are reported. We note that taking
the training set as S, is more reasonable to evaluate the capability of
GANSs since the distribution of the test set could be very different
with the training set and the number of shapes in the test set is
usually small. However, here we still follow the setup of the original
papers for consistency.

For computing shading-image-based FID and FPD, S; is formed
by the meshes in the training set and |S,| shapes are generated as
Sg. We employ the clean-fid algorithm [PZZ21] to calculate FID.
The default iso-values of the competitive methods are employed to
extract surface meshes by the Marching Cube algorithm [LC87] on
the 128> grids.

4.2. Quantitative and qualitative evaluation

Quantitative evaluation We evaluate SDF-StyleGAN, IMGAN,
ShapeGAN and Implicit-Grid by using the metrics listed in Sec-
tion 4.1. Quantitative results are provided in Table 1. LFD-based
COV and MMD are listed for reference only as mentioned above.
In the categories of airplane and table, IMGAN has better 1-NNA
and ECD values. In the categories of chair and rifle, Implicit-Grid
has better performance in 1-NNA and ECD. Our SDF-StyleGAN
achieves the smallest 1-NNA and ECD in car shapes. However, the
1-NNA and ECD metrics do not faithfully reflect how the distribu-
tion of the generated set is similar to that of the training set, as the
reference set is the test set. In terms of FID and FPD that use the
training set as the reference set, our SDF-StyleGAN is significantly
better than other methods, while IMGAN is the second best.

Qualitative evaluation The superiority of SDF-StyleGAN in terms

© 2022 The Author(s)
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Table 1: Quantitative evaluation of different methods. COV, MMD,
1-NNA and ECD use Light-field-distance and their reference set
Sy is the test set of shape categories. FID is the abbreviation of

shading-image-based FID.

Data ‘ Method ‘ COV(%)T MMD| 1-NNA| ECD| FID| FPD|
IMGAN 72.57 3326 0.7042 1998  63.42  1.093

5 Implicit-Grid 82.23 3447 0.6655 1231 1195 1.456
S ShapeGAN 65.19 3726 0.7896 4171 1267  1.177
SDF-StyleGAN 75.07 3465 0.6690 1394  36.48 1.040

© IMGAN 76.89 4557 0.7932 2222 7457 1207
E Implicit-Grid 81.71 5504 0.8509 4254 1454 2341
£ ShapeGAN 60.94 5306 0.8807 6769 1624 2235
< SDF-StyleGAN 74.17 4989 0.8430 3438 6577  0.942
IMGAN 54.13 2543 0.8970 12675 141.2  1.391

5 Implicit-Grid 75.13 2549 0.8637 8670 209.3 1416
© ShapeGAN 57.40 2625 09168 14400 2252  0.787
SDF-StyleGAN 73.60 2517 0.8438 6653 9799  0.767
IMGAN 83.43 3012 0.6236 907 5170  1.022

= Implicit-Grid 85.66 3082 0.6318 1089 87.69 1.516
] ShapeGAN 76.26 3236 0.7069 1913 103.1 0934
SDF-StyleGAN 69.80 3119 0.6692 1729 39.03  1.061
IMGAN 71.16 5834 0.6911 701 103.3  2.102

2 Implicit-Grid 77.89 5921 0.6648 357 1254 1.904
& ShapeGAN 46.74 6450 0.8446 3115 1823 1.249
SDF-StyleGAN 80.63 6091 0.7180 510 64.86 0.978

of FID and FPD metrics can be perceived directly through visual
comparison. In Fig. 6, a set of chairs generated by each method is
illustrated for comparison. For IMGAN, their chairs have plausible
structures, but with bumpy geometry, probably because IMGAN
learned the voxelization artifacts in constructing the occupancy field
for the training data. For Implicit-Grid, its results contain many
missing regions and are also bumpy. The visual quality of its results
is the worst, although it has the best 1-NNA and ECD values among
all methods. The ShapeGAN results do not have voxelization-like
bump geometry, but the shapes are distorted compared to the train-
ing data. Our SDF-StyleGAN generates more geometry plausible
chair: the seats are flat, the local geometry is smooth, and the overall
structure is more complete. This significant improvement in geom-
etry and visual quality by our method is correctly reflected by the
FID values in Table 1. In Fig. 7, we also show the generated shapes
in other shape categories, and a similar conclusion remains. In our
supplemental material, we provide more randomly generated results
(240 shapes for each category) without any cherry picking. These
results further validate the capability and superiority of our method.

4.3. Ablation studies

We conducted a series of ablation studies to validate our framework
design, using the chair category from the ShapeNet dataset.

Efficacy of local discriminator and SDF gradients Five alterna-
tive configurations on using the global discriminator D¢ and the
local discriminator D;, were tested:

(1) use Dg only, and use the SDF values as input;

(2) use Dg only, and use both SDF values and gradients as input;

(3) add Dy, to (2), and use SDF values as input to Dy ;

(4) add Dy, to (2), and use SDF gradients as input to Dy ;

(5) our default configuration that uses both D and Dy and feeds
both SDF and SDF gradients to Dg and Dy..

Table 2 shows the evaluation metrics of SDF-StyleGAN trained
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Figure 6: Visual comparison of randomly generated chairs by different methods. The shapes in the last row are randomly sampled from the

training dataset.
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Figure 7: Visual comparison of randomly generated shapes by different methods on airplane, car, table and rifle. The shapes in the last row

are randomly sampled from the dataset.

with these configurations. By comparing (3), (4) and (5) with (1)
and (2), we can see that the addition of Dy, increases the perfor-
mance significantly; by comparing (2) with (1), and (4) with (3), we
can find that the use of SDF gradients increases performance by a
large margin. In Fig. 8, we visualize some shapes generated by the
networks corresponding to these five configurations. We can clearly
see that networks with the local discriminator produce more smooth
and regular shapes, and the use of SDF gradients effectively reduces
geometry distortion.

Candidate local region number Ny Local region selection is im-
portant to our training. A smaller Ny does not help to distribute the
selected local regions more evenly, while a much larger Ny cannot
ensure that the selected local regions are around the zero isosurface.
We tested three choices of Ny: 512, 2048, 8912, and found that
the default value 2048 can lead to better performance, as shown in
Table 3.

Feature-volume-based implicit SDF Our method benefits from
feature-volume-based implicit SDF. We did an ablation study by

Table 2: Ablation study on the use of local discriminator and SDF
gradients. G and L denotes the global discriminator and the local
discriminator, respectively. 0 and 1 denotes the use of SDF values
and the use of SDF gradients, respectively. The combinations of
G,L and 0,1 form the five configurations.

Config. | G0 Gl LO L1 | I.NNA| ECD, FID| FPD|

(1 0.8339 6280 1733 1335
2) 0.7642 3387 8546 1.198
3) 4 0.7124 2436 9235  1.111
“4) 0.6708 1541 39.17 1.123
(©) 0.6690 1394  36.48 1.040

AN N N NN
ANANA RN
AN

replacing it with discrete SDFs, i.e., letting the generator directly
output an N X N x N SDF grid. We use the global discriminator only
for this test. We tested two kinds of resolutions: N =32 and N =
64, and we also tested whether the additional SDF gradient input
can help improve these networks. Table 4 shows the performance
of these alternative networks, where the mesh extraction by the
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Table 3: Ablation study on the number of candidate local regions.

| 1-NNA| ECD| FID| FPD|

512 0.8875 4249 8590 2.597
2048 | 0.6690 1394  36.48 1.040
8192 | 0.6881 1870 4537  1.108

| §
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Figure 8: Visual illustration of the generated shapes by SDF-
StyleGAN trained with different configurations listed in Table 2.
In the first row we intentionally pick a four-leg chair from each
configuration for visual comparison. The shapes in the other rows
are randomly selected.

Marching Cube algorithm uses the same resolution of the SDF grid.
We found that the use of SDF gradients can significantly improve
the performance of these alternate networks, but there is still a
large performance gap between them and our default design. Fig. 9
illustrates the shapes generated by these alternative networks.

5. Applications

Based on the GAN inversion technique, we employed the trained
SDF-StyleGAN generator for a series of applications.

3D GAN inversion The goal of 3D GAN inversion is to embed
a shape into the latent space of GAN. To this end, we first use
an encoder network &£p to encode the input sample x to a latent
code z € Z or w € W, then feed the resulting code to our trained
SDF-StyleGAN model Fy, and optimize the parameters ¢ with the
following loss function:

‘C¢ |V| p;vl}—‘l‘) E(P( ) )

SDFgr (P)|, ®

where V is a set of points sampled inside a volumetric space that
contains x, SDF g queries the ground-truth SDF values of any point
with respect to x, and F (y; p) returns the predicted SDF value at
point p for a given latent code y. After training, we can directly map
x to a latent code y via network forwarding. The choice of encoders
is flexible and depends on the input type of x.

Shape reconstruction from point clouds We use SDF-StyleGAN
to reconstruct category-wise shapes from point clouds. We first
train the encoder of 3D GAN inversion on a shape category. We
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Table 4: Performance of an alternative network design that gener-
ates discrete SDF grids directly.

resolution  SDF gradient | FID| FPD|

323 X 156.0 2.097
323 v 104.6  1.532
64° X 1542 1323
64° v 80.26  1.792

N=32 N = 32/ with grad. N =064

N = 64/ with grad.

Figure 9: [llustration of the randomly generated shapes by the
alternative design of SDF-StyleGAN that generates discrete SDF
grids directly. "with grad." means the SDF gradients also be fed
into the discriminator.

choose a light version of octree-based CNN [WLG™17], which is
composed of 3 sparse convolution layers and 2 fully connected
layers. We optimize ¢ with an AdamW optimizer [LH19] for 200
epochs on a shape collection while keeping ¥ fixed. We use the 3D
GAN inversion to map an input point cloud to an SDF-StyleGAN
latent code via the trained encoder. The latent code can be further
optimized by minimizing the following loss function which forces
the SDF values at p to be zero:

Ly=-—= Y |Fs(y:p))l, )

\’P| pPEP

where P is a set of points sampled on the surface of x. In our
experiment, we optimize the code obtained from the encoder with
1000 iterations for each input point cloud x.

Fig. 10 shows some reconstructed shapes using our method, as
well as other state-of-the-art methods designed for surface recon-
struction, including Screen Poisson reconstruction (SPR) [KH13],
and three learning-based methods: ConvOcc [PNM*20],
DeepMLS [LGP*21], and DualOGNN [WLT22]). Each in-
put noisy point cloud contains 3000 points, where the noisy level is
the same as the noisy data used in ConvOcc, DeepMLS and Du-
alOGNN. As our latent code is constrained by the SDF-StyleGAN
space, the geometry of the reconstructed shapes respects the data
distribution of the training set of SDF-StyleGAN. We can find
that our approach is robust to noise, but has limitations in fitting
unusual shape details, such as the bumpy surface of the backrest
(Fig. 10-(d)), the additional backrest (Fig. 10-(e)), and the cabin of
the fighter plane (Fig. 10-(f)).
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Figure 10: Shape reconstruction. Inversion and Recons. denote the
reconstructed shapes via our GAN inversion and our reconstruction,
respectively. The shapes in GT row are the ground-truth shapes.
Here the point normals requested by SPR [KH13] are estimated
from 10 nearest points.

Shape completion It is easy to adapt the 3D GAN inversion for the
shape completion task. In this experiment, we randomly drop 75%
of the input point cloud x to train the encoder while keeping the
loss functions unchanged. The trained encoder maps the incomplete
input to a latent code that always corresponds to a plausible shape
due to the GAN training. We can further optimize the latent code via
minimizing Eq. (9). In Fig. 11, we test our method on the categories
of chairs and airplanes and compare it with a state-of-the-art point
completion cloud approach PoinTr [YRW*21], which is based on
a transformer architecture. We can see that within the shape space
constrained by SDF-StyleGAN, our method has a better ability to
reconstruct plausible shapes, even from a partial chair back (see
Fig. 11-(a)). However, similar to the behavior on shape reconstruc-
tion, our method has worse capability in fitting fine details, such as
the round joint of chair legs (see Fig. 11-(c)) and the wingtip of the
airplane (see Fig. 11-(f)); while PoinTr keeps the original points to
maintain the input geometry.

Shape generation from single images It is also easy to adapt the
GAN inversion to predict a 3D shape from a single image input. In
this experiment, the input sample x is an image, and we use a ResNet-
18 network [HZRS16] to encode the input. We trained the encoder
network on the airplane category, where the low-resolution training
images are from [CXG™*16]. Fig. 12 shows some results generated

(c) (d) (e) ®

Figure 11: Shape completion. The shapes in GT row are the ground-
truth shapes of the input point clouds. Our method can recover
plausible shapes from incomplete inputs.

4

DR R Y

Input Occ-Net IMSVR  Pixel2Mesh Ours GT

Figure 12: Shape generation from single images. The shapes in GT
column are the ground-truth shapes.

by our method, as well as some state-of-the-art methods including
IMSVR [CZ19], Pixel2Mesh [WZL* 18], Occ-Net [MON*19]. Our
method is able to predict plausible shapes from low-resolution im-
ages. The result in the last row shows a failure case that our method
does not generate the airplane engine, as the encoder does not map
the input to a good latent code.

Shape style editing To edit the attributes of facial images via GAN
model, Shen et al. [SYTZ20] assumed that for any binary semantics,
there may exist a hyperplane in the latent space serving as the
separation boundary. This hyperplane in the latent space can be used
for editing the image style. We adapted their approach to our SDF-
StyleGAN space for 3D shape style editing. We use the shape labels
provided in [MKC18] to divide the chair category into two groups:
chairs with and without arms. A DGCNN network [WSL*19] was
trained to infer whether an input chair contains arms or not. We then
randomly generated 10000 chairs using SDF-StyleGAN and divided
them into two groups using the trained classification network. As
the latent codes of these generate shapes are known, the hyperplane
n-x+d = 0 that separates these two groups can easily be computed.
For any generated shape or a shape obtained by GAN inversion,
we can change its latent code y to y—n(n-y+d)n, n > 0, to
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Figure 13: Shape style editing based on the algorithm of [SYTZ20].
The style editing on chairs is to add arms, and the style editing on
cars is to add car roofs.
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Figure 14: An example of shape interpolation in the Z space.

modify the shape style from “without arms” to “with arms”, or vice
versa. Similarly on the car category, we use the label “with roof”
and “without roof™ to find the separation plane and edit the shape
style. In Fig. 13, we demonstrate this kind of shape style editing,
and we find that the original geometry of the input shapes is also
well-preserved.

Shape interpolation A straightforward application is to perform
shape interpolation in the Z space, or the W space. Fig. 14 shows
the intermediate results of the interpolation between two chairs, in
the Z space. Due to the use of GAN model, each intermediate result
is plausible, and the transition of shape geometry between adjacent
frames is also smooth.

6. Conclusion

In the presented work, we offer a high-quality 3D generative model —
SDF-StyleGAN for shape generation, which is capable of producing

diverse and visually plausible 3D models superior to the state-of-
the-art. These significant improvements are ascribed to the design

of our global and local SDF discriminators, the choice of implicit

SDF representation, the use of SDF gradients, and the StyleGAN2

network structure. We evaluated the learned generative model using

suitable 3D GAN metrics, including our proposed FID on rendered

images, and demonstrated the capability of SDF-StyleGAN on a

series of applications.

Limitations A few limitations exist in our work. As there is no
explicit shape part structure utilized in our framework design, we
notice that a small portion of the generated shapes is not complete:
tiny and thin parts could be missing, as shown in Fig. 15. Increasing
the iso-value in extracting mesh surfaces can mitigate this issue,
but there is no guarantee. We also found that complex geometry
patterns such as various supporting beam layouts of chair backs,
are not learned by our network, possibly due to unbalanced data
distribution.

Future work Some research directions are left for future explo-
ration. First, using truncated SDF would help leverage higher reso-
lution ground-truth SDF during training to improve shape quality
while reducing memory footprint and computational time. Second,
our preliminary test on style mixing [KLA19] reveals that there is
some relation between the styles learned from the network and the
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v < 4

Figure 15: Incomplete shapes generated by our method. The thin
structures are not captured by the zero isosurfaces.

semantic structures of the shapes, but it is still difficult to make a
semantically meaningful disentanglement. Furthermore, it would be
very useful to extend our model to 3D scene generation.
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