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Figure 1: We synthesize images for novel views using a two-layer representation (a) where view-dependent and view-independent features
are predicted respectively. Our algorithm renders more accurate reflections (b) compared to existing methods that generate blurred and
incorrect results (c).

Abstract
Novel view synthesis (NVS) generates images from unseen viewpoints based on a set of input images. It is a challenge because
of inaccurate lighting optimization and geometry inference. Although current neural rendering methods have made significant
progress, they still struggle to reconstruct global illumination effects like reflections and exhibit ambiguous blurs in highly view-
dependent areas. This work addresses high-quality view synthesis to emphasize reflection on non-concave surfaces. We propose
Deep Flow Rendering that optimizes direct and indirect lighting separately, leveraging texture mapping, appearance flow,
and neural rendering. A learnable texture is used to predict view-independent features, meanwhile enabling efficient reflection
extraction. To accurately fit view-dependent effects, we adopt a constrained neural flow to transfer image-space features from
nearby views to the target view in an edge-preserving manner. Then we further implement a fusing renderer that utilizes the
predictions of both layers to form the output image. The experiments demonstrate that our method outperforms the state-of-the-
art methods at synthesizing various scenes with challenging reflection effects.

CCS Concepts
• Computing methodologies → Image-based rendering; Neural networks;

1. Introduction

To render more realistic images has always been the key goal in the
computer graphics community. Rendering techniques have evolved

† Corresponding author: seanxiening@gmail.com

enormously during the last few decades due to the growth of var-
ious applications and the rapid development of modern comput-
ing hardware. Photo-realistic images can be rendered through vari-
ous approaches including widely used rasterization and physically
based ray tracing. Indirect lighting contributes to the sense of real-
ity of an image in a tremendous way, methods like precomputed
radiance transfer [SKS02; SHHS03; SLS05; LSSS04] and radi-
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ance regression functions [RWG*13; QX14] achieve promising re-
sults and largely reduce run-time computations of traditional ray
tracing [Whi80]. However, these methods rely on extensive well-
defined scene parameters (e.g. geometry, lighting, and camera). In
order to overcome the trivial parameter configuration based on the
empirical knowledge, image-based rendering (IBR) infers geom-
etry and lighting from input images and uses them to render the
results for novel views. General 3D reconstruction algorithms like
structure-from-motion [SF16] and multi-view stereo [JP11; FP10;
SZPF16] are often adopted for camera calibration and coarse ge-
ometry reconstruction.

Deep neural networks improve IBR performance by coding
high-dimensional scene parameters of geometry and appearance
implicitly. Neural rendering methods are able to understand and
interpolate these parameters more reasonably. Most of them try to
learn a high-dimensional mapping from the spatial positions and
view directions to the output colors, which is described by the Light
Field (LF) function. LF is defined as the radiance at a point in
a given direction [LH96]. Classic LF rendering methods follow a
direct sampling-and-rendering process, which suffers from either
inaccuracy due to insufficient samples or overwhelming storage of
dense sampling. Recently emerged methods boosted with deep neu-
ral networks [MST*20; TZN19; CWZ*18] have made significant
progress on accurate synthesis based on limited source images.

Methods based on LF optimization vary in different geometry
representations (e.g. mesh, voxel, and point cloud). Voxel-based
methods [MST*20; ZSD*21; BBJ*21; GKB*21] regress on both
geometry and appearance, while mesh-based methods [CWZ*18;
TZT*20; CDSD13; TZN19; HRDB16; HPP*18] usually require
explicit geometry representations. Our algorithm tackles the novel
view synthesis problem by LF optimization based on meshed ge-
ometry. We only apply the LF function to mesh surfaces as Surface
Light Fields (SLF) [WAA*00] that can be regarded as a simplified
version of the rendering equation [Kaj86]:

SLF(P,Do) =
∫

Ω

f (Di,P,Do)Li(P,Di)|cosθ|dDi, (1)

where SLF(P,Do) is the outcoming radiance from surface point P
along direction Do, Li(P,Di) denotes incoming light that hits model
surface at point P from direction Di within the corresponding hemi-
sphere Ω, f (Di,P,Do) represents the bidirectional reflectance dis-
tribution function (BRDF), and θ is the angle between Di and Do.

Most existing algorithms for high quality novel view syn-
thesis are either blending-based [BBM*01; HRDB16; HPP*18]
or generation-based [CWZ*18; ZFT*21; MST*20; TZT*20;
TZN19]. Blending-based methods learn a strategy to blend im-
ages from nearby viewpoints, while generation-based methods syn-
thesize target images from neural scene representations. Despite
well-fitted diffuse color, these methods are prone to generate ei-
ther blurred or clear but wrong reflections. Flow-based implemen-
tations are limited due to the entanglement of the view-dependent
and view-independent features, which should follow different rules
when sampling from reference images. In this work, we solve this
problem by involving a reflection extraction step to reference im-
ages and adopt a neural flow to predict the reflection layer for each
target view. Thus, the SLF function is treated as two individual

components:

SLF(P,Do) = SLFvi(P)+SLFvd(P,Do), (2)

SLFvi(P) represents the view-independent part and SLFvd(P,Do)
represents the view-dependent part. We coarsely extract these two
layers from reference images, render each layer for the target views
respectively, and fuse the results to form the output images. We
adopt a learnable color texture to predict the view-independent
parts and extract reflection layers from source images, consider-
ing the high efficiency of texture mapping in both rendering and
optimization. For the view-dependent part, the appearance flow
model [ZTS*16] is adopted to refine the extracted reflection lay-
ers by exploiting the pixel coherence in 2D image space. At last,
predictions of both layers are combined using a CNN-based neural
renderer.

In short, we proposed a mesh-based novel view synthesis algo-
rithm Deep Flow Rendering (DFR) that achieves precise reflection
reconstruction, geometry correction, and consistent results for con-
tinuous frames. Our algorithm produces photo-realistic results in
multiple test scenes with challenging reflection effects while run-
ning at interactive frame rates.

2. Related work

We first introduce the general geometry inference step involved in
novel view synthesis algorithms and different approaches facing re-
construction imperfections in Sec. 2.1. Then, we introduce recent
works of novel view synthesis in two categories: generation-based
(Sec. 2.2) and blending-based (Sec. 2.3) methods. We also discuss
the appearance flow model and its advantages we leveraged to pre-
dict the neural reflection flow in Sec. 2.4.

2.1. 3D Reconstruction for novel view synthesis

IBR methods for view synthesis first infer geometry information
from input images and render target images based on the geome-
try. 3D reconstruction methods like multi-view stereo [JP11; FP10;
SZPF16] and those enhanced with RGB-D scanners [CZK15;
HDGN17] still cannot meet the demanding requirements of high-
quality rendering due to unavoidable loss of details.

Novel view synthesis algorithms implement various tech-
niques to correct the coarsely reconstructed geometry. Some of
them [CDSD13; CDD15; HRDB16; HPP*18] involve per-view
meshes to enhance the visibility at each view meanwhile keeping
the global structure as consistent as possible. Recent progress in
neural rendering [TZN19; HPP*18; RK20] has also proved the ef-
fectiveness of deep neural networks in correcting inaccurate ge-
ometry, which is a struggle for classic rendering. We adopt a deep
neural renderer that takes geometry information as input to correct
geometry imperfections.

2.2. Generation-based novel view synthesis

Rather than shading from manually designed parameters, neu-
ral rendering methods [MST*20; ZFT*21; TZT*20; TZN19;
CWZ*18] generate features or images from implicit neural scene
representations. Neural Radiance Fields (NeRF) [MST*20] learns
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a mapping from spatial position and view direction (p,v) to color
and density (c,d) using multi-layer perceptrons and renders images
through a classic volume renderer. Various improvements to NeRF
are proposed including relighting [BBJ*21; ZSD*21] and reflec-
tion synthesis [GKB*21]. NeRFReN [GKB*21] reproduces mirror
reflections at planar surfaces by decomposing the NeRF represen-
tation into transmitted and reflected parts. Recent methods of mul-
tiplane image [FBD*19; WPYS21] also achieve high-quality syn-
thesis of view-dependent effects. For mesh-based methods, Deep
Surface Light Fields [CWZ*18] fits the SLF function by mapping
viewpoints (x,y,z) and texture coordinates (u,v) to output colors
(r,g,b), Deferred Neural Rendering (DNR) [TZN19] uses a U-Net
for image generation. Park et al. [PHS20] achieve extrapolation of
views, which is often considered difficult. It is worth noting that,
most methods [TZN19; TZT*20; PHS20; MST*20; CWZ*18] de-
sign two-stream architectures to process spatial positions and view
poses separately, for such divided structures help reproduce view-
dependent effects in higher accuracy. In our work, we apply a more
explicit separation using reflection extraction to achieve accurate
reflection synthesis.

Texture mapping is a mature and flexible technique to fit com-
plex view-independent information. DNR [TZN19] proposed Neu-
ral Texture, which extends the channels of RGB color texture and
leaves some of the channels unconstrained. In DNR, neural textures
are trained end-to-end through a CNN renderer instead of exhaust-
ing manual configurations for different feature maps. DNR deals
with view-dependent effects by feeding the neural renderer with
view positions projected to Spherical Harmonic bases. It struggles
to reproduce highly view-dependent effects in experiments. We im-
prove the performance by directly feeding the neural renderer with
the predicted reflection layer at each target view to provide more
detailed view-dependent information.

2.3. Blending-based novel view synthesis

The other approach for novel view synthesis aims to find proper
weighting functions to blend nearby images smartly. Unstructured
Lumigraph Rendering (ULR) [BBM*01] proposed an effective
method to calculate per-pixel blending weights for nearby im-
ages by considering the differences of angle and distance terms
between the target and reference views. However, some regions
visible in target views are not ensured to be found in nearby
images due to occlusions. Thus obvious artifacts are often ob-
served around geometry boundaries. Inside-Out [HRDB16] im-
proves ULR by involving a band-width selection that adjusts pa-
rameters in the weighting function adaptively based on different
blending candidates. Methods using optical flow to align image
features [EDM*08; BYLR20] also outperform ULR at handling oc-
clusions. Lipski et al. [LLB*10] blend images in a tetrahedralized
navigation space with temporal registration and enable interpola-
tion of both space and time. Recent approaches [CDSD13; CDD15;
HRDB16; HPP*18; RK20] perform the per-view geometry refine-
ment and generate different meshes for each view that help better
align geometry edges. Deep Blending [HPP*18] utilizes a CNN
structure to calculate blending weights for a fixed number of "mo-
saics" which are pixel-wise selections of nearby images ranked by

the IBR cost [HRDB16]. It achieves accurate and stable results at
boundary regions.

Based on the implementation of Deep Blending, Rodriguez et
al. [RPHD20] improve synthesis quality at car windows using se-
mantic labels and approximated reflection flow. They explicitly cal-
culate the reflection flow assuming that the car windows are slightly
curved cylinder surfaces and achieve fast convergence. Xu et
al. [XWZ*21] handle reflections on planar surfaces in a geometry-
guided way. They follow the work of Sinha et al. [SKG*12] to
model the geometry of reflected objects by multi-layer stereo al-
gorithms. Our method utilizes a neural flow predictor to code the
geometry in reflection space and relax the harsh constraints for re-
flector surfaces to fit more general cases.

2.4. Appearance flow

Appearance flow represents a per-pixel mapping between im-
ages observed from different views. It was introduced by
Zhou et al. [ZTS*16] based on the spatial transformer [JSZ*15].
Various usages of appearance flow are implemented to predict vis-
ibility [ZTS*16; SHL*18], create bullet time effect [JLJ*18], and
inpaint corrupted images [RYZ*19].

In the original implementation of Zhou et al. [ZTS*16], a con-
volutional encoder-decoder architecture takes both nearby images
and their view poses as input, and outputs a full-resolution dense
flow. The final output image is synthesized by sampling the input
image according to the predicted dense flow. The core of this sys-
tem is a differentiable sampler that can backpropagate gradients
from image-space loss to previous stages. For an example of the
differentiable bilinear sampler:

Ii
t (Ir, f (r, t)i) = ∑

q∈Ψ

Iq
r (1−|x f (r,t)i

− xq|)(1−|y f (r,t)i
− yq|), (3)

where Ii
t denotes pixel i in the target image It , which is sampled

from reference image Ir around a given sampling center f (r, t)i.
f (r, t)i describes the pixel mapping from Ir to It and q is each pixel
inside valid sampling area Ψ around f (r, t)i. The weights are de-
signed in negative correlation with the distance terms along x and
y axes. During optimization, sampling centers are dragged towards
optimal positions to obtain larger weights for pixels in desire. The
target of the appearance flow model is to predict the full-resolution
flow f (r, t) for every possible pair of (Ir, It). For cases of multiple
input reference images, the appearance flow model blends each pre-
diction using another output channel as per-pixel blending weights.

Such a neural flow network exploits the coherence of features
in image space and reuses existing information in nearby views.
This pixel-level manipulation enables interpolating and transferring
features of interest across 2D pixel coordinates with comparably
low loss of details. In this work, we construct a constrained neural
flow predictor to synthesize the reflection layers at novel views.

3. Method

The motivation of this work is to synthesize photo-realistic reflec-
tion for novel views. Due to the entanglement of the reflection and
diffuse layers in reference images, it is difficult to obtain accu-
rate reflection effects by direct blending (Fig. 3). We propose Deep
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Figure 2: An overview of the Deep Flow Rendering framework. The feature maps (including warping flows for reprojection, diffuse predic-
tions sampled from texture, reflection directions representing view information, and vertex positions) for the reference and target views are
calculated in a differentiable rasterization pipeline. The flow predictor takes the reflection extraction (Sec. 3.1) result, the reflection direc-
tions of the target and nearby views, and vertex positions of the target view as input to synthesize the reflection prediction (Sec. 3.2) under
a sampling constraint (Sec. 3.3). The Fusing renderer (Sec. 3.4) combines predictions of both layers and the positionally encoded vertex
positions of the target view to form the output result.

Flow Rendering to tackle this problem. An overview of our algo-
rithm is presented in Fig. 2, and we introduce each component in
this section.

3.1. Reflection extraction

To achieve higher synthesis quality of reflections, we first perform
layer extraction to images being referenced, following the classic
assumption in the reflection removal problem: an image is the linear
combination of a diffuse layer and a reflection layer. We apply the
extraction at the target view, so a nearby image Ir is warped from
the reference view Vr to the target view Vt by bilinear sampling
according to a reprojection warping flow Fr

t that maps pixels from
Vr to Vt .

We train a learnable texture from scratch for diffuse predictions
leveraging recent progress on differentiable rendering [LHK*20].
The texture can represent the average appearance color stably af-
ter adequate training iterations. Underfitting the view-dependent
effects enables the extraction for reflection layers of images. De-
noting D̃t as the diffuse prediction at the target view Vt and forcing
the linear combination assumption, we extract the reflection layer
Rr

t at Vt by:

Rr
t = Ir

t − D̃t , (4)

where Ir
t is the reference image warped from Vr to Vt using the

corresponding flow Fr
t computed in the rasterization step. We also

calculate a visibility mask to select visible regions at the reference
view from the extracted reflection layer to enhance the robustness
when facing geometry occlusions.

As the reprojection warping aligns diffuse features of images,
reflection features (Rr0

t ,Rr1
t , ...,Rri

t ) obtained from nearby views
(Vr0 ,Vr1 , ...,Vri) are often misaligned (Fig. 3). Thus we further im-
plement a neural flow predictor (Sec. 3.2) to obtain clear and cor-
rect reflection effects.

Figure 3: Refine misaligned reflections: (a) warped and blended
reflection, (b) refined prediction, and (c) fusing result combining
diffuse prediction.

3.2. Reflection synthesis

We adopt a neural flow predictor to align and refine extracted reflec-
tion features for target views by pixel-wise replacement. Explicit
computation for reflection flows requires geometry in reflection
space, which is difficult to infer from curved reflector surfaces. To
this end, our flow prediction network is designed to learn the high-
dimensional mapping from the 3D geometry in reflection space to
the movements of reflected features in 2D images through a data-
driven approach.

As reflection extraction is considered an ill-posed problem, it
is impossible to obtain perfectly extracted results for all input im-
ages, whether in linear or gamma color space. As a result, the ap-
pearance flow model is prone to learn extraction errors in reflection
layers and often overfits reference views. In experiments, it fails
to make globally consistent predictions and results in non-smooth
changes between continuous frames. We design a modified appear-
ance flow [ZTS*16] network with a robust sampling strategy to
counter the challenge of processing reflection layers with errors.
Our insights lie in two points: (1) utilizing an additional channel in
the output layer, which performs as a pixel-wise confidence mask to
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suppress non-reflection errors in the extracted reflection layers, and
(2) setting a sampling constraint on the predicted flow to improve
the generalization ability of the system across different views.

Unlike the original appearance flow described in Sec. 2.4, we
provide geometry information as input, together with the pixel-wise
difference of the reflection direction feature maps at target and ref-
erence views. As shown in Fig. 4, our network outputs a pair of
re-scaling values [xi,yi] to apply the sampling constraint (Sec. 3.3),
a blending weight W ri

t , and a confidence mask Cri
t that learns to

suppress undesired values in non-reflection regions. All blending
weights are normalized by a softmax function and used to aggregate
reflection predictions R̃ri

t sampled from Rri
t . The refined reflection

layer at the target view Vt referring to a set N of n nearest reference
views can be calculated as:

R̃t = ∑
ri∈N

R̃ri
t Cri

t W ri
t . (5)

Figure 4: Steps of reflection synthesis. All intermediate values are
in full-resolution size as the input and output images.

3.3. Sampling constraint

As an unconstrained flow model is vulnerable to local optimums,
we propose a regularization method to constrain the reflection flow
used for sampling. This sampling constraint significantly improves
the frame-to-frame consistency as well as synthesis quality. We first
decompose the reprojection warping process into two independent
steps and apply the constraint using the decomposed features.

The relative change of two camera poses can be described as a
rotation and a translation. We treat the rotation and translation that
transform the image from the reference view Vr to the target view
Vt separately by involving a mid-stage view Vm as: Vm = rotate(Vr),
Vt = translate(Vm). The warped image at Vt can be obtained by two-
step warping using Fr

m and Fm
t instead of direct warping using Fr

t .
Such reprojection warpings align diffuse features in images, but re-
flections are misaligned. As shown in Fig. 5, the relative position of
the reflection and diffuse layers only changes with camera transla-
tions, while camera rotations keep these two layers visually "glued"
together. We leverage this information to sample reflection features
by modifying the second-step flow Fm

t that is responsible for the
camera translation.

In Fig. 6, we visualize how the incident rays from a reflected

Figure 5: Two-step decomposition of camera transformations.
Left: the reflected ray from P1 and a ray from P2 are originally
overlapped when observing from Vr. They separate when camera
moves to Vt as the ray from P1 is now reflected at P3. This deviation
happens with translation (right) and is irrelevant to rotation (mid-
dle).

Figure 6: Reflection movements on non-concave surfaces during
camera translations. The reflected ray originating from P1 hits the
camera at Vm with directions P2 →Vm. P4 →Vt is parallel to P2 →
Vm denoting the incident direction of P2 → Vm. When the camera
translates to Vt , the reflection feature at P1 moves to P3 in the planar
case (left) and P5 in the convex case (right).

point P1 and a diffuse point P2 change when the camera trans-
lates from Vm to Vt . Note that P1 and P2 are originally over-
lapped when observing from Vm. In the planar case, cameras at
Vm and Vt see the reflection of P1 from directions P2 → Vm and
P3 → Vt , and the angular difference is ̸ P4VtP3. Likewise, cam-
eras at Vm and Vt see the diffuse point P2 from directions P2 → Vm
and P2 → Vt , and the angular difference is ̸ P4VtP2. We have:
0 ≤ ̸ P4VtP3 ≤ ̸ P4VtP2 and similar relations can also be found
in the convex case (the point reflecting P1 moves from P3 to P5):
0 ≤ ̸ P4VtP3 ≤ ̸ P4VtP5 ≤ ̸ P4VtP2. So the incident direction of
P3 or P5 at Vt is within ̸ P4VtP2.

We know that the incident directions of rays determine the pro-
jected positions of the corresponding features in image planes. The
pixel mapping from P4 to P2 observing from Vt (corresponding to
the angular change of ̸ P4VtP2) is described by the previously ex-
tracted warping flow Fm

t . Thus, the desired P3 or P5 can be sampled
using a flow between [0×Fm

t ,1×Fm
t ] and it can be done by re-

scaling Fm
t . To further broadcast this assumption to more general

cases, we predict two individual scale factors for each dimension
of Fm

t . Therefore we derive our sampling constraint and form the
predicted reflection flow as Eq. 6, where RF(Fm

t ) denotes the re-
flection flow constrained with Fm

t and [x,y] is a pair of scale factors
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outputted by the neural flow predictor. Parameters ε and γ together
control the range of the output flow, we set ε = 0.05 and γ = 0.8 in
all experiments.

RF(Fm
t ) = ε+ γ · sigmoid([x,y]) ·Fm

t , (6)

We sample the reflection layer for the target view Vt based on
a reference view Vr by Eq. 7a, where Rr

m is the reflection layer
at Vm warped from Vr in the first-step warping. While following
Eq. 7a needs an additional rasterization step for Vm, we simplify
the computations and approximate the result by sampling the reflec-
tion layer Rr

t at Vt according to the re-scaled −Fm
t (Eq. 7c) instead.

Then the refined reflection can be formed as the weighted-sum of
all masked R̃ri

t following Eq. 5.

R̃r
t = sampling(Rr

m,RF(Fm
t )) (7a)

≈ sampling(sampling(Rr
m,F

m
t ),RF(−Fm

t )) (7b)

≈ sampling(Rr
t ,RF(−Fm

t )) (7c)

3.4. Fusing rendering

With both the diffuse and reflection predictions, it is common to
simply add them together to obtain the output image. However, the
summed results suffer from severe artifacts (Fig. 9). We adopt a
U-Net with skip connections [HZRS16] to fuse the diffuse and re-
flection layers into the output image meanwhile applying geometry
correction. We feed the neural fusing renderer with vertex positions
of the target view along with the two-layer predictions. Instead of
directly using the 3D vertex positions, we found mapping them into
a higher-dimensional space produces better results (Fig. 9). So we
apply a high-frequency positional encoding (L= 10) to vertex posi-
tions P (Eq. 8) and generate the final output image following Eq. 9.

PE(P) = [sin(20
πP),cos(20

πP), (8)

sin(21
πP),cos(21

πP),

...,

sin(2L−1
πP),cos(2L−1

πP)]

Ĩt = fusingRenderer(R̃t , D̃t ,PE(Pt)) (9)

4. Implementation details

We build the system on TensorFlow [MAP*15], access differen-
tiable rasterization through nvdiffrast [LHK*20], and use the Adam
optimizer [KB14] with β1 = 0.9, β2 = 0.99 and ε = 10−6. Con-
volutional layers in the flow predictor and the fusing renderer are
configured with kernel sizes of 4, strides of 2, and ReLU activations
except for the output layers. The RGB output of the fusing renderer
is constrained by a sigmoid function. Instance normalization is ap-
plied to the fusing renderer except for the last layer. The whole sys-
tem is jointly trained by 200K iterations of stochastic gradient de-
scent with a learning rate of 5×10−4 on an NVIDIA RTX TITAN
graphic card. We also apply random cropping of size 256×256 to
avoid overfitting.

4.1. Loss function

Our objective function includes four parts, an overall image gen-
eration loss, individual losses for the diffuse and reflection lay-
ers, and a temporal loss to enhance frame-to-frame consistency
(Eq. 10).

L = LG +LD +LR +LT . (10)

We first employ an l1 loss on the final output image Ĩt and the
ground truth image It . To enhance the visual similarity, we also ap-
ply a perceptual loss [JAF16] defined on the first and second ReLU
outputs of a pre-trained VGG-19 network. This helps the model
to converge by matching high-level perceptual features rather than
pixel similarity. We randomly select one reference view as the pre-
diction target at each training iteration. Our generation loss is de-
fined as:

LG(It , Ĩt) =| It − Ĩt | (11)

+ |V GGrelu1(It)−V GGrelu1(Ĩt) |
+ |V GGrelu2(It)−V GGrelu2(Ĩt) | .

We guide the two-layer representation to make stable predictions
respectively using two individual objective terms:

LD(It , D̃t) =| It − D̃t |, (12)

LR =| Rt − R̃t |+ ∑
ri∈N

| Rt −Cri
t R̃ri

t |
| N | , (13)

where Rt = It − D̃t is the ground truth reflection layer at Vt . LD
forces diffuse texture to learn the average color of all references.
LR valuates reflection prediction both before and after the weighted
blending, which helps the model learn to not only synthesize each
reflection layer but also blend them smartly.

Eq. 11, 12, and 13 guarantee photo-realistic synthesis for each
single target view, but the results still suffer from unstable flicker-
ing between continuous frames. To this end, we design two tempo-
ral loss terms to obtain more natural inter-frame transitions. Firstly,
we generate two close temporal views Vtemp0 and Vtemp1 between
two adjacent reference views and force their predictions to be as
similar as possible. Besides, as geometry recovered from images
usually contains highly fragmented faces that can only be seen at
very limited views, diffuse predictions from texture mapping often
run into an undersampling problem. We solve it by warping an ad-
jacent reference image to Vtemp0 and use it to optimize the texture.
So our temporal loss is set to be:

LT = LG(Ĩtemp0, Ĩtemp1)+LD(I
r
temp0, D̃temp0). (14)

4.2. Data acquisition

We record unstructured videos with a hand-held iPhoneX and ex-
tract reference images with an averaged angular difference of 6◦.
These reference images are then used to reconstruct the coarse ge-
ometry using COLMAP [SF16; SZPF16]. Then we apply automatic
uv-unwrapping, HC Laplacian smoothing [VMM99], and quadric
edge collapse simplification [GH97] to the reconstructed mesh.
Synthesis data are rendered through Mitsuba2 [NVZJ19]. We de-
fine N as a set of the nearest n reference views to the target view
and set n = 4 as default (see comparisons in Fig. 10).
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Figure 7: Comparisons for real data: (a) synthesis result of our method, and (b)-(f) close-ups for reflection regions. Our method generates
correct shapes for reflections in the Tea cup and Xi pot scene. We also reproduce clear light bulbs in the Blue vase scene and the reflected
corner in the Photo frame scene, where other methods failed.

Testing images are extracted from the same video as those for
training and are registered to the existing reconstruction project.
This local registration step generates a set of camera calibrations
for testing, while keeping the 3D model recovered from training
images unchanged. We manually select the target objects from ren-
dered images to better present some example figures in this paper.

5. Results

In this section, we compare our algorithm with the state-of-the-art
methods on both real-captured and synthetic data. Then, we analyze
the validity of each component in our system.

5.1. Comparision

For real data, we compare with Deferred Neural Rendering
(DNR) [TZN19], Deep Blending [HPP*18], and the classic ap-
proach of Unstructured Lumigraph Rendering (ULR) [BBM*01].
Our method synthesizes more accurate reflections (Fig. 7), and also
achieves higher scores under multiple metrics (Table 1).

Table 1: Average scores across all testing scenes

Metrics DFR (ours) DNR Deep Blending ULR
L1 ↓ 0.0192 0.0230 0.0720 0.0783

VGG ↓ 0.0028 0.0033 0.0088 0.0098
PSNR ↑ 32.905 30.214 20.574 19.759

Figure 8: Comparisons for synthetic data: the china vase and
metal ball reflect the surrounding environment. Our algorithm gen-
erates more accurate reflection boundaries than DNR.

For the synthetic data, known meshes are employed. We chal-
lenge the algorithms with highly reflective materials (china and
metal), and ours produces clearer results compared to DNR (Fig. 8).
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Figure 9: Geometry correction test. In this scene, the reconstructed geometry falsely fills a big hole. Our full method produces the clearest
result compared to our ablated models and other methods.

Our method is able to reproduce mirror reflections on curved sur-
faces based on accurate geometry. However, it is still challenging
in real scenes because the 3D reconstruction method we adopted
fails to recover mirror-like surfaces. As our system is agnostic to
a specific reconstruction algorithm, it will benefit from future im-
provements in geometry inference techniques.

5.2. Ablation study

We conduct an ablation study to examine the effectiveness of the
key components in overall synthesis quality and geometry correct-
ness. Then we investigate the influence of the number n of nearby
reference images at rendering.

Table 2: Ablation scores for the Tea cup scene.

Methods L1 ↓ VGG ↓ PSNR ↑
Full method 0.0206 0.0027 32.128
w/o Reflection flow 0.0267 0.0052 29.512
w/o Sampling constraint 0.0239 0.0047 30.770
w/o Confidence mask 0.0256 0.0049 30.072
w/o Fusing renderer 0.0213 0.0027 31.602
w/o Temporal loss 0.0196 0.0037 32.483

Table 2 shows that all components help produce more accurate
predictions except the temporal loss. However, the temporal loss
is essential to maintain multi-frame consistency that significantly
improves the sense of reality (please refer to supplementary videos
for details). Thus we consider the slight drop in accuracy accept-
able. We also set the gap between the two temporal views in Eq. 14
user-configurable to balance the trade-off between single-frame ac-
curacy and multi-frame consistency.

We show a case with severe geometry errors in Fig. 9. Inaccurate
geometry involves conflicts in depth estimations when observing
from multiple views, and results in flickering and blurring in out-
put images. The results in Fig. 9 show that models with the neural
flow (yellow label) better align geometry edges, the fusing renderer

Figure 10: A test of referring to different numbers of nearby im-
ages when rendering the Xi pot scene. The model contains around
5×104 triangles, and the output resolution is 640×640.

significantly alleviates noise, and positional encoding further helps
recover more details. As DNR relies on the neural texture which
is highly correlated to the reconstructed mesh, it results in artifacts
around regions with inaccurate geometry.

Another experiment is conducted to test how the number of refer-
ence images n influences the rendering speed and synthesis quality
(Fig. 10). We set n = 4 at training and test different values for n at
rendering. The result shows that increasing n slows down rendering
speed and increases the error rate. We consider the optimal values
for n are between 2 and 5.

6. Conclusion

In this work, we have presented Deep Flow Rendering for interac-
tive novel view synthesis with accurate reflections on curved sur-
faces. Our method outperforms multiple state-of-the-art methods
by exploiting image-space coherence using the constrained reflec-
tion flow. It is also robust at repairing geometry errors and preserv-
ing frame-to-frame consistency.

For limitations, this algorithm relies on the reconstructed mesh;
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it fails when the inferred geometry is heavily corrupted. Like many
IBR algorithms, ours is good at interpolating views, but extrapola-
tion quality is not guaranteed. Complex reflections on concave sur-
faces are not included. Besides, this is a scene-specific algorithm
that should be trained for each particular scene. In future works,
we look forward to exploring improvements that expand the gener-
alization ability across multiple scenes and involve more degrees of
freedom for scene parameters to enable interactive scene editing.
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