DOI: 10.1111/cgf. 14548

Eurographics Conference on Visualization (EuroVis) 2022
R. Borgo, G. E. Marai, and T. Schreck

(Guest Editors)

Volume 41 (2022), Number 3

SimilarityNet: A Deep Neural Network for Similarity Analysis
Within Spatio-temporal Ensembles

Karim Huesmann

and Lars Linsen

University of Miinster, Germany

Abstract

Latent feature spaces of deep neural networks are frequently used to effectively capture semantic characteristics of a given
dataset. In the context of spatio-temporal ensemble data, the latent space represents a similarity space without the need of
an explicit definition of a field similarity measure. Commonly, these networks are trained for specific data within a targeted
application. We instead propose a general training strategy in conjunction with a deep neural network architecture, which
is readily applicable to any spatio-temporal ensemble data without re-training. The latent-space visualization allows for a
comprehensive visual analysis of patterns and temporal evolution within the ensemble. With the use of SimilarityNet, we are
able to perform similarity analyses on large-scale spatio-temporal ensembles in less than a second on commodity consumer
hardware. We qualitatively compare our results to visualizations with established field similarity measures to document the
interpretability of our latent space visualizations and show that they are feasible for an in-depth basic understanding of the

underlying temporal evolution of a given ensemble.

1. Introduction

Spatio-temporal simulations of natural phenomena based on math-
ematical models are ubiquituous in the sciences. Typically, multi-
ple simulation runs are performed to investigate the model’s de-
pendence on different initial configurations or input parameters.
The analysis of such simulation ensembles requires visualization
methods that handle the ensemble as a whole. Common analysis
tasks such as detecting clusters of simulation runs or outliers, in-
vestigating the temporal evolution of simulation runs such as con-
verging or diverging behavior, or the detection of key timesteps
with sudden changes can be supported by computing field simi-
larities and mapping the similarity space to a visual space. Dif-
ferent field similarity measures have been proposed in this re-
gard [FL19,NNN11,FML15,EHNP04,STS06] to capture different
similarity aspects. A drawback of this approach is that a similar-
ity matrix whose entries contain all pairwise field similarities needs
to be computed to define the similarity space. For large ensembles
with a high number of timesteps and runs, the matrix becomes big
and its computation becomes expensive.

Latent spaces of deep neural networks have shown their effec-
tiveness to capture semantics in data within many application sce-
narios [SWG*19, HTW18, TFE21]. In this paper, we aim at ex-
ploiting these capabilities to visualize temporal evolutions within
spatio-temporal simulation ensembles using a latent space visual-
ization. We propose a respective deep neural network architecture
that is targeted at creating latent spaces, which capture characteris-
tics of spatio-temporal data and can be mapped to a visual space.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Moreover, we propose a novel training strategy that allows us to
apply our approach to any spatio-temporal ensemble dataset from
any application domain without re-training the neural network with
data-specific inputs. Our training strategy is based on the creation
of a set of random spatial data that evolve over time with respect to
some basic functions. We show that when having trained the net-
work with this dataset, it is capable of capturing respective trends
in unseen data.

Our deep neural network, to which we refer as SimilarityNet, is
based on a combination of a transformer and an autoencoder ar-
chitecture. Transformer networks are currently the best performing
network architecture for sequence-to-sequence tasks like language
translation, image captioning, conversational models, and text sum-
marization. Therefore, we use a transformer layer to handle sequen-
tial temporal data. This layer allows us to handle long sequences of
varying lengths. The latent space is generated using an elementary
autoencoder structure.

With the help of SimilarityNet, we are able to create 1D em-
beddings of unseen spatio-temporal datasets that can be used for
similarity analysis of individual time steps. By plotting the 1D em-
beddings over time, the temporal evolution of a simulation run is
depicted in a 2D layout, which effectively supports the comparison
of different simulation runs within an ensemble.

Our main contributions can be summarized as follows:

e A deep neural network architecture, whose latent space cap-

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

www.eg.org diglib.eg.org

https://orcid.org/0000-0002-3928-1546
https://orcid.org/0000-0002-6168-8748
https://doi.org/10.1111/cgf.14548

380 K. Huesmann & L. Linsen / SimilarityNet

tures the similarities in spatio-temporal ensemble data without
the need for an explicit definition of a field similarity measure.

e A training strategy that makes SimilarityNet generally applicable
even to unseen data.

e A latent-space visualization to show temporal evolutions of sim-
ulation runs within an ensemble.

e Experiments on synthetic and multiple real-world ensemble
datasets to document the interpretability of the latent-space vi-
sualizations.

e A technique to efficiently create 1D embeddings on large
datasets.

2. Related Work
2.1. Multi-Run Spatio-temporal Similarity Visualization

Research in the analysis of spatio-temporal multi-run simula-
tions has brought forth many different visualization approaches
that address the complexity of this type of data in different
ways [WHLS19]. Ensemble data emerge from many scientific do-
mains, where some fields require unique visualization frameworks
[FFH21, LHFL19]. A variety of visualizations aim to understand
the influence of simulation parameters better [KSHW21, Ham94,
BPFGI11]. Here, many works focus on visually representing the
similarity of different runs [FML15]. This helps the analyst to get
an overview of the temporal evolution of individual runs as well
as the ensemble as a whole. The identification of groups of high
similarity or clusters within an ensemble provides insight into how
the variation of simulation parameters affects their temporal evolu-
tion. For the generation of similarity plots, different strategies for
dimensionality reduction methods can be applied to define embed-
dings of the similarity space. The generation of the similarity space
depends on the choice of a distance measures, where different dis-
tance measures can highlight different characteristics of the given
ensemble [FJC*19, FL19]. The choice of an appropriate distance
measure, thus, may significantly impact the analysis outcome. We
propose SimilarityNet, where the generated similarity plots stem
from a latent space visualization that is learned from data with-
out choosing and applying a specific distance measure. Moreover,
computing distance matrices to be fed to dimensionality reduction
methods to create the similarity space embeddings is actually com-
putationally costly. SimilarityNet, on the other hand, allows for a
direct mapping of data into the latent space, which is computa-
tionally light-weight. The resulting visualizations we obtain from
SimilarityNet are 1D embeddings plotted over time. Several works
have successfully documented that analyzing the evolution of sim-
ulation runs as 1D embeddings over a time axis can help under-
standing temporal patterns in a given simulation run or an ensem-
ble [JFSK15,FL19, FML15, LHFL19,NL20].

2.2. Deep Neural Networks for Visualization

Recently, many visualization approaches have been established
that use deep neural networks to gain a better understanding of
a dataset to be analyzed [WCWQ21]. Here, often an emphasis is
put on the output of the networks. More precisely, the outputs of
these networks represent already the final visualization. Genera-
tive networks like generative adversarial networks (GAN) or varia-

tional autoencoders make up the majority of the selected architec-
tures [WITW20, HZCW21, HWG™* 19, LSS*19, WZH19]. Besides
the direct generation of visualizations, some works also target the
learned features within a network. Here, one exploits the property
of deep neural networks that they learn a feature representation of
the input after each layer. Deep autoencoders are networks that are
specifically designed to encode an arbitrary input into a latent fea-
ture space representation, from which they can, in turn, decode
the original input. Porter et al. [PXvO™19] perform a dimension-
ality reduction of the latent feature descriptors and select repre-
sentative timesteps in the projected space for time-varying mul-
tivariate datasets. Sun et al. [SWG™19] and Han et al. [HTW18]
use the latent feature space of autoencoders for clustering within
spatio-temporal datasets. Jo et al. [JS19] use autoencoders to trans-
form a (64x64x1) scatter plot image to a (32x1) feature represen-
tation to perform further in-depth analysis. Tkachev et al. [TFE21]
developed an autoencoder-based approach that enables interactive
example-based queries for similar behavior in ensembles of spatio-
temporal data.

Transformer networks represent a network architecture that
shows its strengths primarily in processing sequential inputs and
outputs. Transformer-based architectures have shown state-of-the-
art performances in several neural language processing [WDS*20]
and computer vision [DBK*20] tasks. Thus, several visualization
methods have been developed, which utilize transformer networks
[NKWW?21,JKV*21] with a particular focus on the analysis of the
attention mechanism [Vigl9, AZ20,CGW21].

All these works have in common that in order to create new visu-
alizations, the proposed networks have to be trained for the specific
dataset. They generalize for the given problem but have to be re-
trained or transfer-learned for new kinds of data. SimilarityNet, in
contrast, is trained once on a single dataset. Afterwards, it can be
applied to unseen data of different application scenarios without
re-training.

3. SimilarityNet

In this section, we describe SimilarityNet, a deep neural network
with a latent feature space that captures the characteristics of tem-
poral evolutions of spatio-temporal ensembles. It is trained with
a generic phantom dataset, whose generation is detailed in Sec-
tion 3.1. The deep neural network architecture is explained after-
wards in Section 3.2, the training process in Section 3.3 and the
obtained visualization in 3.4.

3.1. Training Data Generation

Spatio-temporal ensembles often consist of a large number of
timesteps and a considerably high spatial resolution leading to a
large number of spatial samples, especially when dealing with vol-
ume data. This leads to rather large datasets that usually cannot
be fully stored in the system’s working memory. For many algo-
rithms and methods, this poses a problem, which is why various ap-
proaches have been developed to deal with the large memory over-
head [HGSP18, FL19, HHB15]. One effective approach is Monte-
Carlo sampling of individual volumes [FML15], which drastically
reduces memory requirements while preserving information of the

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

K. Huesmann & L. Linsen / SimilarityNet 381

Figure 1: Monte-Carlo samples of 16 timesteps of ensemble a)
White dwarf, b) Semiconductor, c) Deep Water Asteroid (water)
datasets. Further information about the datasets can be found in
Section 4.

volume with a negligible loss and adapting to any kind of spatial
dimensionality. The underlying assumption is that the spatial varia-
tion of fields is continuous or even smooth, which is commonly true
for physical simulations. Thus, sampling the space with a signifi-
cantly lower amount of data samples suffices to capture the main
spatial distribution, and the random character of Monte-Carlo ap-
proaches ensures that all spatial regions are captured [FML15].

Given a 4D ensemble with R simulation runs, each run r €
{0,...,R — 1} consisting of 7; timesteps #, n € {0,...,T — 1},
we perform a Monte-Carlo sampling by selecting k random spatial
samples s) from the given field with a consistent spatial distribu-
tion for all #;/. Thus, we use the same random sample locations
for each volume of all timesteps of all simulation runs, which al-
lows us to maintain spatial information and to perform a respective
comparison between the fields. The higher the number of chosen
samples is, the better the spatial information is captured. Examples
of s} for different timesteps #; of a selected simulation run r for
different datasets are shown in Figure 1. Although the intensities of
the samples are obtained from the spatial position of the continuous
or even smooth scalar fields, it appears that these distributions re-
sembles random noise due to the random distribution of the spatial
samples.

We take advantage of this characteristic by designing a dataset
consisting of multiple time series with artificially generated noise.
This dataset acts as a phantom dataset for Monte-Carlo sampled
spatio-temporal ensembles and covers the same range of values as
our original normalized samples. To create time series, we induce a
temporal evolution on our artificially generated noise data by apply-
ing several temporal basis functions. An excerpt from this dataset
can be found in Figure 2. Here, eight different temporal functions
including constant (const), random (rand), sinus (sin), cosine (cos),
linear (lin), and square (sq) functions for the temporal evolution are
used. Inverse variants of linear and square functions are also present
in this dataset but not shown in the figure. These basis functions are
applied to the intensity of the random distribution over time. The
basis functions were selected to represent common temporal behav-
iors of smooth physical phenomena. The figure shows time series
for Gaussian noise distributions, but the complete dataset also holds
the same variations for uniform random and Poisson distributions.
In total, we generated a phantom dataset with 24 runs, each with
up to 256 timesteps, and for each timestep we used k = 16,384
“spatial” samples.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

lin const

rand cos sin sq

Figure 2: Excerpt of the phantom dataset. Here we can see 6 differ-
ent functions which are applied over time to a random distribution.

3.2. Network Architecture Design

We have designed SimilarityNet to not only be able to accept arbi-
trarily many timesteps as input, but also to translate this input into
a low-dimensional latent space representation. For this latent space
projection we have chosen an autoencoder network architecture.
Today, dimensionality reduction for data visualization is considered
a typical application of autoencoders. With appropriate constraints
on dimensionality, autoencoders can learn data projections that are
more insightful than standard dimensionality reduction techniques
such as prinicpal component analysis (PCA) [AEE17, CYLL18].
Autoencoders, also referred to as Siamese Neural Networks or U-
Net, are automatically learned from data examples in an unsuper-
vised fashion. That means that we can train specialized algorithm
instances that work well on a particular input type. This does not
require new engineering, only the appropriate choice of training
data.

Figure 3 shows an overview of the architecture of SimilarityNet
and illustrates the data pipeline. Our autoencoder consists of three
main parts:

1. &: R* = R/ (Encoder with dimensionality reduction)
2. =R =R (Latent feature transformer processing)
3. 8: R! = R¥ (Decoder)

Technically, the full encoder is made up by the functions € and
T and the decoder of 8. The network’s input is defined as X" =
{sh,s,...sht,si eRFie{0,...,T},r € {0,...,R}, where 5" are
samples as described in Section 3.1. The goal is to reconstruct a
given input X", such that

d(t(e(x"))) =X". 1

The first part of SimilarityNet, €, is a straight-forward funnel
structure, where we reduce the input’s dimensionality in every
layer. Here, we select a projection dimensionality d, which defines
the number of neurons in our first fully connected layer. Now, we
consecutively reduce the dimensionality of the subsequent layers
until we reach the desired latent space dimensionality /. Therefore
we refer to €(X") as being our latent space representation.

The next part of SimilarityNet, T, takes the latent space repre-
sentation €(X") as an input and handles the sequential nature of our
data. Here, we chose a transformer layer which processes €(X")
before decoding. Self-attention architectures have recently shown
breakthrough success in sequence-to-sequence tasks like natural
language processing (NLP), achieving state-of-the-art results in

382 K. Huesmann & L. Linsen / SimilarityNet

Encoder € Transformer layer T Decoder &
)
_|§ N o .
— —
x = = Q = = = = = % < >j =
5c Lt > 2 Lo € > € S L < —>@——> c > - £ > a-
Q c - - - - 3 - -
5 Q o) o) Q 2 - a S o
£ s = S = =2 = = S = o~
—— — — N —
— —

D Input / Output D Fully connected D Layer normalization D Multi-head attention * Latent Space —> LeakyRelLU

Figure 3: Schematic depiction of SimilarityNet’s architecture. All layers have been color-coded by it’s type. The network is split into three
parts: 1. the encoder € which generates the latent feature representation; 2. the transformer layer T, which processes the latent representation;
3. the decoder & that is trained to decode the transformer layer’s output back to the original input X. The output shape of all layers
is also shown in every step (b: Batch size, k: Sampling dimensionality, n: Timestep count, d: Projection dimensionality, l: Latent space

dimensionality).

language modeling and machine translation [WDS*20, DBK*20].
They can effectively preserve information over long time horizons
and scale to large amounts of data. Our chosen architecture for the
transformer layer 7 is derived from the transformer layer as pro-
posed in [VSP*17]. In contrast to the transformer architecture in
[VSP*17], positional encoding is not being used in SimilarityNet.
This design choice makes it possible to enter sequences of arbitrary
length into the model. The essential component of the transformer
layer is the self-attention (or multi-head attention). The purpose of
the self-attention is to calculate the correlation of an input sym-
bol to all other input symbols. In our context, symbol stands for
timestep samples. The self-attention algorithm uses three trained
weight matrices to obtain the three entities query (g), key (k), and
value (v). Query and key define the pairwise relationship between
the elements of the sequence, and value establishes the context of
the analyzed element. The three vectors g,k,v are calculated by
multiplying €(X") with the matrices Q, K and V, which are learned
by training, i.e.:

g=¢eX")-0
k=e(X")-K)
v=g(X")-V

From these computations, the score s is calculated by
s=q-k. 3

The Softmax function G is then applied to s and multiplied by the
value vector v. This leads to the result that symbols, which are not
important for the semantic, are multiplied with a small value and
symbols which are important for the semantic are multiplied with
a high value [VSP*17]. The output of the attention module z is
therefore defined as:

=)V @

where we divide by the square root of the length of the key-vectors
dim(k) to guarantee more stable gradients.

After encoding the input T(e(X")), we decode this representation
to reconstruct X" using 8. For this, analogous to €, we have designed
an inverted funnel that successively increases the dimensionality of
the data from / to d to k.

We made several design iterations to determine a network archi-
tecture that generates the desired outputs with the fewest amount of
network parameters. Here, we also tried to remove the transformer
layer. The adjusted network then still produces outputs that are in
many cases comparable to the transformer variant, but on closer ex-
amination we observed that, when not using the transformer layer,
the network does not overfit as much as described in Section . In or-
der to create comparable results without the transformer layer, we
would have to increase the projection dimensionality d, which di-
rectly leads to a significantly higher number of trainable parameters
in the network.

3.3. Training

In principle, SimilarityNet is trained like a standard autoencoder
network. We input time series of spatial samples into the network
and expect them to be reconstructed by the network. Given an input
X", we minimize the mean-squared-error loss L given by

L(X") = E(||x" = 8(z(e(X"))[*)-

Our training takes place merely on the phantom dataset described in
Section 3.1. Here, the network is trained so that it can reconstruct
the phantom data almost perfectly. In fact, the network is trained
until the latent feature representations of the phantom data can be
represented by a constant if possible (see Figure 4). The network is
thus strongly overfitted to the training data.

By overfitting the network to the phantom dataset and learning
constant latent outputs, any input to the network that deviates from

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

K. Huesmann & L. Linsen / SimilarityNet 383

the training data generates latent outputs that diverge from the con-
stants. The more training data have been overfitted and the more
runs generate constant latent outputs, the better the difference to
the training data is captured.

As soon as a new, unseen run X; is being processed by Similari-
tyNet, we obtain €(X;) = x;, a latent representation of each timestep
of X. Ensembles are usually created repeatedly for one and the
same phenomenon for different simulation parameters or initial se-
tups. Despite their intended differences, there is a notable degree of
similarity in the general structure and spatial layout across all sim-
ulation runs of the ensemble. Consequently, if another run X; from
the same ensemble is processed by SimilarityNet, then the outputs
€(X;) = x; are correspondingly similar to x;, yet distinguishable
enough for an in-depth similarity analysis of the ensemble mem-
bers and their evolution.

Our experiments show that these inter-run feature differences
show strong similarities to other established embedding methods,
which gives us the possibility to use SimilarityNet for a similarity
analysis.

3.4. Latent Space Visualization

For the visualization of any (unseen) spatio-temporal ensemble, we
first perform a Monte-Carlo sampling with the same spatial sam-
pling pattern on 2D or 3D fields of each timestep and each simula-
tion run. The simulation runs are then fed to SimilarityNet to create
the latent space representation of each timestep for all runs. For its
visualization, the latent space representation is plotted over time
while connecting consecutive timesteps of each simulation run to
form a line. The outcome is a similarity plot, where the x-axis rep-
resents the time dimension of the simulations, the y-axis represents
the latent space, and each simulation run is shown as a piecewise
linear curve over the time period spanned by the respective simula-
tion run, see Figure 4. Hence, the visualizations depict the temporal
evolution of the ensemble and its members, where similar ensem-
ble members are expected to stay close together, while trends such
as diverging or converging behaviors should be captured and rec-
ognizable. We refrain from labeling the y-axis with its scale, as the
respective values are created by the network and do not represent
interpretable numbers.

Due to the fact that the network is strongly overfitted to the phan-
tom dataset to produce constant values for it, the latent dimensions
result in an almost identical outcome. Thus, for the analysis we can
restrict ourselves to one latent dimension by picking any of the two
latent space dimensions. In the following results, we selected the
first latent dimension for our visualizations leading to 1D embed-
dings.

4. Results

In this section we are going to test SimilarityNet on various spatio-
temporal ensemble datasets to document its effectiveness in captur-
ing similarities and temporal evolutions of the ensemble members.
We compare the similarity plots generated by SimilarityNet with
those obtained by dimensionality reduction methods using two dif-
ferent distance metrics.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

4.1. Dimensionality Reduction

We will compare our method against two Multidimensional Scaling
(MDS) projection approaches. Here, we use MDS with two differ-
ent distance functions. We consider MDS to be the most suitable
dimensionality reduction method, as it minimizes stress, i.e., the
distances computed by the chosen distance functions are preserved
as much as possible during projection.

The first distance function computes field similarity (FS) [FL19].
Assuming that the field is normalized to the unit interval [0, 1], the
field similarity distance Dpg(A, B) is defined as

Y0 (1 — max(a;, br))
L% (1= min(a;. bi))
where A = (ag,...,a;_1) and B= (by,...,by_1) are the vectors of
field values at the kK Monte-Carlo sample points. Fofonov and Lin-
sen [FL19] showed in a comparative study that this field similar-
ity has desirable properties for computing distances within spatio-
temporal ensembles.

DFS(A7B) =1-

()

The second distance function is based on the Pearson correlation
coefficient, to which we refer as correlation similarity (CS). Using
the same notations as above, the Pearson correlation coefficient is
defined as

Yio (@i—A)-(bi—B)
"AB =
VI (- A2 X (- B

where A and B denote the mean values of A and B, respectively.
In order to transform rypg to a normalized distance D¢g(A,B), we
perform the operation

(6)

Dcs(A,B) =1~ s+l

(7)
that assigns high correlated fields (r45 = 1) a value of 0 and anti-
correlated fields (rap = —1) a value of 1.

For all MDS plots, we use the first principal component and plot
the 1D embeddings over time in the same way as we display our
similarity plots, cf. Section 3.4.

4.2. Experimental Setup

To generate the following results, SimilarityNet was trained once
on the phantom dataset and then applied to the different ensem-
bles. In order to find the best size of our proposed architecture,
we gradually decreased the layers’ dimensionalities and observed
the training outputs (see Figure 4). We aimed at getting as many
constant outputs as possible while decreasing the number of neu-
rons per layer. The architecture can be seen in Figure 3. For train-
ing, we use LeakyReL U activation after all fully connected layers.
Throughout our experiments, we found that this choice of activa-
tion function produced the fastest and most stable trainings. We use
the Adam optimizer with a variable learning rate of 0.01 (reduced
by 0.1% after each epoch), B; = 0.9, B =0.98, and € = le — 9.
Our chosen loss function is the mean-squared error. The training
takes place in batches of 8 runs. In total, we trained the network
for 500 epochs, which took approximately 1 second per epoch on a
MacBook Pro Laptop from 2021. The inference of a single run with

384 K. Huesmann & L. Linsen / SimilarityNet

0 50 100 150 200 250
time

Figure 4: Encoder € of the phantom training data after 500 epochs
of training. All variations except the cosinus basis function of a
Poisson noise distribution (gray oscillating curve) are represented
by a constant over time.

about 256 timesteps takes 0.03 seconds on average. For the number
of Monte-Carlo samples, we chose k = 16,384 samples [FML15].
We chose the projection dimension to be d = 8. Our latent space
has a dimensionality of / = 2. We found this setup to be the best
compromise between having a good reconstruction of the training
data and network size. The resulting network has a size of approx-
imately 1.7 Mb.

The resulting latent space visualizations of the phantom data can
be seen in Figure 4. Here, all except one run have been encoded by
a constant.

The SimilarityNet visualizations for all tested datasets (see be-
low) use the same network with the same weights (i.e., the same
training). To reduce clutter in the final similarity plots, when ap-
propriate, we chose to plot each run in a separate row while each
column (approach) shares the same y-range (e.g., Figure 6). If the
clutter is negligible, we plot all runs in the same plot for each ap-
proach (e.g., Figure 4).

4.3. Synthetic Ensemble

First, we created a synthetic dataset that allows us to evaluate and
compare the inter- and intra-run similarity intuitively. The cho-
sen dataset consists of 256 timesteps with a spatial resolution of
256 x 256 and uses a 2D Gaussian distribution with a standard devi-
ation 6 = 32. An excerpt of this dataset can be seen in Figure 5. The
first two runs, a) and b), are two constant runs, where the constant
field in b) is the inverse of that in a). Runs c), d), and e) alternate
at different frequencies between a) and b) using linear interpola-
tion. Run f) and h) are again constant fields, but the center of the
Gaussian kernel is positioned in the lower right and left of the field,
respectively. Run g) and i) are runs that start at the same positions
as f) and h), respectively, but rotate around the center twice.

g e fefefefeleele]e]ele]e]e]e
"EEE s
‘AR RRNNEEFEFEEE
g - EmnREe]

= N 5 T) | T
]
‘AN EERNSNENEE

§ L LLLLL L]
‘TN EEENNISNEERNN

Figure 5: Visualizations of the 2D fields for some selected timesteps
(16 out of 256) of the synthetic dataset. Each run is normalized
between 0 and 1 and accordingly color-coded from blue to yellow.

We chose to analyze the synthetic dataset in two parts, a) - ¢) and
f) - 1), because the y-axis scaling of the two subsets differs signif-
icantly. Runs f) - i) have a much smaller latent feature value range
than the interpolating runs, leading to a barely noticeable change
over time when plotted in the same coordinate system.

Figure 6 shows the similarity plots of runs a) - e). Comparing all
three methods, we can see that the constant runs a) and b) are plot-
ted as a straight line for all three approaches, which is in line with
our expectations. When using linear interpolations (c - e), we see
apparent differences between the approaches. SimilarityNet and FS
show a similar evolution, representing the continuously varying na-
ture of the underlying data well. However, these two methods differ
insofar as SimilarityNet shows an almost perfectly linear progres-
sion, while FS shows curves that resemble higher-order polynomi-
als. Thus, we argue that SimilarityNet matches our expectations
better, as the linear transitions lead to linear curves. CS, on the
other hand, has abrupt jumps that do not reflect the nature of the
data well.

Next we analyzed the runs f) - i) (see Figure 7). Here, a promi-
nent resemblance between FS and CS is evident (mirrored on the
y axis). In the SimilarityNet plots, however, a much stronger os-
cillation is noticeable. In the case of the rotating data, FS and CS
approaches seem to reflect the nature of the given data better than
SimilarityNet. Nevertheless, all plots highlight that a periodical pat-
tern is taking place. Furthermore, it becomes clear that the runs g)
and i) have the same course, but they have a different starting point
and are therefore shifted in time.

4.4. Deep Water Asteroid Impact Ensemble

The first real-world dataset that we analyze is the Deep Water As-
teroid Impact dataset [GHPW18]. In this ensemble, three simula-
tion parameters (asteroid size, impact angle, airburst) have been
varied to study the extent of an asteroid impacting deep-sea oceans.
The spatial dimensionality of this dataset is 300 x 300 x 300 and a

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

K. Huesmann & L. Linsen / SimilarityNet 385

SimilarityNet Field Similarity Correlation Similarity

a)

b)

c)

shl

e)

0 100 200 0 100 200 0 100 200

Figure 6: Similarity plots of SimilarityNet compared to MDS us-
ing field and correlation similarity for the constant and piecewise
linear runs of the synthetic dataset a) - e), see Figure 5. The x-axis
depicts time, the y-axis the latent space or first principal compo-
nent values. In order to reduce clutter, we chose to plot each run
in a separate row. Each column shares the same y-range. The con-
stant and piecewise linear behavior is perfectly captured using our
SimilarityNet approach.
SimilarityNet

Field Similarity Correlation Similarity

f)

9)

h)

0 100 200 0 100 200 0 100 200
Figure 7: Similarity plots of SimilarityNet compared to MDS using
field and correlation similarity for the rotating and translated con-
stant runs of the synthetic dataset f) - i), see Figure 5. The rotating

behavior leads to oscillating patterns, where the two rotating runs
g) and i) exhibit a time shift.

single run can hold upto 487 timesteps. For our similarity analy-
sis we make use of 4 scalar fields, temperature tev, pressure prs,
volume fraction water v02, and volume fraction asteroid v03.

The similarity plots for this ensemble are shown in Figure 8. The
plots for the temperature field show a very similar picture between
the SimilarityNet and FS output. In both plots, three groups be-
come apparent, Gg = (yA31, yA32), G| = (yB31, yC31) and G,
= (yAll, yB11, yC11) . Each group shares similar simulation pa-
rameters encoded in the runs’ names (last three characters). In the
CS plot, the groups are recognizable but not as prominent as in the

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

SimilarityNet

I~

Field Similarity Correlation Similarity

200 400 0 200 400

o
N
o
o
N
o
o
o

Figure 8: Similarity plots of SimilarityNet compared to MDS us-
ing field and correlation similarity for Deep Water Asteroid Impact
dataset. For each field (tev, v02, v03, prs) we can see the evolution
of seven runs in all three similarity approaches. The runs’ parame-
ter configuration are encoded in their names. For each field, we can
see groups with similar temporal evolution, which share common
simulation parameters.

other approaches. All plots show a rapid jump in the first quarter of
the pink (yC31) and at the end of the blue run (yA11), which indi-
cates missing or corrupted timesteps. Similar groupings also occur
in the field volume fraction water (v02), but here, a bigger differ-
ence among G runs become apparent in all three approaches. In-
vestigating this further gave us the insight, that the voxel spacings
of these two runs differ, which leads to a denser sampling in yA32
(smaller voxel spacing). We see a resemblance between the Simi-
larityNet and FS plots in the field volume fraction asteroid (v03).
Especially the group G stands out here. The pressure field shows
an interesting phenomenon due to erroneous boundary conditions
in the simulation. Here the pressure wave generated by the asteroid
reflects at the boundaries of the bounding box. The strong sinu-
soidal signal indicates that a recurring pattern is taking place over
time. This is especially evident in the SimilarityNet as well as in
the FS plots. The CS plots also shows an oscillating pattern, but not
as prominently as the other two approaches.

386 K. Huesmann & L. Linsen / SimilarityNet

SimilarityNet Field Similarity Correlation Similarity

065/065

Sl =

AT

—~ i S

| ‘ !h Wil
\ f J S " \’UM‘

065/085

065/105
=

u‘ %

J T I
N
I

500 1000 0 500 1000 1000

070/090

080/080
[R— I
““,
|
—

105/105
] }
—

Figure 9: Similarity plots of SimilarityNet compared to MDS using
field and correlation similarity for White Dwarf dataset. We picked
six representative runs. The name of each run (left axis) depicts
the respective simulation parameters, namely the masses of both
stars. All plots of SimilarityNet and correlation similarity, except
for run 065/105, show an oscillating pattern which rapidly changes
at around timestep 500 to a nearly constant curve progression. The
field similarity approach suffers from very strong outlier-timesteps
in all runs.

4.5. White Dwarf Ensemble

The White Dwarf dataset simulates a binary star system where two
stars rotate around each other at different masses until they finally
merge and end in a large mass ejection. Here, the masses of the two
stars are the varying simulation parameters. If the stars are of simi-
lar mass, they rotate longer than if there is a significant difference.
In total, this ensemble consists of 42 runs with different mass com-
binations and different fields. We have picked six runs and the tem-
perature field. We selected the masses to cover the possible simula-
tion scenarios. In the similarity plots, which can be seen in Figure
9, we can observe a periodically repeating pattern. Here we can see
a strong oscillation starting at the beginning of the runs, which is
visible in the SimilarityNet and the CS plots. In direct comparison,
the runs in the SimilarityNet plots also show an increasing behavior
in addition to the oscillation. This is not present in the CS plot. The
moment of the merging of the stars can also be seen in both plots.

In both approaches, the oscillation disappears as soon as the stars
have merged. For a large mass difference of the rotating stars (run
065/105), both similarity plots do not show a periodical pattern,
because these stars merge immediately. When zooming into times-
pan [480,549] of run 065/065 and investigating volume renderings
of selected timesteps (see Figure 10), we can observe that the ro-
tational movement of the two objects is reflected by the oscillating
pattern in the SimilarityNet plot. The merge event of the two ob-
jects can also be seen starting from timestep 520. At the same time,
the oscillating pattern vanishes (compare Figure 9 and 10)

Note that the FS results suffer from very sharp timestep outliers,
which influence the scaling so much that the plot cannot be ana-
lyzed meaningfully without further effort.

4.6. Max Planck Grand Ensemble

We also applied our approach to the Max Planck Institute Grand
Ensemble [MMSG*19] dataset. This ensemble simulates the
course of climate from 2006 until 2099 at a spatial resolution of
192 x 96. We used the mean monthly surface air temperature field
from 3 randomly picked runs for our similarity analysis. Since the
point-wise variance of monthly temperature data is dominated by
the seasonal cycle, we derived anomalies with respect to the cli-
matological mean monthly values of the period 2006-2015. Due to
global warming, the overall trend of this seasonally adjusted dataset
should result in an increased temperature over time for all runs.

When analyzing the similarity plots in Figure 11, we can imme-
diately see that CS shows an unexpected and undesired behavior
with repeated jumps to a specific value. In contrast, the Similari-
tyNet and FS plots exhibit the expected linear change over time,
where the FS plot was flipped along the y-axis (the principal com-
ponent is only unique up to its sign) for an easier comparison of the
two plots. Here, the individual runs are barely distinguishable be-
tween SimilarityNet and FS. The course of the runs in comparison
to each other is also almost identical in the two plots.

4.7. Semiconductor Ensemble

Finally, we apply the approaches to the Semiconductor dataset,
where it is investigated how photons are emitted from a semicon-
ductor quantum wire. This is a 2D dataset in phase space rather
than physical space, but this does not impede the direct application
of our methods. A total of four simulation parameters were varied
here. The ensemble consists of 150 runs of 70 timesteps at a spatial
resolution of 300 x 200 each. We randomly selected a subset of 10
runs.

When comparing each run embedding seperately as shown in
Figure 12, we can see a comparable behavior for several runs’ tem-
poral progression, especially between SimilarityNet and FS (100,
104, r06, r07, r08). CS created results, which do not compare to
neither SimilarityNet or FS. The similarities between SimiarityNet
and FS have to be put into perspective because clear differences be-
come visible when all runs are plotted simultaneously (see Figure
13). Here, for example, the order of the shown runs (from top right
to bottom) is not identical. Nevertheless, some groupings become
apparent, which show up across all three approaches (e.g. red and

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

K. Huesmann & L. Linsen / SimilarityNet 387

480 5(IJO 503 506 509

| — | —
oo & § «®

520 525 5:;30 549

Figure 10: SimilarityNet’s encoder output € for time range [480,549] of ensemble run 065/065 (White Dwarf dataset, compare Section 4.5
and Figure 9). Volume renderings are shown for selected timesteps. The transfer function has been manually adjusted to highlight the run’s
main features. A half rotation of the two stars is observed in timesteps 500 to 514 (orange dashed line). Starting from timestep 520, a merge
event of the two stars can be observed in the volume renderings, which coincides with the disappearance of the oscillating pattern in the

embedding.
SimilarityNet Field Similarity Correlation Similarity
'J\;'P Q:'F '
AN ,
wmidl v" v ‘
: M
N 4 \WW '
4 701 \ } \
e e L
0 50 0 50 0 50

Figure 11: Similarity plots of SimilarityNet compared to MDS us-
ing field and correlation similarity for seasonally adjusted Max
Planck Grand Ensemble dataset (sea surface temperature field).
All plots depict the temporal progression of three randomly picked
runs. SimilarityNet and field similarity show a linear change over
time. Correlation similarity suffers from outlier-timesteps.

black run). However, when analyzing this dataset, the fact that we
are only looking at the first principal component of FS and CS can
also lead to the observed differences in the similarity plots.

5. Discussion and Conclusion

We presented SimilarityNet, a deep neural network architecture
coupled with a novel training strategy that is designed to gener-
ate latent feature space representations which can be utilized for
spatio-temporal ensemble similarity analysis. By analyzing five dif-
ferent datasets we have shown that the similarity plots generated by
SimilarityNet can be interpreted as a representation of the tempo-
ral progression of ensemble runs. Not only is the evolution within
a run well represented, but the comparison across runs can also
be made intuitively. While being able to generate reasonable sim-
ilarity plots for various kinds of ensemble datasets, SimilarityNet
has never been trained on any of those. The training strategy as
proposed in Section 3.3 results in a network state, that is able to
process unseen data in a way, that the differences to the originally
trained data are encoded in the latent space. The phantom dataset
used for training represents a number of functions over time that
serve as a basis for handling unseen data.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

SimilarityNet Field Similarity Correlation Similarity

roo

o~

|
%
|

ro4

ro5

ro6

|
z

ro8

ro9

0 20 40 60 0 20 40 60 0 20 40 60

Figure 12: Similarity plots of SimilarityNet compared to MDS us-
ing field and correlation similarity for Semiconductor dataset. We
randomly select 10 runs and juxtapose them for each similarity ap-
proach.

The results generated by SimilarityNet often show significant
similarities to the field similarity MDS projections (see Section 4.3,
4.4), sometimes this is even exceptionally high (see Figure 11).
When testing SimilarityNet on our synthetic dataset it generated
more intuitive results for piecewise linear evolutions than the MDS
plots. However, this does not apply to rotating behaviors. Through-
out our experiments, SimilarityNet was able to reliably generate

388 K. Huesmann & L. Linsen / SimilarityNet

Ensemble Run count Duration Duration Duration
Field Similarity [s] Correlation Similarity [s] SimilarityNet [s]
Synthetic 9 372 452 0.27
Deep Water Asteroid Impact 7 498 546 0.22
White Dwarf 6 4080 2402 0.36
Max Planck Grand Ensemble 3 520 695 0.10
Semiconductor 10 68 85 0.17

Table 1: Table of all tested ensembles. For each ensemble, we list how many runs we analyze and how long the calculations for each similarity

approach take.

SimilarityNet Field Similarity Correlation Similarity

S

=

0 20 40 60 0

\E
20 40 60 0 20 40 60
Figure 13: The same similarity plots as in Figure 12, but here we
show all runs in a single plot for each similarity approach.

embeddings for all of our tested datasets. The MDS approaches
sometimes failed to do so (see Figures 9 and 11), as the distance
measures are not equally suitable for all data sets with different
data characteristics such as containing outliers.

As SimilarityNet can directly be applied to any unseen spatio-
temporal ensemble, it can reliably be applied to a large number
of arbitrary ensembles without long computation times. In fact, it
outperforms the combination of distance matrix computations and
embedding computations by approximately three order of magni-
tude for the examples presented here, see Table 4.7. The compu-
tation time of SimilarityNet increases linearly with the number of
timesteps/runs per ensemble because each run can be inputted in-
dividually to the network. As a consequence, the memory require-
ment of SimilarityNet also increases linearly with the number of
timesteps per run. In contrast, the computation time and mem-
ory requirements for distance-based approaches (e.g., MDS) grow
quadratically with the number of considered timesteps. Thus, huge
ensembles cannot be computed as a whole by these approaches on
commodity computers.

In this work we focused on analyzing spatio-temporal data,
therefore we designed the network such that its input can be a time-
series of high-dimensional vectors. However, one can easily use the
same network to create the 1D embeddings of static (i.e., not time-
dependent) datasets.

We want to emphasize that the objective of our work is not to
generate quantitatively better embeddings than the two methods we
compare to. Rather, we want to show that our visualizations are
able to produce comparable results that allow for a similar analysis
of the 1D embeddings while benefiting from significantly lower
computational costs. Moreover, our method does not require us to
choose a distance metric.

In this work, we mainly focused on 1D projections. Currently, we
set our latent space to be two-dimensional, but the two learned fea-
tures do not differ noticeably, i.e., they do not allow for a 2D sim-
ilarity analysis like the ones known from 2D embeddings obtained
by classical dimensionality reduction techniques. Our goal was to
produce 1D embeddings and not to detect multiple principal com-
ponents as in MDS approaches. Hence, we can also not analyze the
strengths of the principal components. In future work, we plan to
address this by introducing activation regularizations for the latent
features that are designed to produce orthogonal outputs by penal-
izing correlating features. Our visual representations of simulation
runs as curves over time scales reasonably well with the number
of simulation runs. Of course, at some point an increased number
of runs will lead to visual clutter such that interaction mechanisms
like filtering should be used.

In future work, we will also focus our analysis on the attention
mechanism introduced by SimilarityNet’s transformer layer. Here,
we have good insights indicating that the attention mechanism can
eventually be used for key-frame detection. Another possible use
of SimilarityNet are interactive real-time applications, where a user
wants to get immediate feedback about the similarity of a selected
ensemble.

The architecture, as well as notebooks for the training data gener-
ation, can be found on http://github.com/khuesmann/similarity-net.

Acknowledgments

This work was funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) grant
260446826 (LI 1530/21-2).

References

[AEE17] ALMOTIRI J., ELLEITHY K., ELLEITHY A.: Comparison
of autoencoder and principal component analysis followed by neural
network for e-learning using handwritten recognition. In 2017 IEEE
Long Island Systems, Applications and Technology Conference (LISAT)
(2017), IEEE, pp. 1-5. 3

[AZ20] ABNAR S., ZUIDEMA W.: Quantifying attention flow in trans-
formers. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics (2020), pp. 4190-4197. 2

[BPFG11] BERGER W., PIRINGER H., FILZMOSER P., GROLLER E.:
Uncertainty-aware exploration of continuous parameter spaces using
multivariate prediction. In Computer Graphics Forum (2011), vol. 30,
Wiley Online Library, pp. 911-920. 2

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

K. Huesmann & L. Linsen / SimilarityNet 389

[CGW21] CHEFER H., GUR S., WOLF L.: Transformer interpretability
beyond attention visualization. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (2021), pp. 782-791.
2

[CYLL18] CHENZ., YEO C. K., LEE B. S., LAU C. T.: Autoencoder-
based network anomaly detection. In 2018 Wireless Telecommunications
Symposium (WTS) (2018), IEEE, pp. 1-5. 3

[DBK*20] DOSOVITSKIY A., BEYER L., KOLESNIKOV A., WEIS-
SENBORN D., ZHAI X., UNTERTHINER T., DEHGHANI M., MIN-
DERER M., HEIGOLD G., GELLY S., ET AL.: An image is worth 16x16
words: Transformers for image recognition at scale. In International
Conference on Learning Representations (2020). 2, 4

[EHNPO4] EDELSBRUNNER H., HARER J., NATARAJAN V., PAscucCCI
V.: Local and global comparison of continuous functions. In /EEE Visu-
alization 2004 (2004), IEEE, pp. 275-280. 1

[FFH21] FRIEDERICI A., FALK M., HOTZ I.: A winding angle frame-
work for tracking and exploring eddy transport in oceanic ensemble sim-
ulations. The Eurographics Association (2021). 2

[FIC*19] FRANCH G., JURMAN G., COVIELLO L., PENDESINI M.,
FURLANELLO C.: Mass-umap: Fast and accurate analog ensemble
search in weather radar archives. Remote Sensing 11,24 (2019),2922. 2

[FL19] FoOFONOV A., LINSEN L.: Projected field similarity for com-
parative visualization of multi-run multi-field time-varying spatial data.
In Computer Graphics Forum (2019), vol. 38, Wiley Online Library,
pp. 286-299. 1,2, 5

[FML15] FOFONOV A., MOLCHANOV V., LINSEN L.: Visual analy-
sis of multi-run spatio-temporal simulations using isocontour similarity
for projected views. IEEE transactions on visualization and computer
graphics 22, 8 (2015), 2037-2050. 1, 2, 3,6

[GHPWI18] GISLER G. R., HEBERLING T., PLESKO C. S., WEAVER
R. P.: Three-dimensional simulations of oblique asteroid impacts into
water. Journal of Space Safety Engineering 5,2 (2018), 106-114. 6

[Ham94] HAMBY D. M.: A review of techniques for parameter sensi-
tivity analysis of environmental models. Environmental monitoring and
assessment 32,2 (1994), 135-154. 2

[HGSP18] HE W., Guo H., SHEN H.-W., PETERKA T.: efesta: Ensem-
ble feature exploration with surface density estimates. IEEE transactions
on visualization and computer graphics 26, 4 (2018), 1716-1731. 2

[HHB15] HaAo L., HEALEY C. G., BASS S. A.: Effective visualization
of temporal ensembles. IEEE Transactions on Visualization and Com-
puter Graphics 22, 1 (2015), 787-796. 2

[HTWI18] HANJ., TAO J., WANG C.: Flownet: A deep learning frame-
work for clustering and selection of streamlines and stream surfaces.
IEEE transactions on visualization and computer graphics 26, 4 (2018),
1732-1744. 1,2

[HWG*19] HE W., WANG J., Guo H., WANG K.-C., SHEN H.-W.,
RAJ M., NASHED Y. S., PETERKA T.: Insitunet: Deep image synthesis
for parameter space exploration of ensemble simulations. /EEE transac-
tions on visualization and computer graphics 26, 1 (2019), 23-33. 2

[HZCW21] HAN J., ZHENG H., CHEN D. Z., WANG C.: Stnet: An
end-to-end generative framework for synthesizing spatiotemporal super-
resolution volumes. IEEE Transactions on Visualization and Computer
Graphics (2021). 2

[JESK15] JACKLE D., FISCHER F., SCHRECK T., KEIM D. A.: Tem-
poral mds plots for analysis of multivariate data. /IEEE transactions on
visualization and computer graphics 22, 1 (2015), 141-150. 2

[JKV*21] JAUNET T., KERVADEC C., VUILLEMOT R., ANTIPOV G.,
BACCOUCHE M., WOLF C.: Visqa: X-raying vision and language rea-
soning in transformers. IEEE Transactions on Visualization and Com-
puter Graphics (2021). 2

[JS19] JoJ., SEO J.: Disentangled representation of data distributions in
scatterplots. In 2019 IEEE Visualization Conference (VIS) (2019), IEEE,
pp. 136-140. 2

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

[KSHW21] KUMPF A., STUMPFEGGER J., HARTL P. F., WESTER-
MANN R.: Visual analysis of multi-parameter distributions across en-
sembles of 3d fields. IEEE Transactions on Visualization and Computer
Graphics (2021). 2

[LHFL19] LEISTIKOW S., HUESMANN K., FOFONOV A., LINSEN L.:
Aggregated ensemble views for deep water asteroid impact simulations.
IEEE computer graphics and applications 40, 1 (2019), 72-81. 2

[LSS*19] LOMBARDI S., SIMON T., SARAGIH J., SCHWARTZ G.,
LEHRMANN A., SHEIKH Y.: Neural volumes: Learning dynamic ren-
derable volumes from images. arXiv preprint arXiv:1906.07751 (2019).
2

[MMSG*19] MAHER N., MILINSKI S., SUAREZ-GUTIERREZ L.,
BOTZET M., DOBRYNIN M., KORNBLUEH L., KROGER J., TAKANO
Y., GHOSH R., HEDEMANN C., ET AL.: The max planck institute grand
ensemble: enabling the exploration of climate system variability. Journal
of Advances in Modeling Earth Systems 11,7 (2019), 2050-2069. 8

[NKWW21] NARECHANIA A., KARDUNI A., WESSLEN R., WALL E.:
Vitality: Promoting serendipitous discovery of academic literature with
transformers & visual analytics. IEEE Transactions on Visualization and
Computer Graphics (2021). 2

[NL20] NGO Q. Q., LINSEN L.: Interactive generation of 1d embeddings
from 2d multi-dimensional data projections. 2

[NNN11] NAGARAJ S., NATARAJAN V., NANJUNDIAH R. S.: A
gradient-based comparison measure for visual analysis of multifield data.
In Computer Graphics Forum (2011), vol. 30, Wiley Online Library,
pp. 1101-1110. 1

[PXvO*19] PORTER W. P., XING Y., VON OHLEN B. R., HAN J.,
WANG C.: A deep learning approach to selecting representative time
steps for time-varying multivariate data. In 2019 IEEE Visualization
Conference (VIS) (2019), IEEE, pp. 1-5. 2

[STS06] SAUBER N., THEISEL H., SEIDEL H.-P.: Multifield-graphs:
An approach to visualizing correlations in multifield scalar data. IEEE
Transactions on Visualization and Computer Graphics 12, 5 (2006),
917-924. 1

[SWG*19] SunNJ., WuC., GEY., L1Y., YU H.: Spatial-temporal sci-
entific data clustering via deep convolutional neural network. In 2019
IEEE International Conference on Big Data (Big Data) (2019), IEEE,
pp. 3424-3429. 1,2

[TFE21] TKACHEV G., FREY S., ERTL T.: S4: Self-supervised learning
of spatiotemporal similarity. IEEE Transactions on Visualization and
Computer Graphics (2021). 1,2

[Vigl9] VIG J.: A multiscale visualization of attention in the transformer
model. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics: System Demonstrations (2019), pp. 37-42. 2

[VSP*17] VASWANI A., SHAZEER N., PARMAR N., USZKOREIT J.,
JONES L., GOMEZ A. N., KAISER L., POLOSUKHIN I.: Attention is all
you need. In Advances in neural information processing systems (2017),
pp- 5998-6008. 4

[WCWQ21] WANG Q., CHEN Z., WANG Y., QU H.: A survey on
ml4vis: Applying machinelearning advances to data visualization. /EEE
Transactions on Visualization & Computer Graphics, 01 (2021), 1-1. 2

[WDS*20] WOLFT., DEBUT L., SANH V., CHAUMOND J., DELANGUE
C.,Mo1 A., CISTAC P., RAULT T., LOUF R., FUNTOWICZ M., ET AL.:
Transformers: State-of-the-art natural language processing. In EMNLP
(Demos) (2020). 2, 4

[WHLS19] WANGJ., HAZARIKA S., L1 C., SHEN H.-W.: Visualization
and visual analysis of ensemble data: A survey. [EEE transactions on
visualization and computer graphics 25,9 (2019), 2853-2872. 2

[WITW20] WEISS S., ISIK M., THIES J., WESTERMANN R.: Learning
adaptive sampling and reconstruction for volume visualization. [EEE
Transactions on Visualization and Computer Graphics (2020). 2

[WZH19] WANG Y., ZHONG Z., HUA J.: Deeporgannet: On-the-fly re-
construction and visualization of 3d/4d lung models from single-view

projections by deep deformation network. IEEE transactions on visual-
ization and computer graphics 26, 1 (2019), 960-970. 2

