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Figure 1: System screen and major interface elements of our 4D visualization tool. (a) Our interface can suggest the optimal longitudinal axis for the viewer
to explore 4D surfaces by extracting a flip-book of topologically meaningful slices. 1© — the toolbox to configure the slicing-based visualization tool, user
interface elements including e.g., model file dialogue, slider to set opacity level, buttons to generate flip book (automatically or interactively). 2© — central
visualization panel for one to position longitudinal axis, cutting planes, and to view the slicing results. 3© — flip-book outcome that contains the optimal
cross-sections to represent the surface’s interior structure. 4©— cross-section viewer where one can interactively slice a 4D surface and view the intersection.
5© — entropy map viewer where one can observe the symmetry detection result when doing automatic longitudinal axis suggestion. (b) A flip-book of 7

cross-sectional diagrams extracted to represent a 4D spun knotted sphere.

Abstract
Just as 2D shadows of 3D curves lose structure where lines cross, 3D graphics projections of smooth 4D topological surfaces
are interrupted where one surface intersects itself. They twist, turn, and fold back on themselves, leaving important but hidden
features behind the surface sheets. In this paper, we propose a smart slicing tool that can read the 4D surface in its entropy
map and suggest the optimal way to generate cross-sectional images — or “slices” — of the surface to visualize its underlying
4D structure. Our visualization thinks of a 4D-embedded surface as a collection of 3D curves stacked in time, very much
like a flip-book animation, where successive terms in the sequence differ at most by a critical change. This novel method can
generate topologically meaningful visualization to depict complex and unfamiliar 4D surfaces, with the minimum number of
cross-sectional diagrams. Our approach has been successfully used to create flip-books of diagrams to visualize a range of
known 4D surfaces. In this preliminary study, our results show that the new visualization and slicing tool can help the viewers
to understand and describe the complex spatial relationships and overall structures of 4D surfaces.
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1. Introduction

Many interesting mathematical objects require four dimensions to
be appreciated fully. Among them are topological objects such as
the 3-torus and the real projective plane which can only be embed-
ded without self-intersection in 4D or higher, “knotted surfaces”
(closed 2D surfaces embedded in 4D) [Mar05], and the quater-
nions, which are useful for representing 3D rotations [Sho85].
These 4D entities have a 4D “eye coordinate,” or depth w, in ad-
dition to the coordinates (x, y, z) of their 3D graphics projections.
Challenges arise when we visually communicate these 4D surfaces.
Just as 2D shadows of 3D curves lose structure where lines cross,
3D graphics projections of smooth 4D topological surfaces are in-
terrupted where one surface intersects another, leaving important
features behind the surface sheets. Most existing 4D visualization
efforts rely on surface rending techniques, and exploit visual or
haptic cues (see, e.g., [HIM99, HZ05]) to help the viewer to iden-
tify salient global features of the four-dimensional object, while of-
ten ignoring the important features or structures behind the surface
sheets of their 3D graphics projections.

Figure 2: Slicing a simple 4D surface in our dimensions — the “breaks”
in the cross-sectional diagrams indicate which sheet is above (or under)
another from the point of view of the projection into 3-space (modified from
Carter’s book [Car95]).

Our goal in this paper is to exploit computer graphics and auto-
matic algorithms to generate topologically meaningful illustrations
— or “slices” — to depict these unfamiliar surfaces in space beyond
3D. Our basic idea is to think of 4-dimensional space as a pile of 3-
dimensional spaces, stacked in time; and a surface in 4-dimensional
space as a collection of curves in 3-dimensional space [Car95]. If
a set of 3-dimensional cutting planes are placed appropriately to
slice a surface in 4-dimensions, the intersection will be a reason-
ably small number of cross-sectional diagrams that can describe
the true 4D structure behind the surface sheets of their 3D graph-
ics projections. For example, in Figure 2 a smooth (and simple) 4D
surface folds back on itself, twist and turn in its 3D graphics pro-
jection. Three representative cutting planes are placed to obtain the
topologically meaningful cross-sectional diagrams of this surface.
The “breaks” in the cross-sectional diagrams indicate which sheet
is above (or under) another from the point of view of the projec-
tion into 3-space — the 3D intersection between the surface sheets
is only an artifact of projection. These cross-sectional diagrams in
the progressing forms of movement, and the original 3D surface
plotting, can combine to describe the underlying structure of the
surface in 4 dimensions.

In this paper we take the first steps towards visualizing much

more complex continuous topological surfaces in 4D, by design-
ing a smart visual interface capable of helping us to slice the sur-
face and extract flip-books of topologically meaningful diagrams to
fully represent these 4D surfaces, which otherwise can only exist in
mathematicians’ mind.

2. Related Work

Traditional techniques for visualizing surfaces in 4D typically in-
volve creating pictures of 4D entities intersecting in a 3D projection
and associating the fourth dimension (i.e., the w “eye coordinate”)
with visual cues such as 4D depth color, texture density, etc (see
e.g., [HZ05, HIM99, ZH07]). Other representative efforts include a
variety of ways to render 4D objects (see e.g., Banks’ interactive
manipulation and display of surface in 4D [Ban92], Chu’s use of
4D light sources to render 4D surfaces [CFHH09], Noll’s method
of rotating hyper-objects in four-dimensional space [Nol67], and
Zhang’s cloth-like modeling and rendering of 4D surfaces [ZL20]).
Figure 3 shows some of the typical 4D visualization techniques.
Figure 3(a) shows the 3D graphics projection of a 4D spun tre-
foil knot [Fri05], a knotted sphere embedded in 4D. An additional
visual cue was added by assigning a surface color keyed to 4D
depth relative to the projection center. Transparent surfaces in Fig-
ure 3(b) are created to help the viewer to perceive the internal struc-
ture of the spun trefoil — a trefoil knot spun about a plane in 4D.
Other alternatives are to use cutaways and banded windows (e.g.,
see Figure 3(c)(d)) to remove portions of the surface to help the
viewer see through the surface sheet of the 3D graphics projec-
tion [Ban90, HGH∗10].

(a) (b) (c) (d)

Figure 3: Various approaches to visualizing a 4D spun trefoil knotted
surface. (a) An additional visual cue was added by assigning a surface
color keyed to 4D depth relative to the projection center. (b) Applying semi-
transparency in addition to a surface color. (c)-(d) Exposing the structure
behind the surface sheet with cutaways and banded windows.

The renderings in Figure 3 are undoubtedly important for un-
derstanding the complex spatial relationships and overall structures
of 4D surfaces, but they provide limited value of helping us un-
derstand the underlying structures and important features behind
the surface sheet in a 3D projection. It may also serve to confuse
the user when the visual evidence is difficult to interpret. For in-
stance, making the entire surface semi-transparent is arguably the
simplest technique for (partially) exposing occluded portions be-
hind the surface sheet, however it is nearly impossible for view-
ers to distinguish and interpret the structure in regions where mul-
tiple semi-transparent sheets intersect with each other. Similarly,
cutaways and banded windows are both limited when applied to
surfaces having more complex spatial relationships.
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(a) (b) (c) (d) (e) (f)
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(h)

Figure 4: Logical steps involved in the process of rendering a movie for the Klein Bottle. (a) Place longitudinal axis and cutting planes. (b) Calculate
intersections on slices. (c) Reconstruct knot diagrams from intersections. (d) Identify critical changes and associated frames (highlighted with red dotted
line box). (e) Selecting representative frames between critical changes to form the flip-book of diagrams. (f) The resultant visualization. (g)-(h) Placing the
longitudinal axis differently results in different slices, intersections, and eventually different visualizations.

3. Motivation

We are thus motivated to design a new tool that can read a 4D
surface and generate topologically meaningful illustrations — or
“slices” — to visualize these unfamiliar surfaces in space beyond
our dimensions. The basic idea, as illustrated in Figure 2, is to
slice the 4D surface appropriately and extract only the topologi-
cally meaningful intersection. Imagine we are interested in extract-
ing horizontal slices of the 4D spun, and is empowered to place
an infinite number of 3-dimensional cutting planes (see e.g., Fig-
ure 1(b)). The resultant intersection are (usually) a closed curve (or
curves), except on the two cutting planes that intersect the spun
knot at a point (i.e., the north/south pole). If we examine the re-
sultant intersections over all the slices to extract the representative
cross-sections, we seem to only need the seven cross-sectional di-
agrams in Figure 1(b) to fully describe the spun knot’s underlying
structure — successive terms in the sequence differ by a critical
change. With the advent of interactive graphics technology and au-
tomatic algorithms we can begin to appreciate the challenge of de-
picting such surfaces embedded in high dimensions by slicing them
and generating a flip-book of diagrams, which had only existed as
hand-drawn diagrams in those beautifully written topology books
(see e.g., [Car95] and [CS98]).

From the user’s viewpoint, our visual interface is a smart “slic-
ing and imaging” tool. The interface consists of a control panel and
three major display areas. The user using the tool can load, trans-
form, and view the 3D graphics projections of 4D surfaces with
various desired settings and parameters. For example, the user can
choose different 3D sub-spaces for projecting and viewing a 4D
surface, rendered using the desired parameters. The user can toggle

among various options to use transparency, cutaways, and banded
windows when viewing the 3D graphics of 4D surfaces. In the cen-
tral display area, the user can interactively define a longitudinal axis
and place a cutting plane to extract slices of the 4D surface (see
Figure 1). More importantly, our tool is capable of suggesting the
optimal way to slice the surface and capture the representative di-
agrams from the slices. It reads the 4D surface in its entropy map,
and can suggest the optimal longitudinal axis for placing slices.
Out of a massive number of slices, the tool can analyze and reduce
them to a minimal set of intersections that can still describe the 4D
surface — very much like a flip-book where each page in the se-
quence shows just a representative slice and and these slices over
pages differ at most by a critical change. Our tool can recognize
and then “remember” each slice in the flip-book and present them
in the interface, therefor one can take advantage of such a flip-book
to trace and explore different portions of the surface being studied.

The key ideas of the overall scenario should now be clear. The
logical series of modeling steps, the problems they induce, and the
ultimate resolution of the problems are as follows:

• Create a 3D graphics projection of a smoothly embedded ob-
ject. Examples are knotted curves embedded in 3D and knotted
surfaces embedded in 4D. When projected to 3D, various parts
of the smooth (non-intersecting) original shape appear to touch
each other. What is seen is essentially the (N− 1)-dimensional
“shadow” of the original N-dimensional object.
• Place the longitudinal axis and cutting planes. To slice 4-

dimensional space as a pile of 3-dimensional spaces stacked in
time, we need to define a longitudinal axis (i.e., the time) and
place cutting planes (i.e., the cross− sections) densely perpen-
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dicular to the longitudinal axis, to ensure the inclusion of all
topologically meaningful cross-sections (see e.g., Figure 4(a)).
• Extract knot diagrams from slices. The intersections over slices

is the key to our understanding of the underlying 4D structure
(see Figure 4(b)). Intersections in the original format of points
and line segments will be converted into structured knot dia-
grams (see Figure 4(c)).
• Select representative cross-sectional diagrams. Cross-sectional

diagrams extracted from all the slices are in progressing forms
of movement. Most of the changes between successive frames
are small and trivial changes from a topological perspective. Oc-
casionally, the frames undergo significant changes such as the
appearance or disappearance of a new closed loop, the change in
the number of crossings in the diagrams, or a Reidemeister move
(see Figure 4(d)). In this step, we will identify the representative
diagrams leading to each critical change, and these representa-
tive diagrams forms the flip-book of diagrams for visualizing the
4D surface (see Figure 4(e) and (f)).

4. Implementation Methods

In this section we describe the families of models used to imple-
ment the interaction procedures, visual elements, slicing interface,
and the automatic algorithm to compute the longitudinal axis and
to extract representative cross-sectional images for generating the
flip-book. Our fundamental techniques are based on a wide variety
of prior art, including the use of exploded view in surface, flow,
and volume visualization [WT10,KLMA10,VG07,ZWR14], algo-
rithms for 3D triangle mesh slicing [MVS∗17, Kos03], and other
variants on computer graphics and visual interfaces for mathemati-
cal visualization including, e.g., the work of [LZ21] and [Sch98].

4.1. Slicing and Imaging the 4D Surface

Compute the intersections. Computing intersections of the sur-
face and the parallel cutting planes is an essential part of our reso-
lution of the problems. The cutting planes are placed densely along
the longitudinal axis to slice the surface. Raw intersections are
computed and derived in the format of points and line segments. To
improve the computational efficiency, our implementation adopted
several methods introduced in [MVS∗17], including the sorting and
grouping of the triangle meshes, and the binary search method to
quickly identify triangles for intersection computing. It is worth
noting that the line segments are disordered and their endpoints
still carry the w coordinate.

Reconstruct the closed loop(s). The next step is to string the dis-
ordered line segments from the raw intersections into one or more
closed polygons. For our principal test case of closed surfaces em-
bedded in 4D, the line segments in the raw intersection should form
one or more closed loops. For example, in Figure 5 the cutting plane
slices through the Klein Bottle, and the raw intersections are shown
in Figure 5(a). The collection of the line segments in the intersec-
tions are stringed into two closed loops since they exhibit different
w eye coordinates (Figure 5(b)).

Identify critical changes. The densely positioned cutting planes
slice the surface into a large number of cross-sectional frames, and

Figure 5: Reconstruct the closed loops from line segments in the inter-
sections. (a) A cutting plane slices a Klein Bottle, and the resultant inter-
sections have two collection of line segments that appear to overlap each
other, with different w coordinates. (b) We string line segment with each
other. Based on their w coordinates, these line segments are stringed into
two closed loops.

the changes between successive frames are often small and trivial
changes from a topological perspective. Occasionally, the frames
undergo significant changes such as the appearance or disappear-
ance of a new closed loop, the change in the number of crossings in
the diagrams, or a Reidemeister type of move. Carter summarizes
five critical changes we might encounter over the cross-sectional
frames sliced from the surfaces [Car95].

• Type 0: The birth/death of a simple closed curve. The change
starts with frame c when the cutting plane is tangent to the sur-
face, and transitions to the birth of the closed loop (Figure 6(a)).
• Type I: Introduced by a type I Reidemeister move, the preceding

and succeeding frames of this change frame c undergo a type I
Reidemeister move, which led to the addition/reduction of one
crossing (Figure 6(b)).
• Type II: This critical change is introduced by a type II Rei-

demeister move. For example, the preceding and succeeding
frames of the critical change frame c undergo a type II Rei-
demeister move, leading to addition/reduction of two crossings
(Fig 6(c)).
• Type III: The preceding and succeeding frames of the critical

change frame c undergone a type III Reidemeister move (Fig-
ure 6(d)).
• Type IV : As shown in Figure 6(e), frame c is introduced when

the cutting plane is tangent to the surface. The preceding and
succeeding frames of the critical change frame c appear to have
two different pairs of non-intersecting curves.

Our next task is to identify the transitioning frames in these five
critical changes illustrated in Figure 6. These frames can be iden-
tified with geometric computing — they are the transitioning (or,
unsafe) frames between other frames whose diagrams are in safe
position [Sch98]. A diagram is in a safe position when it fulfills the
following conditions:

• No non-adjacent edges in the components are closer than a
threshold distance dclose
• No crossings in the components are closer than a threshold dis-

tance dclose

As summarized in Figure 6, when the five types of critical
changes occur, the diagrams on the transitioning frames are turning
into unsafe position, until the critical change is accomplished. Our
system scans all the cross-sectional diagrams to identify diagrams
in an unsafe position due to undergoing a critical change. The time
periods when a series of consecutive unsafe frames have occurred
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(a) Type 0 (b) Type I (c) Type II (d) Type III (e) Type IV

Figure 6: The five types of critical changes. (a) The birth/death of a component. (b)-(d) Changes corresponding to the three Reidemeister moves. (e) The
fusing/fissuring change.

are the critical time points. Our system locates all the critical time
points (see Figure 4(d)), and removes unsafe frames occurring dur-
ing these critical time points. The remaining candidate frames are
divided into sections by these (removed) critical time points.

Selecting representative diagram from each section. We now
identify the most representative frame from those in each section
(separated by the critical changes). We will use one such represen-
tative diagram from each section to form the flip-book, as the dif-
ference across diagrams within each section is not a critical change,
and therefore trivial from a topological perspective. The following
metrics are used for the selection:

1. Crossing Distance. The sum of minimal crossing distance is
used to determine which frame is more relaxed (preferred).
For a given frame, with crossings, Ci(i = 1,2, ...,n). Let D(i, j)
be the distance between Ci and C j. We calculate the mini-
mum value of the distances between each crossing to all others
M(i) = min(D(i,1), ...,D(1, i− 1),D(i, i + 1), ...,D(i,n)). The
sum, S = ∑

n
i=1 M(i), is used to compare frames within the sec-

tion. Our ranking prefers frames with greater crossing distance.
2. Length. When two frames have the same crossing distance, or

they have less than two crossings, the system computes the to-
tal length of all polygons for each frame, and favors one with
greater total length.

3. Convexity. Lastly our ranking method favors the frame with the
more “convex” diagram (see e.g., [ZR04] for polygon convexity
calculation). In this work, we use 0.7 weight for length and 0.3
for convexity when they are used.

As shown in Figure 4(e) and (f), our visualization interface
now renders the resultant sequence of representative diagram into
flip-book like visualization, that contains the minimum number of
frames, that are topologically meaningful to describe the interior
structure of the 4D surface perceived in our dimensions.

4.2. The Optimal Longitudinal Axis for Flip-book Creation

The methods we discuss so far in principle is sufficient to allow
us to create a flip-book of diagrams to visualize a 4D surface.
However, in practice, choosing the right longitudinal axis is not
a trivial task before we can start to generate the cross-sectional di-
agrams and create the flip-book. A differently placed longitudinal

axis will possibly result in a very different, even an unnecessarily
complicated flip-book of diagrams (see e.g., Figure 4(g)(h)). The
flip-books can differ in the number of frames, or the complexity of
the frames extracted. In this section, we discuss an algorithm that
can auto-compute the optimal longitudinal axis for us to create the
“simplest” flip-book that will use a minimal number of most repre-
sentative diagrams.

The overall idea of this algorithm is described in Figure 7. We
start by detecting the presence of symmetry in the 3D graphics
of 4D surfaces, using an entropy based approach proposed in Li’s
work [LJYL16]. By analyzing the extracted symmetry information,
our algorithm suggests all candidates of the longitudinal axis for
flip-book creation, and the final recommendation will be made by
ranking the resultant flip-books created from all the candidate axes.

4.2.1. Symmetry Detection using Viewpoint Entropy Map

Unlike some common symmetry detection approaches based on
geometry features (see e.g., [MGP06, BBW∗09]), our approach
exploit information theory based measurement, the viewpoint en-
tropy, to detect symmetry. Viewpoint entropy was first introduced
by Váquez et al. [VFSH01]. It is based on the Shannon entropy,
and represents the visual entropy of a visible object when observed
from a specific position, i.e., the viewpoint. In our approach, the
viewpoint entropy is defined in Equation 1, essentially an orthog-
onal projection version of what was developed by Takahashi et al.
in [TFTN05].

E =
1

log2(m+1)

m

∑
j=0

A j

S
log2

A j

S
, (1)

where m is the number of visible triangles, A j is the projected area
of triangle j( j = 1,2, ...,m), S is the total area of the projection
plane, and A0 is the area of the blank background portion of the pro-
jection plane. The equation can be further simplified as Equation 2,
as when deriving viewpoint entropy, we project the surface into
a normalized space, contained in a normalized bounding sphere.
We also translate the normalized surface by centering its bounding
sphere at the origin, to facilitate efficient detection of the surface’s
symmetry planes at later steps.

E =
1

log2(m+1)

m

∑
j=0

A jlog2A j. (2)
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(a) (b) (c) (d) (e)

Figure 7: Auto-computing the optimal longitudinal axis. (a) Generating entropy maps of 4D surfaces. (b) Detecting symmetry and finding longitudinal axis
candidates. (c)→(d) Creating flip-books from each longitudinal axis candidate. (e) Ranking and recommending the optimal flip-book from all outcomes.

Vertices of the bounding sphere are our viewpoints. From each
viewpoint P, our method calculates the viewpoint entropy value
of the surface. We next outline the key steps towards deriving the
viewpoint entropy map that visualizes the distribution of entropy
values calculated from all viewpoints. Let U be [0.0, 1.0, 0.0], and
R be (-P)×U. We define the 3D projection matrix T in Equation 3,

T =


Rx Ry Rz 0
Ux Uy Uz 0
−Px −Py −Pz 0

0 0 0 1

 ·


1 0 0 −Px
0 1 0 −Py
0 0 1 −pz
0 0 0 1

 (3)

With transformation matrix T, Equation 4 will project a 3D ver-
tex V to 2D (V ′) on a projective plane,

[
V ′x V ′y V ′z w

]ᵀ
= T ·

[
Vx Vy Vz 1

]ᵀ
. (4)

After the surface is projected from 3D to 2D (using Equation 4),
viewpoint entropy value is calculated using all the visible triangles
in the projection. Each viewpoint (i.e., each vertex on the bound-
ing sphere) will be paired up with an entropy value. In Figure 8-II
the viewpoint icosahedrons on bounding spheres are rendered with
surface color keyed to their associated viewpoint entropy values
— these are the viewpoint entropy map we will leverage to detect
symmetry in our next step.

We next describe our process to detect the potential symmetry
planes from an entropy map we have just derived. The main idea
is to iteratively select a matching pair of viewpoints to generate
a symmetry plane, and verify all the rest matching pairs to see
whether they are symmetric as well with regard to the symmetry
plane or at least in the symmetry plane. The logic steps are listed
in Algorithm 1: it first locates a pair of entropy of equal viewpoints
(thus the difference is lower than the threshold δ), and creates a
symmetry plane exactly halfway between the two viewpoints and
perpendicular to the line connecting them. The next step is to verify

if there exists at least N−2l−2

2 pairs of viewpoints that are symmetric
w.r.t. this plane N is the total number of viewpoints, l is the iterat-
ing level building the entropy map). If the condition is satisfied, one
symmetry plane is found. Note that we do not require a very strict
symmetry determination condition, so the value of entropy differ-
ence variation(δ) is 0.075 by default ( about five times greater than
the value used in the original algorithm reported in [LJYL16]).

4.2.2. From Symmetry Planes to Candidate Longitudinal Axes

The symmetry detection results can be categorized in three scenar-
ios. We next identify candidate longitudinal axes in each of these
three scenarios:

1. Two or more symmetry planes. Examples are 3 symmetric
planes found for a 4D torus (Figure 8 III-(c)), and similarly the 4
symmetric planes for a 4D spun trefoil knotted sphere (Figure 8
III-(k)). In this case we compute the intersection lines between
the symmetry planes as the candidate longitudinal axis (axes).

2. Only one symmetry planes. For example, in Figure 8 III(g),
only one symmetry plane has been found for the Klein bottle.
We then compute all the intersection points between this sym-
metry plane and the surface, and select the line connecting the
two farthest points of all focal points as the longitudinal axis.

3. No symmetry planes. The surface is completely asymmetric.
For example, no symmetric planes are found for the 1-twisted
spun knotted sphere in Figure 8 III(o). In this case we compute
the axis of longest extent as the longitudinal axis.

4.2.3. Recommending the Optimal Longitudinal Axis

When there are multiple candidate longitudinal axes identified, we
will compute all the optimal flip-books, corresponding to each of
the candidates. We use the following ranking metrics to recommend
the optimal longitudinal axis with the highest score:

1. Flip-book Length. Fewer diagrams in the flip-book is preferred.
In Figure 7, different candidate axes of the 4D torus were evalu-
ated by generating the flip-books. In Figure 7 1©, a one-diagram
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(e)

⇓

(f)

⇓

(g)

⇓

(h)

(i)

⇓

(j)

⇓

(k)

⇓

(l)

(m)

⇓

(n)

⇓

(o)

⇓

(p)

Figure 8: Surface (I)→ Entropy maps (II)→ Symmetry planes (III)→
Longitudinal axes (IV ). Viewpoint entropy maps are derived for surfaces,
including a 4D torus (a), a Klein bottle (e), a 4D spun (i), and a 1-twisted
spun (m). Symmetry planes are built based on their entropy maps, and the
longitudinal axes are finally identified for each of the surfaces.

flip-book is generated, which perfectly describes the underly-
ing S1 × S1 structure of the 4D torus. The candidate axis in
Figure 7 2© results in a flip-book of three diagrams, and in Fig-
ure 7 3© the flip-book contains 5 diagrams. Our algorithm ranks
the flip-book in Figure 7 1© as the best among all.

2. Number of Crossings. In the events of two flip-books having
equal length, our algorithm counts the number of crossings from
all diagrams in each flip-book, and favours the flip-book with the
fewer crossings.

3. Total Length of Closed Loop(s). When two flip-books are of
equal length and crossing number, the total length of the closed
loop(s) in each flip-book will be computed and compared. We
favour flip-books with greater total length of closed loop(s).

Rotational Axis. We typically create and render flip-books of di-
agram by making slices perpendicular to the longitudinal axis. In
some other scenarios, we have found that we can obtain a better
flip-book of diagrams by slicing the surface around the longitudi-
nal axis, much like how we make the pizza slices.

In Figure 3(e), we sliced the 4D spun with perpendicular cut-

Algorithm 1: Symmetry detection by pairing entropy values

Input : N: number pf viewpoints;
Pos[N]: Positions of N viewpoints;
Ent[N]: Entropy values of N viewpoints
l: Icosahedron subdivision level;
δ: Entropy difference variation;
ε: Minimal difference in two float values

Output: Planes: All detected symmetry planes
for u← 0 to N−2 do

Pu← Pos[u]
for v← u+1 to N−1 do

if |Ent[u]−Ent[v]|> δ∗min(Ent[u],Ent[v]) then
continue

matches← 2, Pv← Pos[v]
T1← normalize(Pu−Pv)
for i← 0 to N−2 do

if i == u or i == v then
continue

Pi← Pos[i] for j← i+1 to N−1 do
if j == u or j == v then

continue
if |Ent[i]−Ent[ j]|> δ∗min(Ent[i],Ent[ j])

then
continue

Pj← Pos[ j], Pm← Pi+Pj
2

T2← normalize(Pi−Pj)
CT ← T1×T2, DT ← T1 ·T2
if ||CT | |> ε and |DT | 6= 0 then

continue
if |T1 ·Pm|> ε then

continue
matches← matches+2
break

if matches≥ (N−2l−2) then
plane← T1[0]x+T1[1]y+T1[2]z = 0
if plane not in Planes then

Append plane to Planes

ting planes along the longitudinal axis, and obtained a flip-book of
7 unique diagrams extracted from representative slices. This flip-
book of 7 diagrams may not be the best way to describe the under-
lying structure for the 4D spun trefoil knotted sphere — a trefoil
knot spun about a plane in 4D, whose 3D graphics projection is in-
deed a completely symmetric structure. In Figure 9, we rotate the
cutting plane about the longitudinal axis. While the rotation and the
slicing continue, we can conclude that all the diagrams are identi-
cal and just one single diagram should be sufficient to represent the
internal structure of the 3D graphics of a 4D spun knotted sphere.

Inspired by this example, we choose to complement our visual-
ization tool to perform both parallel and rotational slices around
each candidate longitudinal axis, to search and recommend the
right longitudinal axis and the right flip-book of diagrams to fully
describe the 4D surface.
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Figure 9: Apply rotational slices to explore the 4D spun knotted surface.
The resultant diagrams across slices are identical.

5. More Examples

We have been able to utilize our slicing tool to render flip-books
of diagrams from an array of known surfaces in 4-space. In Fig-
ure 10, we show a series of movies rendered for a Klein bottle be-
ing relaxed from the traditional bottle shape into a pinched torus
shape [ZL20]. The Klein bottle is a closed non-orientable surface
that has no inside or outside, first described by Felix Klein [Wei03].
Our tool starts with the standard shape of Klein bottle, and renders
movies across difference phases while the Klein bottle was being
relaxed under an energy model [ZL20]. The Klein bottle reaches
its minimum energy state and appears to be a pinched torus in our
dimensions (see the flip-book rendered in Figure 10(d)).

Our interface is highly interactive and capable of rendering the
flip-book of diagrams in real time for the viewer, with a user-
defined longitudinal axis. This allows the viewer to explore the 4D
surface on his/her own, and can examine and compare the different
cross-sections by placing different longitudinal axes. The interface
also allows one to extract the cross-section by placing an arbitrary
cutting plane in the scene. For example, one can use this tool to
slice into the 4D spun and the 1-twisted spun (see Figure 9 and
Figure 11), to compare the different shape and structure of the tre-
foil knot that is spun into the 4D surfaces.

In Figure 12 we visualize a Boy’s surface, a surface embedded
in three-dimensional space, first studied by Boy [Boy01]. The algo-
rithm and interface presented in this paper can also be exploited to
extract the representative diagrams to help us understand the inter-
nal structure of the Boy’s surface. Figure 12(c) shows the complex
internal structure of this surface using our slicing interface.

6. Evaluation

The presented interfaces and algorithms are implemented in C++.
Our core rendering capability, including the planar knot diagram
and the 3D rendering for surface is supported by OpenGL. The soft-
ware currently runs on a MacBook Pro with a 2.2GHz 6-Core Intel
Core i7 Processor and a Radeon Pro 555X graphic processor.

Our smart slicing tool has been used to generate visualizations to
describe an array of 4D surfaces. In Table 1 we summarize the total
processing time for the optimal flip-books to be auto-computed and

Table 1: Total processing time needed to identify the optimal longitudinal
axis, and render the optimal flip-book visualization

Surface Triangle # Slicing # Key frame# Time

4D torus 800 60 1 191s
Klein bottle 800 60 5 171s
4D spun trefoil 5600 210 7 452s
1-twisted spun 5600 210 7 421s
Boy’s surface 3200 120 4 225s

Table 2: Further breakdowns of processing time

Surface
per
slice

Symmetry
detection

Rendering
Flip-book

Number of
flip-books

4D torus 0.3s 82s 27s 4
Klein bottle 0.3s 104s 33s 2
4D spun trefoil 0.5s 158s 98s 3
1-twisted spun 0.5s 207s 107s 2
Boy’s surface 0.4s 97s 64s 2

derived for each 4D surface. The total time listed include several
compute-intensive steps leading to the visualization: the symmetry
detection and the identification of all candidate axes, and the eval-
uation of each candidate axis by generating flip-book of diagrams
from them, etc. The further breakdowns of total processing time
is listed in Table 2. Three parameters can impact the performance
significantly: the triangle amount of the model, the slicing interval
distance and the icosahedron subdivision level, which was men-
tioned in Algorithm 1. Its worth noting that our visualization tool
is highly interactive with user-defined longitudinal axis. The rela-
tively long processing time is only needed for the auto-computed
process, that includes the search for the optimal axis.

Table 3: Completion rates from the two sessions

Surface View-only Slicing-enabled

4D torus 75% 100%
Klein bottle 83% 100%
4D spun trefoil 50% 100%
1-twisted spun 33% 100%
Boy’s surface 17% 100%

We also performed a preliminary usability study in the UofL
VCL (Visual Computing Lab) to evaluate the smart slicing inter-
face. We invited a group of 12 non-expert participants to a game
we designed by utilizing an interface adapted from the slicing tool
presented in this paper. Before the game, an introduction to surfaces
embedded in four dimensions were given to the participants. In the
introduction, we used a flip-book of diagrams to describe a very
simple 4D surface, to help their understanding of 4D surfaces in
our dimensions. The participants were told that they will be using
visualization software to view and interact with five mathematical
surfaces in two sessions of this study, 30 minutes each session. Af-
ter each session, the participants were asked to select one flip-book

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

352



Huan Liu & Hui Zhang / A Flip-book of Knot Diagrams for Visualizing Surfaces in 4-Space

(a) (b) (c) (d)

Figure 10: A series of flip-books rendered when the Klein bottle [Kau98] was evolving from the classic shape to the pinched torus shape. Klein bottle is a
one-sided surface which, if traveled upon, could be followed back to the point of origin while flipping the traveler upside down

Figure 11: Apply rotational slices to explore the 4D 1-twist spun knotted
surface.

(a) (b) (c)

Figure 12: Generating flip-book of diagrams for the Boy’s surface. (a) A
hand-drawn figure of the Boy’s surface in Carter’s book [Car95]. (b) The
longitudinal axis and cutting planes used in our interface. (c) A flip-book
of 4 diagrams is generated to describe the interior structure of the Boy’s
surface projected to 3D.

from a set of three to match each of the five mathematical surfaces
they explored. The 5 surfaces used in the study included those from
Figure 7, Figure 10, Figure 9, Figure 11 and Figure 12.

1. With a View-only Interface — In the first session, the partici-
pants were given the adapted (view-only) interface which is ca-
pable of rendering these five surfaces and allows the users to
rotate, scale, and explore the surface with their desired view op-
tions (e.g., the opacity level to be used).

Table 4: Recorded interaction times from the two sessions

Surface View-only Slicing-enabled

4D torus 2.75 min 3.2 min
Klein bottle 3.67 min 4.5 min
4D spun trefoil 4.33 min 7.5 min
1-twisted spun 2.65 min 4.3 min
Boy’s surface 2.75 min 6.6 min

2. With a Slicing-enabled Interface — In this second session, the
participants were presented the smart slicing interface. They
were able to place desired longitudinal axes in the scene, and
view the resultant flip-book of diagrams recommend by the tool.
They were also able to use the slicing tool to obtain any arbitrary
cross-sections they desired in the exploration.

Table 3 shows the completion rates from participants in the two
sessions. The participants by just viewing the 3D graphics projec-
tions were not able to describe the structure of the surfaces, espe-
cially for those complex ones, such as 1-twisted spun and the Boy’s
surface. They eventually were able to complete the tasks after the
second session when they were exposed to the right tool — one that
they can use to slice the surface and examine the cross-sections. Ta-
ble 4 lists the average times that participants spent interacting with
the five surfaces in the two sessions of this study. We have two
observations: first, the time spent with each of the surfaces in the
first (view-only) session is significantly lower than in the second
(slicing-enabled) session; second, in the first session, the time spent
on more complex surfaces are not necessary longer than on those
simpler ones, while in the second session, participants spent ob-
servably longer time to interact with more complex surfaces such
as the Boy’s surface. The completion rates and the recorded time
here suggest that the slicing tool can engage the users by allow-
ing them to explore the surfaces in a meaningful way. At the end
of the study, the participants all agreed that our slicing interface
helped them to visualize the surfaces embedded in 4D by “seeing”
their shadow images in our dimensions in this way. All these results
suggest that the new visualization tool we are creating can enable
one’s mathematical experience with mathematical surfaces, partic-
ularly those embedded in high dimensional surfaces.
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7. Conclusions and Future Work

In this paper, we discuss a novel visualization method to slice sur-
faces embedded in 4 dimensions and use a flip-book of the resul-
tant cross-sections to visualize the surfaces. Through this new vi-
sualization, we can begin to appreciate the underlying structures
of these 4D surfaces. We further provide an automated method to
recommend the right longitudinal axis in order to create the most
meaningful flip-book of diagrams. Case studies have shown that
our method scales well to many classical and known surfaces, and
the new automated approach can be applied to the study of knotted
surfaces in more complex and general 4-dimensional spaces when
placing an optimal longitudinal axis is challenging. Starting from
this basic slicing and flip-book rendering framework, we plan to
proceed to visualizing the evolution (deformation) of 4D surfaces
with a series of flip-books. Improvement of rendering and visual-
ization of 4D surfaces, e.g., the use of 4D lighting model, is also
among our future research directions. In order to allow an interac-
tive interface for even more complex surfaces, we also consider the
possibility of using parallel computing to improve computational
efficiency, both in the slicing process and in the recommendation
of longitudinal axes.
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