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Figure 1: Illustrations of the evaluated concepts (left) and variations (middle, right) for representing missing values in parallel coordinates.
Information removal leaves out the missing values, missing values axis introduces a separate axis onto which missing values are projected,
while imputed values calculates replacements for the missing values and shows these estimates on their corresponding axis. For both of the
latter techniques, we propose downplay and highlight variations.

Abstract
We evaluate visualization concepts to represent missing values in parallel coordinates. We focus on the trade-off between the
ability to perceive missing values and the concept’s impact on common tasks. For this purpose, we identified three missing
value representation concepts: removing line segments where values are missing, adding a separate, horizontal axis onto which
missing values are projected, and using imputed values as a replacement for missing values. For the missing values axis and
imputed values concepts, we additionally add downplay and highlight variations. We performed a crowd-sourced, quantitative
user study with 732 participants comparing the concepts and their variations using five real-world datasets. Based on our
findings, we provide suggestions regarding which visual encoding to employ depending on the task at focus.

CCS Concepts
• Computing methodologies → Perception; • Human-centered computing → User studies; Visualization techniques;

1. Introduction

With the widespread use of sensor technology and ambitious data
collection strategies, high-dimensional datasets constantly gain im-
portance, while their size and complexity increase at the same time.
Such datasets often require visual analysis to understand and de-
tect trends, outliers, or other associations between dimensions. One
of the most prominent techniques for visualizing high-dimensional

† Both authors contributed equally to this research.

datasets is parallel coordinates [Ins85]. As illustrated in Figure 1,
parallel coordinates represent the dimension axes by parallel, often
vertical, lines. The datapoints connect these axes with lines passing
through their corresponding axes’ coordinates.

It is not uncommon for attributes of high-dimensional data-
points to be missing in real-world datasets, as exemplified in recent
works [SS18, JBF∗19, MGU∗21]. The reasons for missing values
can be myriad, e.g., broken sensors, incomplete forms, or physical
measurements that could not be collected during a clinical study.
Even in the most widely used high-dimensional example datasets,
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such as the Palmer Archipelago penguins [HHG20] and the Auto
MPG dataset [Qui93], missing values can be found. At the same
time, confident decisions can only be made if one is aware of miss-
ing values [AR14]. Visualizing missing values can be important
even when they are evenly distributed, e.g., when investigating pre-
diction errors of a deep learning model, visualizing missing values
of the input data can be important when reasoning about those in-
stances. Thus, the omnipresence of missing data and the importance
of visualizing missing values call for measures to represent missing
values in techniques such as parallel coordinates.

Despite the prevalence of missing values, they are often dis-
regarded by removing the datapoint [JBF∗19]. However, remov-
ing an entire line obfuscates that there are missing values in the
data. As this clearly is undesirable, there have been several works
that represent missing values in parallel coordinates, e.g., by intro-
ducing a missing values axis [MGU∗21] or using information re-
moval [JBF∗19]. However, little is known about the value of these
techniques, as their performance with respect to missing value dis-
covery, or interference with common parallel coordinates analysis
tasks, has not yet been evaluated.

In this paper, we investigate missing value representation tech-
niques designed for parallel coordinates. Based on related work
on missing data [SS18], we initially separate these techniques into
three distinct concepts, as illustrated on the left of Figure 1. The
first technique, information removal, removes the part of the line
connected to the axis that contains the missing value. The second
technique, missing values axis, introduces a separate axis for miss-
ing values onto which they are projected and connected to. This
missing values axis is oriented horizontally and positioned below
the vertical axes. The third technique, imputed values, uses recon-
structed values based on existing data in place of the missing val-
ues. Imputation obtains an estimated point at which the line can be
connected to. Because these techniques may interfere with common
parallel coordinates analysis tasks, we introduce novel variations
designed to downplay and highlight missing values [SS18]. The
downplay variations are designed to de-emphasize missing values
by decreasing the opacity of the lines, while the highlight variations
emphasize the missing values using dotted lines or glyphs.

To assess the effectiveness of missing value representation tech-
niques, we evaluate the eleven varieties described above within a
crowd-sourced, quantitative user study with 732 participants. We
investigate the ability to estimate the number of missing values,
as well as the performance on different parallel coordinates tasks,
namely, value retrieval, cluster interpretation, and outlier detection.
Our user study is based on real-world datasets, where data points
are removed randomly to an increasing degree, while the entire
dataset is used to compute a baseline for each task. Thus, within
this paper we make the following contributions:

• We conducted an evaluation of visualization concepts for rep-
resenting missing values in parallel coordinates.
• We developed visual variations to control how missing values

are perceived.
• We provide recommendations for visual encodings depending

on whether the visualization focuses on communicating missing
values or general patterns.

2. Related Work

One of the earliest works on parallel coordinates was by Insel-
berg [Ins85, ID90] who proposed the technique for visual analysis
of high-dimensional geometry. Later, Wegman [Weg90] introduced
the technique for visualization of statistical data, which was the ba-
sis for most research on parallel coordinates. While there are myr-
iad extensions to parallel coordinates that address everything from
visual clutter [HW13, JF16] to axis ordering [KHG03, Weg90], we
focus on missing values. Therefore, our evaluation does not con-
sider any of these advancements. Research most closely related to
this work deals with evaluating parallel coordinates encodings and
the visualization of missing data.

2.1. Evaluating Parallel Coordinates

Can novice users participate in parallel coordinates studies? There
was the longstanding assumption that parallel coordinates would
be an expert-only technique. However, Siirtola et al. found in their
study that, on the contrary, users learn the visual encoding used in
parallel coordinates quickly [SLHR09]. Furthermore, to evaluate
parallel coordinates with novice users, Kwon and Lee investigated
different online education methods [KL16]. In their study, they
found that video tutorials and interactive guides can get novices
up to speed in short time-frames. Following these findings, show-
ing that performing parallel coordinates studies with novice users
are feasible, we also use interactive movies and interactive guides
to train the novice participants in our study.
Which analysis tasks have been evaluated for parallel coordi-
nates? Quadri and Rosen [QR21] summarized evaluations of dif-
ferent visualization approaches and found that parallel coordinates
have been investigated in terms of value retrieval, filtering, sort-
ing, characterizing distributions, and clustering tasks. Kanjanabose
et al. found that parallel coordinates can outperform scatter plots
for clustering, outlier detection, and change detection [KARC15].
Raidu et al. added visual enhancements to parallel coordinates to
support trend estimation [REB∗15]. As tasks, they included outlier
detection, pattern discernability, and discovering obstructed data.
For cluster detection, Holten and van Wijk evaluated nine different
parallel coordinates visualization techniques [HVW10], while Blu-
menschein et al. [BZP∗20] evaluated the axis order itself. Based on
these findings, we distilled three general parallel coordinates tasks
encapsulating analysis on a per-line basis, between axes tracing and
line aggregation (clustering), c.f. Section 5.2.

2.2. Visualizing Missing Data

While this work focus on parallel coordinates, there have been
many works dealing with missing data for other common visual-
ization techniques [TAKP11, ANI∗17]. Eaton et al. [EPD05] com-
pared missing value encodings for connected scatterplots and, simi-
lar to our work, investigated participants’ ability of trend perception
and value comparison with missing data. Song and Szafir [SS18]
investigated visualization of incomplete datasets for bar and line
charts using highlight, downplay, annotation and information re-
moval visual encoding variations of imputed values. We adopted
the highlight and downplay variations for parallel coordinates in
this work to visually differentiate missing values. Andreasson and
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Riveiro [AR14] evaluated the effects of missing value encodings
for line charts on decision-making processes and show that the vi-
sual encoding can have effects on confidence and risk-friendliness
when making decisions based on such visualizations. While not the
focus of this work, we also ask the participants how confident they
are and provide these results to the community.

In terms of missing value techniques for parallel coordinates,
Sjöbergh et al. [ST17] introduced a horizontal axis below paral-
lel coordinates and connected the missing value lines to this axis.
This technique was also adopted by Muller et al. [MGU∗21] and is
referred to as missing values axis in this work, see Figure 1. Jöns-
son et al. [JBF∗19] applied what we will refer to as information
removal for dealing with missing data in brain cohort study data.
Johansson Fernstad and Johansson Westberg [JFJW21] introduced
the Missingness Glyph, providing information about several miss-
ing data patterns from earlier work [Fer19]. This Missing Glyph
is intended to be used either as a standalone visualization or as an
enhancement for multivariate visualizations such as parallel coordi-
nates. The missingness glyph encodes missing values using several
other visual representations, rendering it out of scope for this work.
Instead, we focus on evaluating missing value encodings solely by
augmenting the lines of parallel coordinates, which require no spe-
cial introduction or training to be understood.

While there exist techniques for visualizing missing values in
parallel coordinates, no evaluation to compare their performance
has been performed so far. Thus, guidance on how to visually en-
code missing data for other visualization techniques is available,
this is still largely unknown for parallel coordinates.

3. Parallel Coordinates Missing Value Encoding

The core idea of parallel coordinates is to facilitate lines that repre-
sent rows of a tabular dataset going through parallel axes for each
column in the dataset. While parallel coordinates have been a com-
mon visual encoding for a long time, there exists no clear guidance
on how to represent missing values while not interfering with tasks
not related to missing values. In this section, we explain the visual
encodings we investigated to communicate missing values.

The encodings in this work visualize missing values by changing
the lines in parallel coordinates. Another option to signify missing
data would be to modify the axes of a parallel coordinates visualiza-
tion. However, we not only want to show how much data is missing
but also enable visualization users to perform more detailed analy-
ses, including which lines contain missing values and how missing
values are distributed. Thus, we only investigate techniques that
encode missing data directly on the corresponding lines in the par-
allel coordinates visualization. We formally divide these encodings
into concepts, which are different methods to project missing val-
ues, and variations, which add further diversification and can be
applied to different concepts in the same way.

3.1. Missing Value Encoding Concepts

We investigate three concepts to visualize missing data in parallel
coordinates (cf. Section 2.2). These concepts are information re-
moval [JBF∗19], adding a missing values axis [ST17], and imputed

values [TAF12, CCH15]. The concepts will be detailed in the fol-
lowing and are illustrated in Figure 2, left.

Information Removal. An intuitive notion of the data not being
present can be obtained by simply not drawing lines to axes where
data is missing, see Figure 1, top left.
Missing Values Axis. Missing values are inherently out of distri-
bution as they cannot be mapped to a position on the axis contain-
ing these missing values. Thus, the missing values axis encoding
(Figure 1, left center) displays missing values on an axis separately
from coordinates with complete data. A horizontal axis, which
specifically encodes missing data, is placed below the conventional
parallel coordinates axes. Whenever an axis contains missing val-
ues, those coordinates containing missing values are routed to this
horizontal axis, right below the axis for which values are missing.
Imputed Values. To preserve the core property of parallel coordi-
nates, connecting all lines to all axes, this technique replaces miss-
ing values with imputed values. Since parallel coordinates typically
include a high number of dimensions and data samples, we cannot
use the same imputation method as Song and Szafir [SS18]. For our
parallel coordinates imputation method, we aim at preserving gen-
eral data patterns. Thus, the imputation method used must reflect
the trend of the original data across all dimensions, i.e., imputation
needs to take into account all axes for reconstructing the missing
value independent of axis ordering. Although there are many ad-
vanced imputation methods [SS07], they are computationally ex-
pensive, which is undesirable for large numbers of dimensions and
values to be imputed, as for parallel coordinates [BE10, BFG∗15].
We use nearest neighbor imputation [BS16] to estimate missing
values. Interpolation is performed on the basis of lines that are next
to the line that contains the missing value in each dimension except
for where the line is missing values. Internal tests were performed
to verify that this imputation method works well in our setting.

3.2. Missing Value Encoding Variations

To further diversify the tested visualization designs, we propose
variations on the basis of the work by Song and Szafir [SS18],
by adapting the downplay and highlight attention manipulators to
the missing values axis and imputed values concepts. Examples for
these conditions can be seen in Figure 2, right.

Parallel coordinates have specific traits that restrict the types of
suitable visual encodings. Datasets typically contain many entries,
e.g., table rows, resulting in many lines drawn close to and on top of
each other. This line proximity trait limits the possibility of adding
additional visual elements around lines, as it would further clutter
the visualization. Preliminary experiments with adding elements as
annotations [SS18] in addition to the variants we propose, e.g., er-
ror bars, were performed. However, we found that it is both hard
to trace which line the added elements are associated with and that
they additionally clutter the view to such a high degree that it sig-
nificantly obstructs other analysis tasks. Due to the line proximity
constraint causing overdraw, we chose to minimize the number of
added elements and exclude annotations that add additional uncer-
tainty. The following downplay and highlight variations take into
account that overdraw can be a problem for parallel coordinates by
either modifying the lines themselves in terms of drawing style or
opacity, or adding minimally occlusive glyphs.
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Figure 2: Example illustrations of all evaluated visual encodings. On the left, one can see the different concepts we used to encode data.
Baseline is the full dataset, information removal means that lines where data is missing are not drawn, imputation replaces missing values
with imputed data, and missing values axis adds an axis onto which missing data is projected. The imputation and missing values axis
conditions additionally have variations that downplay (opacity, gradient) or highlight (dashed, glyphs) missing values.

3.2.1. Downplay

Downplay is a technique to make individual values less salient
compared to the rest of the data [SS18]. This can be used to in-
dicate the presence of a missing value, while at the same time not
drawing visual attention. The focus of this work is on modifying
the opacity to create a downplay effect as it is associated with the
line itself and is commonly not used to visually encode other di-
mensions. We consider two distinct downplay techniques.
Opacity. We decrease the opacity of a line connecting a missing
value (Figure 2, third column) to lower its visual prominence. This
technique preserves the entire line as an element of the plot. The
opacity needs to be set such that it is visually distinct from the
other lines, while still ensuring that they are clearly visible. It was
experimentally decided that an opacity of 40% compared the other
lines fulfilled these criteria for the datasets used in the study.
Gradient. Lines are gradually faded away as they approach miss-
ing values (Figure 2, fourth column). The amount of gradient ef-
fect was experimentally decided to start with the same opacity as
other lines, linearly decreasing to 75% opacity until reaching the
midpoint and finally linearly decreasing to zero. The exact axis po-
sition is thus not visible anymore; creating the impression that the
coordinate passes behind the axis whenever a value is missing.

3.2.2. Highlight

Highlight makes missing values more salient compared to non-
missing data. Thus, missing values are emphasized using a per-
ceptually dominant visual encoding, intentionally drawing visual
attention to missing values. To this end, we propose two visually
distinct methods; a line modification technique and a glyph tech-
nique that adds minimally occluding elements to the visualization.

Dashed. Dashed lines for all missing values (Figure 2, fifth col-
umn) draws attention to this irregular pattern. This way, connec-
tions to missing data are still clearly visible and even emphasized
compared to filled lines. The dashed line effect is created using a

regular pattern with a repetition of five opaque and five transparent
pixels, resulting in a 50/50 split. While for this variation, less pix-
els are colored overall, we still argue that dashed lines are a form of
highlight, as they can serve as a preattentive visual attribute which
visually separates from the other lines in this context [Tre85].
Glyphs. Are filled circles with a border of the same color as the
line at the location of the missing value. Glyphs indicate exactly
where a value is missing, while keeping the visual appearance of
all lines the same. Because only missing values are represented by
such glyphs, they draw visual attention, highlighting the presence
and position of missing values. However, glyphs are more likely to
overlap than lines and might introduce overdraw. Overdraw is also
one reason why we placed the glyphs where values are missing in-
stead of where lines end or start, as this would double the number of
glyphs drawn. Additionally, placing glyphs at line starts and ends
does not show where a value is missing and leads to ambiguities
when multiple subsequent axes contain missing values.

Apart from these, there is a potentially endless set of variations.
Color is a natural candidate for missing value encoding [SS18], but
is often used to encode one data dimension of parallel coordinates,
making it less suitable for encoding missing data. We experimented
with different variations, such as glyph types and placement, curved
lines, different gradients and opacity levels, color, lightness, etc.
but found the above-mentioned to be the most promising. Although
we would have liked to include more variations, this would have
exceeded the limits of a crowdsourced user study. Therefore, we
selected these variations for this evaluation.

4. Hypotheses

We believe that each concept and variation has characteristics that
make it perform better or worse for a given task. Thus, we for-
mulated and investigated the following hypotheses to determine if
these characteristics impact the visual analysis performance.
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H1 Using the information removal concept, estimating the number
of missing values will be significantly harder.
As missing values are represented by lines that end at one axis and
continue a few axes later, they are hard to see. Thus, we assume
that performance will be significantly worse for this condition.
H2 With the imputed values concept, highlight and downplay en-
able spotting missing values.
As the imputed values condition in its default representation does
not display missing data and complete data differently, spotting
missing data will be impossible with this technique.
H3 We suspect imputed values to perform worse than information
removal for the common parallel coordinates tasks, but better than
missing values axis. The imputed values concept will help preserve
general patterns within the data while not completely obstructing
missing values.
While information removal makes it hard to spot missing values as
they are simply not drawn, the missing values axis concept might
interfere with general patterns in the data. We expect the imputed
values condition to lie somewhere in between, not performing as
well as the information removal concept in preserving patterns as
well as the missing values axis concept with respect to missing data.
Although its upsides are not as strong, we expect that imputed val-
ues will serve as a solid trade-off between showing missing data
and preserving the original data pattern.
H4 Imputed values leads to lower accuracy in missing value es-
timation compared to the missing values axis concept, but outper-
forms information removal.
We suspect that imputed values hinders the ability to spot missing
values, as imputed lines are mixed with all other lines, resulting in
more visual clutter compared to missing values axis. However, we
still suspect that imputed values leads to higher accuracy when es-
timating missing values compared to the information removal con-
cept, as information removal simply removes missing lines.
H5 The missing values axis concept will perform best in terms of
missing value estimation, but will harm common parallel coordi-
nates tasks.
Explicitly rerouting missing values to a separate axis visually high-
lights these values. Thus, we expect them to be easier to spot with
this technique. On the other hand, this interferes with the general
pattern common to parallel coordinates. In turn, we expect that this
improvement in missing value estimation will come at the cost of
lower accuracy in the other tasks.
H6 The highlight variations will perform best in terms of missing
value estimation but will harm common parallel coordinates tasks.
Highlighting missing values helps in spotting those values. How-
ever, it also draws attention needed to solve other tasks. Therefore,
we assume that while highlight will improve missing value estima-
tion, other task will be made harder through this variation.
H7 The downplay variations will help to preserve patterns within
the data, but make missing value estimation harder.
Contrary to the highlight variations, downplay de-emphasizes miss-
ing values. In turn, we expect missing value estimation to be
harmed by downplay while other tasks can be performed with
higher accuracy.

5. User Study Design

We designed a quantitative user study to evaluate the 11 visual-
ization techniques shown in Figure 1. Performance in four tasks
(missing value estimation, trend estimation, outlier detection, and
line tracing) are evaluated with different amounts of missing val-
ues, and five datasets.

The study is focused on two main aspects. First, we evaluate how
well missing values can be perceived with each visual encoding.
Second, we test how much each encoding interferes with common
parallel coordinate tasks, i.e., whether the visual encoding aids or
harms these tasks. For both aspects, participants were asked how
confident they were in their answers on a five-point Likert scale to
determine if the technique gave a false sense of confidence.

5.1. Datasets

Five real-world datasets with diverse properties have been selected
to reflect data distributions in realistic scenarios. Each dataset has
a different number of datapoints, dimensions, and the datasets con-
tain a variety of numerical and categorical data. An overview of the
datasets can be seen in Table 1.

Table 1: Datasets used in our evaluation. represents the number
of categorical axes while represents the number of continuous
axes. Brackets indicate dataset sizes after cleanup.

Name Rows Dimensions Source
Airline Safety 56 8 (1 , 7 ) [Fiv21]
Bad Drivers 51 8 (1 , 7 ) [Fiv21]
Iris 150 5 (1 , 4 ) [Fis36, And36]
MPG 398 (392) 9 (3 , 6 ) [Qui93]
Penguins 344 (333) 7 (3 , 4 ) [HHG20]

To evaluate the influence of missing data, it is necessary to pre-
cisely control which and how much data is missing. However, real-
world data can already contain missing values, which is for instance
the case for the Penguins and MPG datasets. Thus, the rows con-
taining missing values have been removed to obtain a valid ground
truth for our user study. Thus, we removed 9 rows from the Pen-
guins dataset and 6 rows from the MPG dataset in total.

Categorical axes were placed on the first or last axes because
users focus more on the center of parallel coordinates [NVE∗17].
For all other axes, we ordered them so that trends and outliers could
be seen between a pair of axis for every dataset. However, as we ask
for trends and outliers in the context of an axis pair, enabling us to
perform these tasks with crowd-workers, and value retrieval is not
axis-order dependant, we argue that the axis order is not a critical
factor for our findings. Furthermore, we have omitted all semantics,
by using capital letters for axis annotations, so that we could avoid
bias resulting from prior knowledge about the data.

5.2. Tasks

The following tasks were designed to test user performance of both
missing value estimation and common parallel coordinates tasks:

c© 2022 The Author(s)
Computer Graphics Forum c© 2022 The Eurographics Association and John Wiley & Sons Ltd.

239



A. Bäuerle & C. van Onzenoodt / Where did my lines go?

Figure 3: Trend estimation task example with the Iris dataset, miss-
ing values axis concept, and dashed-line highlighting. Participants
manipulated the knobs on the axes below the main plot to indicate
their estimate of where most lines of a given color start and end.

Trend Estimation. Relates to perceiving patterns that involve
groups or clusters between two axes, e.g.,, lines starting and end-
ing close to each other or lines with the same color. Participants
were asked to, e.g., “estimate the trend of the red lines between the
axes X and Y” by defining a trend vector, using an interactive ele-
ment displayed below the axes of interest. The color we selected in
the question was varied for different stimuli. An example stimulus
for the trend estimation task can be seen in Figure 3. The ground
truth was computed as the average value of the subset of lines we
asked for. This way, we obtained a ground truth and a prediction
for each of the two axes in question. To calculate the correctness
of an answer, we used the euclidean distance between the ground
truth values and the answer given by a participant. Data was re-
moved randomly from either one or both axes between which the
trend was to be estimated. We selected the axes between which the
trend was to be selected once per dataset to make sure that trends
were visible in all stimuli.
Outlier Detection. Relates to finding values that are significantly
different from others. Participants were asked to “select the line

Figure 4: Outlier detection task example with the Penguins dataset,
imputation concept, and glyph highlight. Participants were asked
to select the line between two axes, in this case C and D, that was
most different. The selected outlier is black and thicker.

Figure 5: Value retrieval task example with the Bad Drivers
dataset, imputation concept, and opacity-based downplay. Partici-
pants were asked to follow the highlighted line (black with glow in
original color) and estimate its axis-value three axes away using
an interactive slider placed below the axis in question.

between axes X and Y that is most different compared to all other
lines (disregarding the missing values)” by clicking on the line in
the visualization, see Figure 4. To measure participants’ accuracy,
outliers between the two axes were calculated using the Local Out-
lier Factor [BKNS00] with recommended settings [sld21]. A par-
ticipant could be either correct if they selected an outlier or wrong
if they selected a line that was not deemed an outlier, resulting in
a binary answer. Data was randomly removed from either one axis
which the outlier line was connected to or both, while ensuring that
the outlier remained. We selected the axes between which the out-
lier was to be spotted once per dataset to make sure that one or
more outliers were present in all stimuli.
Value Retrieval. Relates to tracing a line to retrieve its value for
another axis. We asked participants to trace a marked line and re-
trieve its value for the third following axis to the right of where the
marked line ended, see Figure 5. For example, given a marked line
ending at axis B participants needed to retrieve the value from axis
E. Participants had to adjust the knob of a vertical slider below the
corresponding axis to answer the question: “follow the marked line
up to axis X and estimate its value”. We calculated the accuracy
for this task as the absolute distance from the target value. We ran-
domly removed data from one or both axes between the highlight
and axis for which the value was to be estimated. We selected the
start and retrieval axes once per dataset and made sure that neither
axis (start, retrieval, and between) was categorical.
Missing Value Estimation. After answering to the stimulus, par-
ticipants were asked to “estimate the number of missing values for
axis X”. The participant could adjust a slider going from one to
the total number of items, or tick a checkbox stating “No missing
values” to make this an explicit choice. The error was determined
by the difference between the participant’s answer and the correct
number of missing values. As for the removal settings described for
the other tasks, values could be missing from one or two axes, but
we always asked for an estimate for only one axis.

Cluster detection was intentionally left out due to its similarity
to the trend estimation task, the difficulties in identifying ground
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truth clusters in real-world datasets, and the relatively poor perfor-
mance in cluster identification of real-world datasets compared to
synthetic ones [BZP∗20].

5.3. Stimuli

Each graph was generated using a custom JavaScript library (avail-
able on GitHub) and stored in vector format (SVG) to guarantee
pixel-perfect quality. Missing data was simulated by randomly re-
moving values from dimensions related to the tasks in steps of 5
values, 10%, 50%, and 70%. A fixed number was used to repre-
sent a small number of missing values independent of dataset size
while the percentage values were included to simulate different
missing/non-missing ratios. The maximum was set to 70% because
imputation does not make sense for higher percentages of miss-
ing values [MGU∗21]. As a baseline for the techniques, we asked
the same questions for a standard parallel coordinates visualization,
where we showed the original, unmodified dataset. The Tableau 10
color palette [Sto16] was applied to one categorical dimension of
each dataset to reflect more realistic scenarios compared to apply-
ing a constant color, and to allow for questions relating to a group
of lines (i.e., same category). The opacity was set to 0.5 for all
datasets with back-to-front blending as otherwise overdraw would
have made some tasks impossible to solve. A random drawing order
was used to draw each row of a dataset to ensure that the order did
not have a major impact on the visual appearance. Not every visual-
ization platform supports interaction, e.g., papers and newspapers.
To provide a uniform guideline and isolate the effect of the visual
encoding from interaction techniques, filtering, hovering, and other
graph interactions not related to the tasks were disabled.

5.4. Independent Variables

Of the aforementioned concepts, the missing values axis and the im-
puted values concept were drawn in their default setting and with
variations (4), which amounts to 5 encodings per variation concept.
For the information removal concept, variations were not applica-
ble as they could not be drawn without a line to be drawn in the
first place. Thus, we investigated 11 different visual encodings in
total. Each of these encodings was drawn with different amounts of
data removal (5). As explained in Section 5.3, we removed either
5 datapoints, 10%, 50%, or 70% of the data in an axis. Data re-
moval was performed on different axis configurations (3). For each
task, we selected either one or both of two candidate axes. Thus,
this amounted to 132 stimuli. Additionally, a baseline stimulus was
generated where no data was removed. Altogether, we thus pro-
duced 133 different stimuli per task and dataset.

These visualizations were used for the tasks (3) we evaluated as
described in Section 5.2. For the trend task, the Bad Drivers dataset
could not be used as it does not contain categorical data we could
color by (the one categorical axis contains 51 individual values). In
turn, the trend task was evaluated with the remaining datasets (4)
introduced in Section 5.1. Thus, for this task, we had a total of 532
stimuli. For the other tasks (2), we used the full set of datasets (5).
In turn, each of these tasks included 665 stimuli. Altogether, we
produced 1,862 stimuli. We ensured that each stimulus was viewed
exactly three times, requiring 5,586 responses.

5.5. Procedure

The study consisted of four phases. In the first phase, we asked each
participant to confirm that they had no color deficiency, since we
used colors in our visualizations and asked for colors in the trend
task. Note that additional color checks were performed during the
study, as detailed below. In the second phase, we introduced the
concept of parallel coordinates. Third, we outlined the tasks that
participants had to solve. Then, we explained the concept of miss-
ing data. Following, we introduced our visual encoding techniques.
To present the study workflow, we then showed an animated GIF
explaining how to solve the task. Then a series of example ques-
tions explaining the task was presented. Finally, participants had
to answer three training tasks for which we used hand-crafted data
to make them easily solvable, where the performance was not mea-
sured to get comfortable with the interface. Lastly, the formal study
was performed.

To simplify the introduction and prevent learning effects, each
participant was only presented with either the trend, outlier, or
value retrieval task. We deceided to limit the number of stim-
uli per participant to further prevent learning and fatigue. For the
trend task, we only show twelve stimuli per participant (three per
dataset), for the value task ten (two per dataset), and five for the
outlier task (one per dataset). These stimuli have been counter-
balanced using Latin square for the outlier task, and using random
order for the other tasks, whereby we ensured to not present the
same dataset twice in a row.

Each stimulus for each task was followed up by the missing value
estimation task. For both, the task response and the missing values
estimation task, before showing the visualization, we first displayed
only the question for each task. When the user pressed the space
bar, we revealed the visualization and started a timer to measure
the response time. We additionally asked participants to indicate
their confidence for each answer on a five point Likert scale from
Not Confident (1) and Completely Confident (5). Attention checks,
i.e., asking the participants to click a box of a specific color from
a set of four colors, were presented in-between every fourth stimu-
lus. Failure to click the correct box either meant that the participant
is color deficient, or that they did not pay attention. One failed at-
tention check could be well attributed to a simple misclick, so we
required two failed attention checks to be excluded. None of the
participants failed more than one of these checks, which meant that
we did not have to exclude any data from the study. Afterwards, we
conducted a short demographic questionnaire including age, loca-
tion, gender, and experience with parallel coordinates.

5.6. Participants

Our study was conducted via the crowdwork platform Prolific. In
total, we had 732 participants (379 female, 349 male, eight other,
three did not respond, Mage = 26.15, SD = 14.92, 108 out of these
participant reported having seen plots like the ones in the study be-
fore. As discussed in Section 5.4 and Section 5.5, our tasks required
different numbers of participants. Therefore, 133 participants were
assigned to the trend task, 399 to the outlier detection task, and 200
to the value retrieval task.
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Figure 6: Missing value estimation error increases with number of removed values. This decrease in performance can be observed for all
concepts and variations, indicating that the degraded accuracy indeed stems from the missing values themselves, not from our encodings.
The default variation for imputed values acts as a random guess baseline as it is impossible to spot missing values. The concept with best
average along the horizontal axis is highlighted in bold. The missing values axis concept performs better than the other concepts. However,
the imputed values concept combined with the dashed lines variation (highlighted with black outlines) almost performs on par.

Participants in the trend task had to provide answers to 12 stim-
uli. To make sure that they did not see the same stimulus twice,
we showed all four datasets used in this task and varied the color
for which we requested a trend estimate. For the outlier detection
task, participants had to answer 5 stimuli. This number was chosen
to prevent a learning effect, as we did not want participants to see
the same dataset with the same outliers twice. The value retrieval
task consisted of 10 stimuli. We showed each dataset twice, while
a learning was mitigated through constant variation of the line that
had to be traced for value retrieval. Since these three tasks required
different amounts of time to complete, we made sure that on aver-
age, each worker was paid 7.5£ per hour.

6. Results

Below, we present the results of our experiments. We conducted
Kruskal-Wallis-Tests and used the Mann-Whitney rank test for
pairwise post hoc anlysis, with Bonferroni correction. For binary
results (outlier detection), we conducted the chi-square test with
pairwise post hoc comparisons, also using Bonferroni correction.
A summary of our findings can be found in Table 2.

6.1. Missing Value Estimation

We first analyzed the ability to estimate missing values, as illus-
trated in Figure 6. Here, Imputed values with default variation acts
as a baseline since imputed values can not be differentiated from
non-missing values.
Concepts. Comparing our concepts, we found a significant effect
on accuracy (Missing values axis (Mdn =−3.0, IQR = 36.25), Im-
puted values (Mdn = −10.0, IQR = 60.0), Information removal
(Mdn = −5.0, IQR = 39.0), H(3) = 114.47, p < .001, Missing

Table 2: Findings for each of our hypotheses. Marks can be traced
to detailed statistics in Section 6.

Summary of findings
Information removal makes missing value estimation significantly
less accurate H1 , thus supporting H1.
Imputed values can support missing value detection if variations
are used H2 , thus supporting H2.
For common parallel coordinates tasks, Imputed values performs
better than information removal H3.1 but not significantly worse
than missing values axis H3.2 , thus rejecting H3.
Missing values axis makes missing value estimation significantly
more accurate H4.1 whereas information removal makes it signif-
icantly less accurate H4.2 , thus supporting H4.
Missing values axis makes missing value estimation significantly
more accurate H5.1 , but harms common parallel coordinates tasks
H5.2 , thus supporting H5.

The highlight variations did perform best in terms of missing value
estimation H6.1 but did not harm common parallel coordinates
tasks H6.2 , thus rejecting H6.
The downplay variations made missing value estimation harder
H7.2 , but it did not help to preserve patterns within the data H7.1 ,

thus rejecting H7.

values axis↔ Imputed values (p < .001), Missing values axis↔
Information removal (p < .001), Imputed values ↔ Information
removal (p = .66)), showing that the missing values axis concept
provides the highest accuracy when trying to estimate missing val-
ues partially supporting H4.1 and H5.1 . We also found a signif-
icantly worse accuracy for the information removal concept, sup-
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porting the second part of H4.2 and H1 . We found a similar ef-
fect for the confidence in missing value estimation between our
concepts (Missing values axis (M = 2.95, SD = 1.11), Imputed
values (M = 2.84, SD = 1.13), Information removal (M = 2.82,
SD = 1.14), H(3) = 16.27, p < .001, Missing values axis ↔ Im-
puted values p < .001, Missing values axis↔ Information removal
p < .05, Imputed values↔ Information removal p = 1.0)). How-
ever, when analyzing response times, we found that the missing val-
ues axis concept requires most time for this task ( Missing values
axis (Mdn = 17.3s, IQR = 17.8s), Imputed values (Mdn = 14.4s,
IQR = 16.0s), Information removal (Mdn = 15.0s, IQR = 18.3s),
H(3) = 52.76, p < .001, Missing values axis ↔ Imputed values
p < .001, Missing values axis↔ Information removal p < .01, Im-
puted values↔ Information removal p = .85)). This indicates that
missing values axis, while taking the longest time to estimate the
number of missing values provides the most accurate results, to-
gether with high confidence.
Variations. Comparing individual variations, we found signifi-
cant effects (Dashed (Mdn = −5.0, IQR = 36.0), Glyph (Mdn =
−5.0, IQR = 40.0), Gradient (Mdn =−6.5, IQR = 50.0), Opacity
(Mdn =−5.0, IQR = 44.75), Default (Mdn =−5.0, IQR = 42.0),
H(5) = 17.36, p < .01 (Gradient↔ Dashed p < .001, Dashed↔
Default p < .05, others not significant.)), suggesting the dashed
variation for missing value estimation. Although not significant, we
see generally lower variances for missing value estimation for the
highlight variations, supporting H6.1 and H7.2 .
Imputed values - Variations. When using imputed values, we
found a significant effect on the missing value estimation error be-
tween our variations (Dashed (Mdn = −5.0, IQR = 36.0), Glyphs
(Mdn = −11.0, IQR = 61.25), Gradient (Mdn = −13.0, IQR =
71.5), Opacity (Mdn = −7.0, IQR = 63.25), Default (Mdn =
−25.0, IQR = 70.0), H(5) = 44.12, p < .001, (Gradient↔Dashed
(p < .0001), Dashed ↔ Glyphs (p < .001), Dashed ↔ Default
(p < .0001), Glyphs ↔ Default (p < .05), Opacity ↔ Default
(p < .001), others not significant). This suggests that the dashed
variation seems to be a good choice in combination with the im-
puted values concept. With the exception of Gradient, all variations
also perform significantly better than Default, which does not re-
veal missing values, supporting H2 .
Missing values axis - Variations. The same pattern could be
found when investigating variations for the missing values axis
concept (Dashed (Mdn = −3.0, IQR = 36.5), Glyphs (Mdn =
−2.0, IQR= 32.0), Gradient (Mdn=−5.0, IQR= 38.25), Opacity
(Mdn = −4.0, IQR = 38.0), Default (Mdn = −1.0, IQR = 34.5),
H(5) = 18.94, p < .001, Gradient↔ Default (p < .0001), Dashed
↔Default (p< .05), Opacity↔Default (p< .05)) however, in this
concept the default variation significantly outperformed all others
except the glyphs. This is to be expected, because the only differ-
ence between the Default and the Glyphs variation is a single dot
on the missing values axis axis, as seen in Figure 2.

6.2. Common Parallel Coordinates Tasks

Next, we present the results of our study regarding common paral-
lel coordinates tasks.
Value Retrieval. For the value retrieval task, we did not find a sig-
nificant effect between our conditions.
Trend Estimation. For the trend estimation task, we found a sig-

nificant difference between the missing values axis concept and the
other conditions (Missing values axis (Mdn = 0.19, IQR = 0.22),
Imputed values (Mdn = 0.16, IQR = 0.2), Information removal
(Mdn = 0.15, IQR = 0.17), H(3) = 7.67, p < .05, (Missing values
axis↔ Imputed values p< .14, Missing values axis↔ Information
removal p< .05, Imputed values↔ Information removal p= .64)).
This indicates that for the trend estimation task, imputed values and
information removal perform approximately on par, while the miss-
ing values axis concept performs significantly worse.
Outlier Detection. For the outlier detection task, we also found
significantly worse performance using the missing values axis con-
dition (missing values axis (77.22%), imputed values(85.22%), in-
formation removal (92.31%), (H(3) = 34.62, p < .001), (missing
values axis ↔ imputed values p < .001, missing values axis ↔
information removal p < .001, imputed values↔ information re-
moval p < .05)). Altogether, these results indicate that the missing
values axis concept harms both, the trend and outlier detection per-
formance, further supporting H5.2 . Only for the value retrieval
task could we not find a significant difference. These findings sup-
port H3.1 in that imputed values performs better than missing val-
ues axis. However, H3.2 could not be supported since information
removal did not outperform imputed values.
Variations. We could not find a significant effect for either task
(Trend estimation (p = .95), Value retrieval p = .26, Outlier detec-
tion (p = .38)) between our variations highlight, downplay, and de-
fault. We also could not find a effect between the individual varia-
tions (Trend estimation (p = 0.94), Value retrieval (p = 0.12), Out-
lier detection (p = 0.39)). In turn, these findings reject H6.2 and
H7.1 . For the trend estimation task with the missing values axis

concept, the downplay variation showed descriptively higher val-
ues, but no significant effect could be measured. The results of our
experiments regarding our tasks can be seen in Figure 7.

7. Discussion

In the following, we draw conclusions and provide guidelines with
respect to using the evaluated concepts and variations.

Comparing the different concepts. For the missing value estima-
tion task, missing values axis performed best followed by imputed
values and information removal. However, missing values axis also
resulted in the longest task completion time. Nevertheless, if the
main focus is on communicating missing values, we recommend
the missing values axis concept. For value retrieval, none of the
concepts outperformed the other. Regarding trend estimation, we
found that missing values axis performs significantly worse, while
the other two concepts are approximately on par. In turn, we sug-
gest not to use missing values axis for trend-related tasks. Finally,
for the outlier detection task, we found that information removal
performs best, followed by imputed values and missing values axis.
Consequently, we propose to use the information removal concept
when the objective is to detect outliers. All tasks combined, while
imputed values is not the single best concept in any of them, it often
performs on par. Therefore, we suggest to use imputed values for
visualization where a balanced task performance is desired.
Comparing the different variations. We did not find significant
effects for any of the tasks. While overall, the impact of different
variations on the different tasks was low, this is different for the
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Figure 7: Depictions of task accuracy errors to understand the methods impact on parallel coordinates tasks (outliers removed for presenta-
tion purposes). Information removal represents a base level as it has no elements interfering with, or aiding, the tasks. Most methods are on
par with information removal. However, the missing values axis concept using dashed lines stands out as interfering most with the tasks.

missing value estimation task. Here, we found that gradient and de-
fault are significantly worse than dashed. However, all other com-
binations were not significantly different which is why we can only
recommend not to use gradient or default. Especially with the im-
puted values concept, variations have to be included, as the default
variation does not reveal missing values. When using imputed val-
ues, we found that using the dashed variation leads to the highest
accuracy when trying to identify missing values.
Comparing all concepts and variations. For missing value esti-
mation, missing values axis with the default encoding performed
better than each of the imputed values conditions and information
removal. Additionally, it significantly outperformed the gradient
variation of missing values axis. This was the best combination of
concept and variation for the missing value estimation task. For the
trend estimation and value retrieval tasks, we could not find sig-
nificant effects between the individual concept/variation combina-
tions. For the outlier task, the information removal condition out-
performed all concept/variation combinations except for imputed
values with opacity. This is in line with our recommendation to use
information removal when outlier detection is at focus. However,
since information removal was the worst in terms of missing value
estimation, we do not recommend this encoding in every case.

8. Limitations and Future Work

Since our evaluation provides high-level guidance visualizing miss-
ing data in parallel coordinates it naturally come with limitations.
Interaction Techniques and Encoding Variants. We did not
include interaction techniques or test different configurations of
our visual encodings, e.g., imputation algorithm, opacity, gradient
falloff, dash configuration, and glyph designs. Such parameter ex-
plorations could help to further improve the perception of parallel
coordinates with missing values.
Distribution of Missing Data. While this work provides general
guidance on how to best preserve patterns and visualize data in-
completeness, one might also need to take the data collection pro-
cess into account. For example, if the missing value distribution is
biased, imputation might introduce non-existent patterns.
Uncertainty Visualization. We did not experiment with uncer-

tainty visualization techniques. Future work could build on our in-
sights and add uncertainty visualization techniques such as roughly
sketched lines, manipulating gradients, or other techniques.
Scalability. Our study includes datasets with up to 398 datapoints.
We found that already at this level, overdraw is a big issue for par-
allel coordinates and in turn did not include even larger datasets. In-
tegrating missing value encodings with techniques to reduce over-
draw, such as bundling techniques, would be another interesting
research question to address.

More encodings can be evaluated using the same procedures and
data. As no additional baseline is required, new results can be di-
rectly compared to our findings, thus further sampling the space of
possible missing value encodings.

9. Conclusion

In this paper, we evaluated different visualization concepts to show
missing values for parallel coordinates. Additionally, these condi-
tions were augmented with variations to further diversify the set of
visualization options. Our quantitative user study, which included
732 participants, indicates that the best concept for the respective
tasks were missing values axis for missing value estimation, infor-
mation removal for outlier detection, information removal and im-
puted values for trend estimation, and none of the concepts could
significantly outperform any other in value retrieval. On this basis,
our discussion provides first indications on which encoding to se-
lect depending on what task is at focus, namely, the aforementioned
if one of the tasks is especially important, and imputed values if
a fair tradeoff of the tasks is the target of the visual encoding. If
imputed values is used, we suggest to combine it with the dashed
variation so that missing values estimation performance remains
high. Although this evaluation serves as a first source of guidance
on how missing data can be represented in parallel coordinates, we
hope that further research can expand these guidelines to more con-
cept, variations, and parallel coordinates techniques.
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