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Abstract

Analysis of spatial multivariate data, i.e., measurements at irregularly-spaced locations, is a challenging topic in visualiza-
tion and statistics alike. Such data are integral to many domains, e.g., indicators of valuable minerals are measured for mine
prospecting. Popular analysis methods, like PCA, often by design do not account for the spatial nature of the data. Thus they,
together with their spatial variants, must be employed very carefully. Clearly, it is preferable to use methods that were specifi-
cally designed for such data, like spatial blind source separation (SBSS). However, SBSS requires two tuning parameters, which
are themselves complex spatial objects. Setting these parameters involves navigating two large and interdependent parameter
spaces, while also taking into account prior knowledge of the physical reality represented by the data. To support analysts in this
process, we developed a visual analytics prototype. We evaluated it with experts in visualization, SBSS, and geochemistry. Our
evaluations show that our interactive prototype allows to define complex and realistic parameter settings efficiently, which was
so far impractical. Settings identified by a non-expert led to remarkable and surprising insights for a domain expert. Therefore,
this paper presents important first steps to enable the use of a promising analysis method for spatial multivariate data.

CCS Concepts

* Human-centered computing — Visualization techniques; Geographic visualization;

1. Introduction

Many domains work with multivariate quantitative measurements
at different locations, i.e., multivariate spatial data. Such data can
stem from, e.g., geochemical analyses of soil samples for the pur-
pose of mine prospecting [Hal18] or investigations of environmen-
tal pollution [RBD*14]. Depending on the specific goal and ap-
plication, various tasks need to be carried out on such a spatial
dataset, like dimension reduction (DR), or finding meaningful lin-
ear combinations of involved variables [BK12; Wac03]. Spatial
blind source separation (SBSS) [NOFR15; BGN*20; MBN22] is
specifically designed for multivariate spatial data and reveals linear
combinations of such data. It brings various advantages compared
to alternative methods (Section 2.1), e.g., it keeps the well known
loadings-scores scheme from principal component analysis and
properly accounts for spatial dependence due to its model-based
approach. Therefore, latent dimensions identified with SBSS often
correspond to the physical reality where data was collected, making
it a superior analysis tool for spatial data. When irrelevant dimen-
sions are discarded, SBSS serves as DR method as well. SBSS has
been successfully applied to a geochemical dataset [NOFR15] and
may be potentially used in any application domain that involves
multivariate quantitative measurements at different locations.

However, a challenge to the effective use of SBSS in practice
are two spatial tuning parameters that need to be set: A partition
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of the spatial domain into non-overlapping regions, and a configu-
ration of non-overlapping ring-shaped kernels (Figure 1, see Sec-
tion 2.1). The performance of SBSS depends largely on the choice
of these tuning parameters, but the size of the parameter space is
overwhelming for analysts. Theoretical guidelines about the opti-
mal choice of tuning parameters exist (see Section 3.2), but they
leave plenty of room for human judgement and automatic opti-
mization does not seem feasible. Further complicating the issue,
the current tool of analysts is text-based and not well suited to sup-
port them in their tasks.
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Figure 1: SBSS parameters illustrated on the same locations. A
regionalization (a) into a green and blue region. Two ring-shaped
kernels (c) as applied to the red location. Black locations are the
red location’s neighbourhood. Our prototype allows setting those
parameters with direct manipulation by splitting a region along a
polyline (b) and choosing kernel radii (d).
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As with many data analysis methods, the expertise of the human
analyst is vital to SBSS parameter selection. We believe that vi-
sual analytics (VA) [TCO5; KAF*08] can enable the effective use
of SBSS in practice. VA pairs automatic data analysis with visual
methods to combine and thereby enhance the computer’s and hu-
man’s individual strengths. To this end, we designed and devel-
oped interactive visualizations in collaboration with SBSS experts,
who are co-authors of this paper, and an expert in geochemistry.
We evaluated our approach with five visualization experts using a
heuristic for value-driven visualization [WAM*19] and one domain
as well as two external SBSS experts.

Our contributions are the following:

o A task description for SBSS parameter selection,

e a visualization design to support parameter selection for SBSS,
including novel and existing interactions and visualizations,

e an evaluation of the design with experts in visualization, SBSS,
and geochemistry.

Our contributions are interesting and relevant for the visualiza-
tion community. They represent an important first step to enable
the use of SBSS, a desirable multivariate spatial analysis method.
Blind source separation and geostatistics in general and SBSS es-
pecially have been little explored so far. In the context of visual
parameter analysis our scenario is notable because of spatial tuning
parameters.

2. Related Work

In the following we describe spatial statistics (Section 2.1), visu-
alizations for geospatial point data (Section 2.2) and interactions
with parameter spaces (Section 2.3) to contextualize our approach.

2.1. Spatial Statistics

Geostatistics is concerned with the analysis of data that show a
natural order in space. Typically, many measurements at different
sample locations are taken and the main source of information for
proper statistical analysis of such multivariate spatial data is given
by spatial dependence (cf. Tobler’s law). Geostatisticians are faced
with a wide variety of tasks, e.g., predicting the data at unobserved
sample locations, dimension reduction, or finding meaningful lin-
ear combinations [BK12; Wac03]. Proper modelling of the spatial
dependence is crucial for them. In the geostatistical framework it
is assumed that the spatial data at hand are generated by a family
of p-variate random vectors x(s) = (x(s),...,xp(s))" indexed by
elements s of the so-called spatial domain S ¢ R2, e.g., longitude-
latitude coordinates. Such a family of random vectors is referred
to as multivariate random field. Spatial dependence is character-
ized by the so-called spatial covariance matrix which evaluates the
covariance between the random field at two different sample loca-
tions. Often, the semi-variogram (covariance of the difference pro-
cesses) is used in favor of the spatial covariance as it avoids the es-
timation of the mean but is usually harder to interpret. Modeling of
proper covariance matrix functionals is a demanding task and usu-
ally simplified by further assumptions [GK15]. The second-order
stationary assumption yields that the spatial covariance is invariant
under shifts, i.e., the spatial covariance is the same for the whole

field and only dependent on the distance between two sample loca-
tions. In contrast, the spatial covariance function of a non-stationary
random field depends on specific locations and distances between
locations and is therefore usually much more demanding to model.

We will outline the advantages of SBSS over principal compo-
nent analysis (PCA) and its spatial variants [Jol86; DHB*13], be-
cause they are well known and widely used. For an overview of
geostatistical methods see, e.g., [BK12; Wac03]. The classical PCA
finds orthogonal directions of the data that maximize variance. It
does so by the eigen-decomposition of the covariance matrix Cov,
yielding the orthogonal loadings matrix U and uncorrelated princi-
pal components (scores) Ux. Two variants for spatial data are con-
sidered in the literature, both use the same methodology as classical
PCA, but adapt Cov. The so-called geographically weighted PCA
[FBCO02; HCJ*15] uses spatial information implicitly as it com-
putes multiple Cov for each sample location based on the neigh-
bors. This leads to local PCA solutions and different loadings for
each sample location, which is very time-consuming to interpret.
Another variant diagonalizes the product of Cov and a measure of
spatial dependence (Moran’s I) [JDDPOS8], which leads to a trade-
off between maximum spatial dependence and maximum marginal
covariance in components. It is not clear which properties in terms
of spatial/marginal dependence these components actually show.
Generally, the advantage of PCA are feasible interpretations of the
results in terms of the loadings-scores scheme. However, PCA and
both its spatial variants lack a statistical model, therefore, is not
clear which spatial and/or marginal dependence properties the re-
sults actually have. SBSS, on the other hand, provides both and can
find physically meaningful processes which generated the data that
also have certain well-defined statistical properties.

In recent literature [NOFR15; BGN*20; MBN22] the method-
ology of blind source separation (BSS) [CJ10] was combined with
principles of stationary/non-stationary spatial data analysis, result-
ing in spatial blind source separation (SBSS) for stationary and
non-stationary source separation (SNSS) for non-stationary spa-
tial data. For simplicity, both versions are referred to as SBSS in
this paper. The SBSS framework is appealing as it keeps the ad-
vantageous loadings-scores interpretation scheme but finds the so-
Iution by specifically accounting for spatial dependence, as it is
mainly designed to find physically meaningful components. More-
over, SBSS does not restrict the loadings matrix to be orthogonal as
PCA does. More meaningful components of a geochemical dataset
were found in comparison to PCA by a domain expert [NOFR15],
and pre-processing the data with SBSS in spatial prediction tasks
simplifies the task but keeps the performance compared to other
methods [MNY21]. The SBSS loadings matrix W—often denoted
as unmixing matrix—is found by jointly diagonalizing Cov and a
number of so-called local covariance matrices LCov leading to the
random field Wx(s) (latent field) consisting of uncorrelated and
spatially uncorrelated components. Local covariance matrices are
computed by a weighted average of the spatial covariance matrix
for all pairs of sample locations in a part of the spatial domain (re-
gionalization, compare Figure 1a). The weights are determined by
a kernel which only accounts for sample location pairs that are at
least separated by r;, and at most separated by 7o, (compare Fig-
ure 1c). A regionalization is needed to account for non-stationarity
of the random field, while the kernels specify local proximity and
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attempt to measure spatial dependency. Thus, for stationary data
one region is sufficient and if there is no spatial dependency present
the kernels are not informative.

The crucial point which determines the performance of the SBSS
methods is the choice of LCov matrices or more precisely choosing
a set of radii parameters (kernels) and a suitable domain subdivision
(regionalization). Theoretical guidelines hint that theses parameters
should be chosen such that the spatial dependence of the latent field
components is as different as possible. However, the practical use-
fulness of this statement is limited as the latent field is unknown
a-priori, which opens the door for parameter selection supported
by sophisticated visual analytic methods.

2.1.1. Spatial Data Analysis with Statistics and Visualization

After the influential work by Cleveland and McGill on graphical
perception and dynamic graphics in the 1980s, researchers started
to apply these ideas to spatial data. Haslett et al. [HBCU91] used
coordinated multiple views with interactive highlighting to find
anomalies in a geochemical dataset. The linked views in ques-
tion included dynamic statistical graphics, such as a variogram
cloud [Cre93], histograms, and a scatterplot matrix, as well as ge-
ographic views (a map). GeoVISTA Studio [GTWHO02], a visual
programming environment for spatial data analysis, extended this
approach and combined state-of-the-art visualizations with statis-
tical methods for, e.g., classification. Demsar et al. [DFCO08] used
similar dynamic graphics but to explore spatially varying param-
eters of geographically weighted regression instead of the original
spatial dataset. Dykes and Brunsdon [DB07] suggested adjustments
to well known statistical graphics to make them work in a geo-
graphically weighted setting and for multiple spatial scales. The
latter was also a focus for Goodwin et al. [GDST16], who, more
recently, used local regression coefficients to guide the analysis of
a spatial dataset. To summarize, previous efforts have been put into
using visualization to enable spatial exploration of the outcome of
statistical methods. While that is future work we plan, this paper
aims to enable the use of a spatial analysis method in the first place.

2.2. Visualization of Geospatial Point Data

As we see it necessary to visualize multivariate 2D spatial point
data to facilitate SBSS parameter selection, the visualization of
spatial point data is related to our work. Point data is quite com-
mon in geospatial visualizations. When the interest is in a vari-
able’s value, dot maps are often used. In those, each point is rep-
resented by one visual mark, like a circle. Other visual variables
are used to encode the actual value, such as area or color. Issues
may occur, e.g., when the data distribution has long tails (common
in geochemistry), as a few extreme values then reduce perceptual
accuracy for the majority of data points. Zhou et al. proposed the
point grid map [ZTXW17], in which visual marks are aligned on
a grid such that directional relations are preserved. Typographic
properties, like font weight, as visual channels have been explored
by Brath and Bassini [BB17]. When there is little space for indi-
vidual marks, pixel maps [Kei00] are an option. However, these
approaches distort the location of points, which is crucial infor-
mation in our case. Heatmaps and isocontours are employed when
the number of points is too big for individual marks. On irregular
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points, like in our case these do, however, require some preprocess-
ing as variable values need to be interpolated or resampled onto a
regular grid.

There are also approaches to present point value without per-
point marks on a map. Turkay et al. [TSH*14] proposed attribute
signatures, in which the analyst draws a path through space and
connected small multiple line charts show the value of variables
along the path. Their approach scales to many variables, but only
shows a small portion of variable values. Bouts et al. [BDD*16a]
warped the geographic space such that points with similar value are
moved near each other, an idea from DR. While an interesting idea,
we believe it would be unintuitive for our anticipated users.

Heatmaps are also useful to show the density of points, when
individual marks tend to overlap. In this case, some abstraction
is necessary. When the points are located along a road network,
visual marks can be encoded along the streets with bristle maps
[KMM*13]. If no natural regularization is available, it can be
enforced with quadtrees [CM17], grids [GB20] or merged areas
[ML19]. Finally, Phoenixmap [ZLG*21] uses concave hulls for
each category and encodes density along the outline. However,
point densities are less of a concern for SBSS than point values.

2.3. Parameter Space Interactions

As we present interactive visualizations to set spatial parameters,
we see interactive visualizations for other parameter spaces as re-
lated work and discuss them here. When the parameter space is
multidimensional with a manageable amount of dimensions, paral-
lel coordinate plots (PCPs) are highly popular [JF16]. They show
dimensions as parallel axes and data points in the multidimensional
space are encoded as polylines. Each vertex coincides with an axis
where the respective value of the dimension is. Common inter-
actions with PCPs are reordering and brushing. PCPs have also
been explored as an ideation tool to quickly create new design op-
tions [MW20]. If data points exist in multiple sets, nested PCPs
[WLSL17] are an option. PCPs were, in an immersive environment,
also combined with scatterplots into parallel planes [BBGS16].
Each plane is a scatterplot of two variables, and polylines pass
through these planes. This may help when the number of dimen-
sions grows, but they may at some point be too many. In this case,
users might still insist on sliders [HLW#*20] or one could persuade
them to work with a dimensionally-reduced view [OKB*19].

PCPs are great for multidimensional non-spatial data and have,
therefore, been applied in combination with spatial data visualiza-
tions to enable multidimensional spatial data analysis [GTWHO02;
DFCO08; MH18; OR18]. But different approaches are needed when
the parameters have a spatial or temporal dimension. World Lines
[WFR*10] is an interaction paradigm to steer a flooding simulation
while it happens. At different points in time, analysts may want
to, e.g., place sand bags to protect an area from water, and explore
the parallel universes (with and without sand bags). It preserves this
branching temporal structure in the interface. In the spatial case it is
popular to provide the analyst options, e.g., in the form of a spread-
sheet metaphor [JMO0O0], where possible parameter settings and their
effect on the outcome are arranged next to each other. In such cases,
the analyst often interacts with the parameter space through a se-
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lection in the output space, like in DreamLens [MGB*18]. A con-
strained editing mode that can optimize an objective interactively,
e.g., the flight distance of a model airplane [UKSI14], is another
useful interaction idiom. Finally, obtaining outputs by randomly
precomputing large numbers of parameter settings [SHB*14] may
be the simplest approach, but gets less useful and more computa-
tionally expensive the larger the parameter space is.

3. Background
3.1. Data Definition

As touched upon in Section 2.1, a multivariate spatial dataset in our
case consists of p-dimensional vectors x € R” at spatial locations
S < R%. The vector at the i-th location is denoted as x(s;).

A parameter setting (r,k) consists of a partition, or regionaliza-
tion, r and a point neighbourhood, or kernel, k. A kernel & is a set of
non-overlapping rings with inner and outer radius (0 < ¢, < Cour)-
The location of a kernel does not need to be set, as a kernel will
be evaluated for every location in each region. A regionalization
r partitions the spatial domain into a set of regions such that each
location s € S is contained in exactly one region. Hence, there are
neither overlaps between regions nor leftover locations.

A kernel k, applied to n locations s; € S, defines a symmetric
n x n neighbourhood matrix K. If for the distance d;; between two
locations s; and s; and any ring in k ¢, < djj < cow holds, the i-th
and j-th row/column of K contain the value 1, 0 otherwise.

3.2. Considerations for Selecting Parameters

There are several requirements and considerations to take into ac-
count when selecting a parameter setting (r,k) for SBSS.

Technical Requirements. From assumptions in SBSS theory fol-
lows, as already touched upon in Section 3.1, that the regions in r
must not overlap. To further simplify finding regions, we require
that their union must contain all locations in S. These are easy to
enforce automatically, but two other considerations require the hu-
man analyst.

Balance Region and Kernel Size. A guideline by our collabora-
tors to reduce the estimation error in the weighted average (Sec-
tion 2.1) is that each region in r should contain a reasonably large
amount of locations. The same is true for a kernel k, which should
capture reasonably many locations in each region. Hence, r and
k are not chosen independently. If a region contains sparsely dis-
tributed locations, the kernel needs to be bigger than for a denser
region to capture the same number of locations. It clearly is also not
useful if, e.g., the inner radius of the kernel is bigger than a region,
as no locations would be captured. In practice, analysts should first
select regions and kernels based on the guidelines below and after-
wards verify that no region/kernel is “too small,” based on a thresh-
old that is appropriate for the dataset and application. In our evalu-
ations (Section 6.1), participants initially set this threshold to 5% of
data points. If too small regions/kernels are identified, analysts may
proceed regardless or merge/expand regions/kernels, again follow-
ing guidelines below.

Reconcile With Domain Knowledge. Another recommendation
from SBSS theory is that regions should be selected such that they
enclose areas where variables behave, or can be expected to behave,
very differently from the other regions. This, however, depends on
the concrete dataset SBSS is applied to, and prior knowledge about
the physical reality it represents. As an example, if the measured
variables are about air quality, it may make sense to distinguish be-
tween urban and rural regions in the data, but in case the measured
variables are elements in soil, different soil types could guide the
regionalization. Similarly, a kernel should be selected such that it
encapsulates the spatial dependence of different latent processes in
the dataset, i.e., a kernel should cover the distance within which
a process may be noticeable. Such a latent process might be, e.g.,
emissions from driving cars, which influence air quality up to a
distance of a few hundred meters [LCX19]. In the same way as a
regionalization, the kernel parameter also clearly requires the do-
main knowledge of the analyst. Such considerations are difficult to
quantify, but may be supported by others that are easier to (data-
driven considerations). For instance, which latent processes can be
expected in the dataset depends on which variables were measured
and how far apart. The spatial dependence of a variable, important
for kernel selection, can be expressed with a variogram [Cre93].
It is possible to automatically partition a spatial domain [Guo08],
which could be an initial suggestion for this complex parameter.

To summarize, SBSS parameter selection is characterized by a
small set of rules that can be easily verified automatically, and a
larger fuzzier set of guidelines that require human reasoning and
domain knowledge. How our visual analytics prototype supports
both is the topic of Section 5.

4. Task Description

We describe users and their tasks using the design triangle by
Miksch and Aigner [MA14]. The data is described in Section 3.1.

Users. As SBSS is a relatively novel statistical method, our users
are for now SBSS experts who want to investigate their method
on real data instead of the usual simulation studies. While SBSS
experts have formal education in mathematics/statistics and are
knowledgeable in spatial statistics, we paid attention that this is
not a requirement for our visual designs. We anticipate that as in-
terest in SBSS grows in the future, domain experts without such
qualifications will require our interactive visualizations, too. Our
users’ main tool is RStudio, an integrated development environ-
ment (IDE) for R [Tea20], a language for statistical computing.
RStudio is text-based and allocates one part of its interface to show
a non-interactive visualization (which has to be programmed by the
user with, e.g., ggplot2 [Wicl6]).

Tasks. User tasks emerge from parameter setting considerations
described earlier (Section 3.2). First and foremost, users need to be
able to quickly and efficiently enter parameter settings (T1), also
complex ones. As can easily be imagined, this is not possible with
a text interface. For this reason, users currently favor parameter
settings that can be easily described with code, such as regional-
izations that are grids or regular slices in a particular direction, al-
though these may not correspond to the spatial reality in the data.
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Furthermore, they have to balance region and kernel size (T2) and
reconcile possible regions and kernels with their domain knowl-
edge (T3). The former is currently difficult as regions and kernels
are selected without a direct manipulation paradigm, and the latter
because only a single visualization is visible at a time.

We obtained the necessary tasks in a user-centered design pro-
cess with experts in SBSS and geostatistics. We also asked an ex-
pert in geochemistry for feedback on our visualizations during the
design phase. He underlined the importance of task T1, that the
system should be highly interactive and allow to produce many pa-
rameter settings in little time.

5. Visualizations and Interactions

In this section we describe the interactive visualizations of our pro-
totype (Figure 2) and relate them to the task description (Section 4).
We implemented those as part of a client-server architecture with
the client being a JavaScript application and the server written in R.
The latter is mainly to use the Spat ialBSS R package [MNV21]
that provides necessary functions. Both client and server carry out
time-intensive computations once and re-use results, thereby allow-
ing fluid interactions. The software is available online [Pic21]. We
describe and show the design with changes made after our evalua-
tions. We resized some elements and removed the guidance previ-
ously encoded in the blue colorscale (cf. Section 5.2.2).

5.1. Interactive Map (T1, T2, T3)

The SBSS parameters—regions and kernels—are complex spatial
objects. It is time-intensive, error-prone, and frustrating to define
these in an indirect manner by textual commands. A direct manip-
ulation interface for both of them seemed therefore promising for
task T1. We achieve this in an interactive map, which supports the
usual pan and zoom interactions. Not only can the analyst define
regions and kernels directly in their spatial context (tasks T2, T3),
with an interactive map it is also possible for us to show supporting
data to guide the parameter selection (task T3).

Notably the map has two modes. One is the “precomputed”
mode, which allows to view precomputed guidance suggestions
(Section 5.2). If the analyst wants to build their own parameter
setting or modify a precomputed one, they need to switch to the
“custom” mode. In this mode they can split a region in two, merge
two adjacent regions, and define a kernel directly in the map (Sec-
tion 5.1.2). Any precomputed setting can be copied to the “custom”
mode for modification.

5.1.1. Visualization of Regions and Kernels (T2)

As per common convention in cartography, we show regions as
polygons. They are not filled to not occlude the underlying map
tiles, which provide important information.

We show the current kernel configuration as shaded concentric
circles at the geometric center of each region. This is for two rea-
sons: First, a single kernel configuration is used for all regions,
which was an acceptable simplification to our collaborators. Hence
we may copy it as soon as a new region is defined. Second, there is
no single center for a kernel, as it will be evaluated at all locations.
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Shown at a region’s center we can expect that analysts will be able
to reason well about a kernel and region’s relative size (task T2).
We use the continuity Gestalt principle to encode which region a
kernel belongs to and crop the rings by the region’s boundary.

5.1.2. Direct Manipulation of Regions and Kernels (T1)

At first, the interactive map just shows the bounding box of all loca-
tions, and neither locations nor variables, to not clutter it from the
start. This is important because we do not know in advance how
many locations the dataset contains.

In discussions with our collaborators we learned that they expect
regions to be coarse and few. This is partly because a region must
not be too small (task T2, Section 3.2). As we further required all
locations to be assigned to a region, a regionalization is shaped
by splitting an existing region in two along a user-defined border,
which is provided by drawing a polyline through a region on the
map (Figure 1b). To merge adjacent regions it is sufficient to select
them. This allows to quickly define also complex regions, while
maintaining correctness (task T1).

A kernel configuration is a set of concentric rings. They are de-
fined as follows. First, the analyst picks a center point anywhere
on the map. From there, the analyst has to choose alternatingly
the outer and inner radius of a ring (Figure 1d). The process is
terminated and kernel definition complete when the kernel selec-
tion mode is turned off. With this direct manipulation approach and
supporting views it is easily noticeable when there are overlapping
kernels. Hence, we support kernel definitions in a quick and cor-
rect way (task T1). Please refer to the video in the supplemental
material for all visual feedback we provide.

5.1.3. Additional Data (T3)

Several additional spatial objects may be shown on the map to sup-
port selection of the parameters (task T3).

Custom Annotations. Our approach offers the ability for cus-
tom map annotations. The analyst may provide and overlay any
GeoJSON feature collection [BDD*16b]. This way, their domain
knowledge can be externalized and visually encoded to support pa-
rameter selection. In a geochemical setting, it could be a soil atlas
[HMZO09]. The cursor then snaps to the boundary of features, fur-
ther simplifying the process.

Locations and Variables. Analysts may choose to show just the
locations in the map encoded as points. This is a compromise be-
tween no locations and showing a spatial variable. They may, how-
ever, also overlay any single spatial variable of the dataset instead.
These are encoded in the same way as in the small multiples ex-
plained in Section 5.3: A colored triangle of differing size shows
the sextile (1/6 or 16.67% of the data).

Base Layer. Finally, we provide several base layers of the map to
choose from. The default is OpenStreetMap and OpenTopo, Thun-
derforest Landscape [Gra] and Satellite are also available. We ex-
pect that these cover most commonly needed information as they
provide layers optimized for both rural/natural and urban areas.
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Figure 2: Screenshot of our prototype (Colorado dataset). It shows the toolbar including legends (B) and a filter for number of locations (A),
visualizations supporting data-driven considerations (C and D, Section 5.4), precomputed regionalizations and kernels (E, Section 5.2.1),
variables as small multiples (F, Section 5.3), an interactive map (G, Section 5.1), the analyst’s current selection (H) and past selections (I).

5.2. Guidance (T1, T2, T3)

The set of possible regionalizations and kernel definitions is vast
and it is difficult for analysts that lack deep domain knowledge, to
find a starting point. They do not know what possible parameter
settings look like and how they compare. Hence, they need guid-
ance [CGM*17]. We provide orienting and directing guidance in
the following way (Figure 2, E). Possible regionalizations are pre-
computed, using a current strategy of analysts (grid-based) and one
that matches SBSS experts’ recommendations (covariance-based).
Similarly, possible kernel settings are precomputed. We show these
as suggestions (directing, Section 5.2.1) and color-code them by
quantification measures (orienting, Section 5.2.2).

5.2.1. Finding Regions and Kernels

A regionalization is visualized as choropleth map, with univariate
color scales as defined in Section 5.2.2. We use two strategies to
provide suggestions for regionalizations.

Grid-based Regionalization. For lack of better tooling, grids are
currently a popular setting for the regionalization parameter. These
can be quickly precomputed in a straightforward manner. We use
square n x n grids with n from 1 to a user-defined granularity.

Covariance-based Regionalization. Recall that in Section 3.2 we
described that regions should be selected such that the variable in-
teractions are different. When we consider the covariance of vari-

ables as a measure, we can compute suggestions for a regional-
ization automatically. We first convert the point dataset to a poly-
gon dataset using a Voronoi diagram. Then we group adjacent sim-
ilar Voronoi cells using the REDCAP regionalization algorithm
[Guo08]. In REDCAP’s terms, we use dist,qq, as edge length and
hgr as region heterogenity:

disteqge(si.s7) = [x(si)x(si)" ~x(s))x(s))" |
her =Y | (x(si) ~ %) (x(s;) = %:)" = Cov, |F

i,j are indices of locations, Cov; is the sample covariance matrix
of all locations in the region and X, the means of variables in the
region. || - | 7 denotes the Frobenius norm. With these hyperparame-
ters for REDCAP, we gain regionalizations for a user-defined num-
ber of regions. This approach was very successful in our evaluation
(Section 6).

Kernels. For kernel suggestions we consider only kernels with a
single ring, as the rings have no influence on each other. We ob-
tain smaller rings by a recursive binary partition of a largest ring.
To visualize the precomputed rings, we show them as stacked bars
(Figure 3), where the Y axis encodes ring thickness and the X axis
distance. The left edge of a bar marks the inner radius of a ring,
the right edge the outer radius. The bars are colored according to a
color scale described in Section 5.2.2. Single rings can be selected
to be viewed on the map, but any combination of rings may be de-
fined manually.
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Figure 3: Structure of the visualization for kernels (Figure 2, E).
Each kernel is a rectangle representing one part of a largest kernel.

5.2.2. Quantifying Regions and Kernels

Number of Locations. For analysts it is important to know how
many locations are contained in a region and captured by a kernel
(Section 3.2). Hence, for any region in a regionalization, we simply
count the number of locations in it. For a kernel in a region, we
compute the neighbourhood matrix K (Section 3.1) and define the
number of locations captured by the kernel as the mean of column
sums in K. As one column in K contains the neighbourhood for
a single location defined by a kernel, it is the average neighbour-
hood size. This metric is encoded in the orange color scale. It may
be used to inform, e.g., if a region may be split further or if two
adjacent regions should be merged (tasks T2, T3).

Insufficient Number of Locations. A pattern of diagonal stripes
appears when the number of locations in a region or kernel neigh-
bourhood is smaller than a custom threshold. This way, analysts
can easily detect too small regions or kernels (task T2).

Region Covariance Difference. In Section 3.2 we outlined that
regions should be selected such that the variable interactions are
different. One way to describe those are by the sample covariance
matrix Cov, of all x(s;) in a region. The difference of each Cov, to
the global sample covariance matrix Cov can then the quantified by
the Frobenius norm: |Cov — Cov, | r. Higher values indicate more
locally different variable interactions. This metric is encoded in the
green color scale. This should be used to identify as many as much
locally different regions as possible, as long as they are also rea-
sonable for a domain expert (task T3).

Eigenvalue Difference. SBSS theory states that high quality re-
covering of the latent field is achieved if the eigenvalues of the local
covariance matrices (Section 2.2) evaluated on the larent field are as
different as possible [BGN*20; MBN22]. Hence, a promising pa-
rameter setting maximizes the difference between these eigenval-
ues. Unfortunately, the latent field is unknown beforehand. How-
ever, in this spirit, our collaborators suggested that the eigenvalue
difference of the local covariance matrices evaluated on the input
data might be a useful metric to suggest the latent field recovery
quality of a parameter setting. In the version of the prototype we
used for our evaluations (Section 6), this metric was encoded in a
blue color scale. As it was not well accepted among study partici-
pants, probably due to its unreliability, we removed it from the final
design presented in this paper (Figure 2).

5.3. Summary of One Spatial Variable (T1)

We decided to show all involved variables separately to the inter-
active map as small multiples (Figure 2, F). Following parameter
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selection considerations in Section 3.2, analysts need to identify ar-
eas of the spatial domain in which many variables have consistent
values, which makes it necessary to show all variables at once. This
is effectively a manual regionalization (Section 5.2.1) and the small
multiples simultaneously provide an overview of all variables.

A single spatial variable is summarized by aggregating it to a
grid. The size of the grid can be interactively changed by the an-
alyst (semantic zoom). For each grid cell, the median value of the
variable is encoded by a triangle symbol showing the percentile it
falls in (Figure 2, B). This design was preferred by our collabora-
tors over a heatmap or isocontours. We divide the data in sextiles
(1/6 or 16.67% of the data). The lower three sextiles are gray and
upside-down triangles, the upper three are black and upright tri-
angles. This double encoding is redundant, but allows to perceive
contiguous regions due to the shared color and also intuitively in-
dicates which percentiles are shown: Downward-pointing triangles
show lower values, upward-pointing triangles higher values. As for
our collaborators the extreme values are of interest, values away
from the 3rd and 4th sextiles are shown with bigger triangles. The
relative sizes were chosen based on [Den96].

5.4. Distance Distribution and Variograms (T3)

We show two plots to support the data-driven selection considera-
tions (Section 3.2).

Distance Distribution. To know how far away locations are from
each other we show a density plot of all pairwise distances (Fig-
ure 2, C). From that an analyst can easily see if the spatial scale
of the dataset is on hundreds of meters or thousands of kilometers.
This is in addition to the interactive map (Section 5.1).

Variograms. The empirical variogram is an established plot in
spatial statistics [Cre93, Chapter 2] that shows the spatial depen-
dence of a variable, i.e., how its value changes with increased dis-
tance. With the (binned) distance on the X axis, the Y axis encodes
the average squared difference between any point pair whose dis-
tance falls in that particular bin. We combine variograms of all vari-
ables in the dataset by superpositioning them (Figure 2, D). In Sec-
tion 3.2 we explained that kernels can be selected such that they
encapsulate dissimilar spatial behavior of variables. To support this
assessment, we add a grayscale-coded square on top of each bin
that encodes the variance. Hence, darker squares point to bins with
more dissimilar spatial behavior. When the analyst selects a kernel,
its current extent is interactively shown in the variogram view.

6. Evaluation

In previous sections we described users and their tasks (Section 4)
and presented our interactive visualizations (Section 5). In this sec-
tion we describe our efforts to evaluate these visualizations. We
were interested in the following research questions:

e (RQ1) Do our interactive visualizations enable more efficient pa-
rameter selection? Le., can analysts enter complex settings in
less time?

e (RQ2) Do our interactive visualizations enable more effec-
tive parameter selection? L.e., do they allow analysts to enter
previously-impractical settings?
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e (RQ3) Is our designed guidance effective, i.e., is it semantically
meaningful and accepted by users?

Evaluations were carried out with three groups of participants.
We presented our prototype to five visualization experts (Sec-
tion 6.2), who judged its value using a questionnaire [WAM*19].
This is to confirm that we did not make gross mistakes in the vi-
sualization design phase. After that, we invited two external SBSS
experts (Section 6.1), who did not take part in the design phase,
to a user study. Here we were interested in how our prototype can
improve their parameter selection process. Finally, we showed the
covariance-based regionalization guidance (Section 5.2) and latent
dimensions (output from a parameter setting made by the second
author) to an expert in geochemistry (Section 6.3), to judge how
meaningful suggested partitions and acquired results are.

Hence, we combined quantitative and qualitative approaches.
However, we did not deem it useful to compare RStudio and our
visualizations in a quantitative way involving time and error. The
two are based on completely different interaction paradigms and
provide wildly differing levels of support to the analyst. From the
discussion with SE2 we think we were right in that decision.

Datasets Used in Evaluation. For visualization experts we ex-
clusively used the GEMAS [RBD*14] dataset (2 108 locations /
18 variables), because it covers most of Europe and we expected
it therefore to be somewhat relatable. SBSS experts preferred the
Kola moss [RAC*98] (594 / 31) and Colorado [SEK10] dataset
(960 / 27). For guidance judgement we again used the GEMAS and
Kola moss datasets, because the domain expert is one author of
them and intimately familiar. All datasets are publicly available.

6.1. SBSS Experts

Regarding our research questions of efficiency and effectivity, we
interviewed two people who work a lot in RStudio and are SBSS
experts. We introduced them (SE1 and SE2), who have at least one
publication on SBSS, to our visualizations. They used the proto-
type on a dataset they chose. These were different datasets. We
asked them to produce a few parameter settings using our proto-
type. We did not provide any requirements to this task, to not con-
strain their exploration and ideas. Of course, we helped them if they
did not remember visual encodings or interactions. We asked them
to vocalize their plans and intentions (“think aloud”). After they
were done or the time ran out, we discussed the visualizations and
interactions in an unstructured fashion. The sessions took around
75 minutes each. SE2 even provided us beforehand parameter set-
tings they made in RStudio.

In the beginning, SE1 had difficulties using the prototype. Espe-
cially the distinction between the “precomputed” view-only map
mode and the “custom” editable mode was confusing, as both
looked similar but edit controls were missing in one of them. How-
ever, after 15-20 minutes, SE1’s interactions became quite fluid.
SE2 had no problems from the start. This suggests that there is lit-
tle training time necessary to use our prototype.

Both experts, being knowledgeable about SBSS but not the ap-
plication domain of geochemistry, relied in their selection process
heavily on the guidance of our prototype.

SE1 browsed through many suggestions, but had trouble to com-
mit to any particular setting. It is possible that we provided too
many options, or at least should not have shown them all at once.
For lack of better judgement, SE1 settled for four parameter set-
tings from our guidance system, with minor modifications.

SE2 went about it in a more structured way, but produced only a
single setting in the end. At first SE2 also mostly browsed through
(grid-based) suggestions and inspected them in the interactive map.
SE2 also paid attention to the colormaps of the suggestions, al-
though more on the orange and green one. At some point SE2 de-
cided to find the most locally different region and clicked through
grid-based regionalizations. These tended to show regions in the
center as darkest, to confirm this SE2 inspected the variable sum-
maries. There SE2 noticed that many variables had consistently
similar values in the top right square and in the left-most col-
umn of the map. We pointed out that this observation matches
the covariance-based regionalizations, and SE2 used this guid-
ance more from that point on. SE2 combined the covariance-based
maps and the variable summaries to decide for one regionalization,
specifically the most fine-grained one that did not split the regions
of interest identified earlier. Then a process of fine-tuning began,
where SE2 split and merged regions to distribute locations evenly,
while keeping as much of the baseline regionalization intact as pos-
sible. Finally, kernels were selected with support of the variograms.
In the end, SE2 selected a parameter setting with much more com-
plex regions than in prior attempts made using RStudio. Judging
from our conversations with the domain expert (Section 6.3), this
setting is likely more realistic, too.

While we had plenty of time with SE2, it was not the case with
SE1, with whom we were not able to discuss drawbacks and ben-
efits deeply. SE1 raised no improvement suggestions for the pro-
totype, but mentioned that the purpose of the Eigenvalue guidance
in the blue colormap is not clear. This was reinforced by SE2, who
also did not look at it that much. We believe that this is because it
relates only to the output and its impact on that is unclear. There-
fore, this guidance is unreliable and we removed it in the final
prototype. Regarding using our prototype vs. RStudio, SE1 men-
tioned that “the precomputations are extremely useful.” This was
also echoed by SE2, but suggested that it would have been nice
if similar suggestions existed for the kernel parameter, too. SE2
also noted that being able to see the original variables would have
been useful. This is related to a technical detail with geochemical
data: Since these are measured as part of a whole (e.g., mg/kg in
a soil sample), it is necessary to apply some data transformations
first [Ait82] and our prototype showed variables only after these
transformations. We suggested SE2 to recreate one of their exist-
ing parameter settings with our prototype. However, SE2 declined
with an interesting answer: It would “probably be faster” but point-
less, as they would “very likely not be interested in choosing the
same settings,” given the fewer constraints and additional support-
ing views of our prototype. We take this as strong evidence for our
initial assumption, that providing tailored interactive visualizations
change the selection process, and for our first two research ques-
tions. As both experts made use of our guidance suggestions, we
see this as supporting evidence also for our third research question,
that our guidance is effective.

© 2022 The Author(s)
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Component Mean Std.dev.
Insight 6.35 0.98
Time 6.52 0.65
Essence 6.05 0.89
Confidence 6.00 2.98

Table 1: Results of the ICE-T evaluation with visualization experts.

6.2. Visualization Experts

We asked visualization experts to judge our visualization design.
While good design does not automatically entail a more effi-
cient/effective selection process, bad design most likely prohibits
it. We used the heuristic value of visualization approach by Wall
et al. [WAM*19] (ICE-T), because it is a good compromise be-
tween insight gained for us and time required for participants. We
introduced five visualization experts from two universities, who are
Ph.D. students or postdocs in visualization, to the SBSS problem
domain and our prototype (Section 5). Five experts are sufficient
according to the power analysis by Wall et al. The experts were al-
lowed to use the prototype on their own and ask as many questions
as necessary, until they felt confident enough to fill out the ques-
tionnaire. We discussed the terminology beforehand. The sessions
took around one hour each and were conducted solely by the first
author. The results are depicted in Table 1.

It can be seen that our approach was rated very well across ICE-
T components. For our purpose, we see Time and Insight, in that
order, as the most important components, which also were rated
highest on average. Wall et al. [WAM*19] state that a visualization
design can be considered successful if the mean score is greater
than five, which we clearly achieved. We provide the raw question-
naire results as supplementary material.

However, the standard deviation in the Confidence component
is very high. The reason for this is that two out of four statements
were often either deemed not applicable or rated badly by our par-
ticipants. These pertain to facilitating learning more broadly about
the data domain and helping to understand data quality. The former
is not important to our prototype, as it is designed to support param-
eter selection only, and not general data analysis capabilities. The
latter partly is: SBSS requires complete data, therefore good data
quality can be seen as a precondition. On the other hand, dupli-
cate or outlier entries could still exist, but would be invisible due to
occlusion and the percentile summary. This could be solved, e.g.,
by a layout that avoids occlusion, by annotations when occlusion
happens or by highlighting symbols if their value is greater than a
user-defined number of standard deviations.

Several points were raised in the open discussion. The variogram
was unknown to all participants, but thought to be a good way to
show spatial dependence of variables. That there should be more
space for the map, also because the other views could be shown
conditionally, was raised by two participants. Our triangle symbols
were deemed both intuitive and not ideal because it is not easy to
see where the center is. Participants also suggested to make it pos-
sible to analyze custom groups of variables.
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(a) Main soil types in Europe. Reproduced
from [HMZ09].

(b) 8 automatic regions
for the GEMAS dataset.

Figure 4: Comparison of a) a map of soil types in Europe and b)
our regionalization guidance. While not perfect, as it is limited here
to 8 regions and the dataset captures many more latent processes
than just soil type, our guidance suggests similar boundaries, such
as East/West Spain or North/South Baltic region.

6.3. Domain Expert

We showed the automatic covariance-based regionalizations for the
GEMAS dataset (Figure 4b) to the geochemistry expert. He imme-
diately recognized geologically and, therefore, geochemically dis-
tinct areas that are characterized by their soil (Figure 4a), such
as eastern Spain (Calcisol), Central Europe (Cambisol), Southern
Baltic region (Albeluvisol), or the Nordic countries (Podzol). He
further mentioned that such an automatic regionalization based on
multivariate data would likely be helpful for geologists and geogra-
phers as an initial estimation of homogeneous regions. This is often
necessary, e.g., because non-spatial methods, like PCA, must not be
used on inhomogeneous data [REGDO8, Chapter 14]. The domain
expert was not able to reconcile the automatic regionalizations with
known processes in the Kola moss dataset. In our opinion, even this
negative assessment is useful, as it suggests a stationary SBSS set-
ting (i.e., no regionalization required). Overall, we take this as evi-
dence that our regionalization suggestions can reflect real processes
and be a starting point even for domain experts.

To further test the applicability of our interactive visualizations,
the second author used them to define a parameter setting on the
GEMAS dataset. This is difficult because of the dataset’s complex-
ity (2108 locations covering Europe, 18 variables), especially for
someone unfamiliar with the application domain. Yet it took him
only a few minutes. We then plotted static maps of the resulting la-
tent components and showed them to the geochemistry expert, who
noticed familiar, surprising and unknown patterns. Unexpected was
a structure in the area of North France, Belgium and Germany (Fig-
ure 5a). The expert speculated it is caused by sediments, but then
the pattern would extend east- instead of westwards. While there
are possible explanations, like population density, more research is
necessary to confirm them. More unexpected patterns were identi-
fied near known sites of mining activity in Seville (Rio Tinto) and
Almadén (Figure 5b). This was insofar surprising to the expert as
Almadén is a mercury deposit and Rio Tinto copper/zinc, yet nei-
ther mercury nor copper were part of the dataset we used. The ex-
pert generally was impressed that a lot of known processes, like his-
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(a) Unidentified process causes
pattern in France and Germany.

(b) Patterns near mercury (top
circle) and copper mines.

Figure 5: Insights into the GEMAS dataset with SBSS. Images
show high (crosses) and low (circles) values of a latent dimension
[RFGDOS]. Zoom, crop and red annotation by the authors.

toric geological events (e.g., Oslo rift, glacial period), were so well
visible, even though our dataset did not include the “most interest-
ing elements.” Revealing the same interesting patterns with fewer
variables has monetary implications in geochemistry, as some ele-
ments are expensive to measure within useful detection limits (and
could be excluded). These insights show how useful SBSS can be
for multivariate analysis of spatial data, and how accessible they
became to novice users with our interactive visualizations.

6.4. Limitations and Discussion

Being a research prototype, our VA approach does have its limita-
tions (see also Section 6.1 and Section 6.2). The computational de-
mand increases with the number of locations in the dataset (O(nz)
per regionalization with REDCAP), hence the precomputations
may take several minutes. Further, any region currently must be
a single contiguous area without holes.

Our research questions pertained to the efficiency (RQ1) and ef-
fectivity (RQ2) of parameter settings with our interactive visualiza-
tions and the effectiveness of the guidance we designed (RQ3). To
answer RQ1 and RQ2 we performed, on the one hand, a heuris-
tic evaluation with visualization experts. Our prototype scored
particularly well in the Time component, as participants strongly
agreed that it provides efficient interactions. Visualizations were
also deemed appropriate, except to find data quality issues. The
latter is a minor issue as, in practice, SBSS expects a properly pre-
processed dataset. On the other hand, we introduced our prototype
to two external SBSS experts, who used it to select parameters on a
dataset of their choice. Little training time was necessary and the vi-
sualizations and guidance suggestions were considered useful. One
expert stressed how our prototype allows to set previously practi-
cally impossible parameter settings. Therefore, we think RQ1 and
RQ2 can be answered positively. Our third research question (RQ3)
was about the effectiveness of our guidance. The availability of re-
gionalization suggestions was considered very useful by SBSS ex-
perts. A novice in geochemistry (the second author) was quickly
able to select parameter settings that lead to surprising insights for
a domain expert. We therefore think that also this research question
can be answered positively.

7. Conclusion

SBSS is a desirable tool for multivariate spatial data analysis. It re-
quires setting complex spatial tuning parameters: a partition of the
spatial domain (regionalization) and a spatial neighbourhood con-
figuration (kernels). In this paper, we presented a visual-interactive
prototype that supports and guides analysts in finding appropate
settings, thereby rendering it more usable in practice. We devel-
oped it in close collaboration with experts in SBSS, geostatistics,
and geochemistry. The prototype contains several interactive capa-
bilities to modify parameters and guiding visualizations. We eval-
uated the prototype quantitatively using a heuristic evaluation with
five visualization experts and qualitatively with two external SBSS
experts, who were not part of the design process, and a geochem-
istry expert. Our evaluations show that

e our visualizations are appropriate and the prototype allows
highly interactive exploration of possible parameter settings,

e our prototype allows SBSS and visualization experts to select
parameters more flexibly, efficiently, and realistically,

e our guidance suggestions can be semantically meaningful to a
domain expert and are considered helpful by SBSS experts.

During this study we discovered partial results that we think
can be transferred between the domains of geostatistics, geochem-
striy, and visual analytics for mutual benefit. For instance, the ideas
of variograms and regionalizations rarely occur in visual analyt-
ics literature for spatial data. Flexible and interactive variograms
[HBCU91] and regionalizations are useful for exploratory analysis
of spatial data, which in turn can support geostatistical modeling. It
would be interesting to further explore, how these can be combined
with state-of-the-art interactive visualizations. Similarly, automatic
regionalizations may be useful for geochemists, as they suggest ho-
mogeneous areas from multivariate data, which are interesting by
themselves and can be analyzed by other methods, such as PCA.
To further improve upon the concept of regionalizations it would
be beneficial to make them uncertainty-aware, as we learned that
region boundaries in practice may not be crisp and clear-cut when
multiple influencing processes overlap.

Our contributions present a first step towards the effective practi-
cal use of SBSS. In the future we could look into more quantitative
approaches at several stages of the design study, e.g., comparing
SBSS results obtained with our prototype to a ground truth, investi-
gating an objective-oriented parameter selection approach, or con-
duct experiments to find out which visualizations are best for the
tasks we identified. Further topics arise as a result from our focus
on visual-interactive parameter selection. Because several param-
eter settings are tried in practice, it raises the question how com-
mon visual parameter analysis tasks, like sensitivity analysis, can
be possible with spatial parameters. Finally, it would be beneficial
if the exploration of multiple SBSS results are supported by inter-
active visualizations.
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