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Appendix

1. Graph Convolution

Algorithm 1 shows the graph convolution operation.

Algorithm 1: Graph convolution.

Input: node embedding Fu, j at layer j, a set of neighbor

embeddings {Fv|v ∈N (u)}, a set of neighbor

weights W and bias b, an activation function γ(·), an

aggregator α(·), and a norm function N(·).
Output: node embedding Fu, j+1 at layer j+1.

Fu, j+1← γ({WFv, j +b)|v ∈ {N (u),u}})
Fu, j+1← α(Fu, j+1)
Fu, j+1← Fu, j+1/N(Fu, j+1)

2. Additional Results

In Figure 1, we show more results with different data sets using

SurfNet for stream surface clustering. Each column shows node

clustering results for different surfaces of the same data set. These

results further confirm the reliability of SurfNet in clustering the

nodes of stream surfaces. We found that for complex flows (e.g.,

solar plume), the clustering results generated by SurfNet include

some minor errors, but the main surface structures can be detected

correctly.

3. Dimensionality Reduction and Clustering

Dimensionality reduction. To transform the learned features into

a 2D space, we experiment with four dimensionality reduction

methods: t-SNE [vdMH08], UAMP [MHM18], MDS [Kru64],

and Isomap [TdSL00]. Among them, t-SNE is a neighborhood-

preserving method, UMAP is a global-preserving method, and

MDS and Isomap are distance-preserving methods. The brushing

and linking results are shown in Figure 2. Both MDS and Isomap

cannot group similar nodes in the 2D projection space, while t-SNE

and UMAP meet our expectations. In addition, in the t-SNE projec-

tion, the nodes are more separated than those in the UMAP projec-

tion. Therefore, we choose t-SNE as the dimensionality reduction

algorithm to project the learned features.

Clustering. To group the points in the 2D projection space,

we study three representative clustering algorithms: DBSCAN

(density-based), k-means (partition-based), and agglomerative

clustering (hierarchy-based). The clustering results are shown in

Figure 3. DBSCAN performs best by detecting the lobster’s claws,

body, and tail while the other two clustering algorithms mix these

structures.

Feature space vs. projection space. We also conduct a study

to justify clustering the node embeddings in the projection space

(i.e., the space generated by t-SNE) instead of the feature space.

As shown in Figure 4, the results of clustering nodes directly in the

feature space do not make sense, and only several isolated parts are

grouped. The possible reason for this unsatisfactory result is that

in the feature space, data are sparse, which is problematic for any

method requiring statistical significance. Moreover, these data are

dissimilar in many ways, preventing the traditional clustering al-

gorithm from working efficiently. However, by clustering the node

Figure 1: SurfNet node clustering results of a stream surface. Top

to bottom: Bénard flow, five critical points, solar plume, square

cylinder, and two swirls.

embeddings in the t-SNE space, we keep all important information

and decompose co-related factors, ensuring that the clustering al-

gorithm works well.

Therefore, in this paper, we choose the combination of t-SNE

for dimensionality reduction and DBSCAN for node clustering and

perform clustering of node embeddings in the t-SNE space.

4. SurfNet Analysis

To evaluate SurfNet, we analyze the following hyperparameter set-

tings: mesh simplification, network depth, training stability, em-

bedding strategy, embedding dimension, feature initialization, and

training samples. We focus on node clustering results, from which

surface embedding (representative selection) results are derived.

For fair comparisons, all remaining parameters use the same set-

tings (e.g., the number of clusters).

Mesh simplification. To study how mesh simplification impacts

the quality of node clustering results, we apply different mesh sim-

plification thresholds ε [GH97] (larger ε leads to more simplifica-
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(a) MDS (b) Isomap

(c) UMAP (d) t-SNE

Figure 2: Comparison of different dimensionality reduction meth-

ods via brushing and linking using the five critical points data set.

The unselected nodes are colored in gray.

(a) DBSCAN (b) k-means (c) agglomerative

Figure 3: Comparison of different clustering algorithms under t-

SNE projection using the lobster data set. Each produces 3 clusters.

tion) to simplify stream surfaces. We then use the simplified sur-

faces to train SurfNet using the two swirls data set. The results are

shown in Figure 5. Under ε = 1.0, SurfNet cannot detect the bridge

that connects the left and right spirals. In addition, some blue sur-

face patches are mixed with the orange ones. Under ε = 0.5 and

ε = 0.2, the clustering results have no significant differences. Both

can separate the three spirals and the bridge well. Note that all the

surfaces displayed in the figures are the original surface without

simplification. Simplified surfaces are only used for SurfNet train-

ing. Hence, we suggest applying ε = 0.5 to simplify the surfaces.

Network depth. Given a mesh simplification threshold ε (i.e.,

0.5), we evaluate how the network depth affects the performance

of node embedding. We use 3, 6, and 9 layers to optimize SurfNet

using the two swirls data sets. The node clustering results are dis-

played in Figure 6. Only using 3 layers cannot produce meaning-

ful node embeddings since it groups one swirl and its bridge into

one cluster. However, applying 6 and 9 layers can discover the two

swirls (i.e., the blue and red parts) and two bridges (i.e., the orange

and green parts). Therefore, under ε = 0.5, using SurfNet with 6

layers is sufficient to generate meaningful node embeddings.

Training stability. To investigate the stability and sensitivity of

the training process, we independently train SurfNet four times.

The parameters are randomly initialized using He et al. [HZRS15].

The results are displayed in Figure 7. There is no significant dif-

ference among these results, and all results can discover the bonsai

and its basin. Note that the t-SNE projections of the four results

are not similar due to random initialization of the 2D points in the

t-SNE algorithm. However, the relative positions of these points

(a) DBSCAN+feature (b) agglomerative+feature

(c) k-means+feature (d) DBSCAN+projection

Figure 4: Comparison of different clustering algorithms under dif-

ferent spaces (feature vs. projection) using the two swirls data set.

(a) ε = 1.0 (b) ε = 0.5 (c) ε = 0.2

Figure 5: SurfNet node clustering results of a stream surface un-

der different thresholds for mesh simplification using the two swirls

data set.

are consistent. Therefore, SurfNet is stable in terms of training and

node clustering.

Embedding strategy. To confirm the effectiveness of generating

node embeddings using SurfNet, we compare the clustering results

generated using node embedding with SurfNet and directly using

the shortest-path length as the distance measure, as shown in Fig-

ure 8. The clustering results of SurfNet outperform those of direct

embedding as the number of clusters increases. One possible expla-

nation is that the features generated by SurfNet include Euclidean

(a) 3 layers (b) 6 layers (c) 9 layers

Figure 6: SurfNet node clustering results of a stream surface under

different network depths using the two swirls data set.
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(a) (b) (c) (d)

Figure 7: SurfNet node clustering results of an isosurface using

the bonsai data set. (a) to (d) show the node clustering results from

SurfNet trained four times independently.

information (i.e., node position) and geodesic information (i.e., loss

optimization). The former can offer cues between nearby nodes,

while the latter can help separate spatially close nodes with large

geodesic distances [HBS∗21]. Therefore, the embedding generated

by SurfNet better captures the surface structure and leads to better

clustering results.

(a) 2 clusters (b) 3 clusters (c) 4 clusters

Figure 8: Direct embedding and SurfNet embedding of a stream

surface under t-SNE projection using the five critical points data

set. Top: direct embedding, and bottom: SurfNet embedding.

Embedding dimension. To determine the appropriate node em-

bedding dimension, we set it to 128, 192, and 256, respectively, to

train SurfNet. The node clustering results are shown in Figure 9.

The clustering results are not satisfactory under 128 and 192 em-

bedding dimensions. For example, under 128 dimensions, green,

red, and orange parts are mixed, and under 192 dimensions, green

and red parts cannot be separated well. However, using 256 em-

bedding dimensions, all the structures are clearly separated. In ad-

dition, we also use 384 and 512 dimensions to embed node infor-

mation; however, there is no significant difference compared to the

result of 256. Therefore, we set the node embedding dimension to

256 for SurfNet.

Node information initialization. To investigate how to initial-

ize the input surfaces’ features, we train SurfNet with different fea-

ture initialization options (e.g., position, normal, velocity) using the

square cylinder data set. As shown in Figure 10, we display the sur-

face clustering results under different feature initializations. Lever-

aging position as input features, SurfNet achieves the best cluster-

ing performance. For normal, SurfNet cannot separate meaningful

(a) 128 dimensions

(b) 192 dimensions

(c) 256 dimensions

Figure 9: SurfNet node clustering results of a stream surface under

different numbers of embedding dimensions using the solar plume

data set.

parts. For velocity, SurfNet detects major structures but still mis-

classifies some of the orange parts into the green part, as shown

in Figure 10 (c). In addition, if we use both position and veloc-

ity as input features, the clustering quality does not improve. In

summary, using normal, velocity, or position+velocity as the ini-

tialized features does not lead to good node clustering results. This

is because SurfNet is optimized using the shortest-path loss. Only

position-related information can provide an appropriate initializa-

tion for SurfNet optimization. Hence, we suggest only using posi-

tion as the initialized feature for SurfNet training.

(a) position (b) normal

(c) velocity (d) position+velocity

Figure 10: SurfNet node clustering results of a stream surface un-

der different feature initializations using the square cylinder data

set.

Training samples. We evaluate the influence of the number of
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training samples on clustering quality using the Bénard flow data

set. We use 500, 750, and 1,000 training samples to train SurfNet.

The clustering results are shown in Figure 11. It is clear that us-

ing 500 or 750 training samples, SurfNet cannot detect the four

major patterns of the stream surface. However, with 1,000 training

samples, these patterns can be discovered. Besides, our experiment

shows that using more than 1,000 training samples does not further

improve clustering quality. Hence, we suggest using 1,000 stream

surfaces for training.

(a) 500 training samples

(b) 750 training samples

(c) 1,000 training samples

Figure 11: SurfNet node clustering results of a stream surface un-

der different numbers of training samples using the Bénard flow

data set.
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