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Abstract
Sonification can be an effective medium for people with visual impairments to understand data in visualizations. However, there
are no universal design principles that apply to various charts that encode different data types. Towards generalizable princi-
ples, we conducted an exploratory experiment to assess how different auditory channels (e.g., pitch, volume) impact the data
and visualization perception among people with visual impairments. In our experiment, participants evaluated the intuitiveness
and accuracy of the mapping of auditory channels on different data and chart types. We found that participants rated pitch to
be the most intuitive, while the number of tappings and the length of sounds yielded the most accurate perception in decoding
data. We study how audio channels can intuitively represent different charts and demonstrate that data-level perception might
not directly transfer to chart-level perception as participants reflect on visual aspects of the charts while listening to audio. We
conclude by how future experiments can be designed to establish a robust ranking for creating audio charts.

CCS Concepts
• Human-centered computing → Empirical studies in visualization; Empirical studies in accessibility;

1. Introduction

Visualizations have become a major medium to communicate data.
However, visually impaired people (VIP) who cannot fully lever-
age their vision have been excluded from getting the benefit that
visualizations can offer. This population includes people who are
blind and have low vision, which is around 285 million people in
the world according to the World Health Organization [Wor10].
Given the widespread use of visualizations, providing equal access
to their contents regardless of the user’s ability is imperative. Serv-
ing a broader audience has drawn the attention of the visualization
community (e.g., [LCI∗20]), promoting research efforts to design
alternative modalities to communicate visualization. Sonification is
an especially appealing alternative, given its practical nature. Un-
like other modalities, such as tactile graphs, sonification can be im-
plemented on most devices without specialized hardware.

To this end, extensive research has been carried out on auditory
perception, including a few works from the visualization commu-
nity (e.g., [RHEJ16]). For example, prior work has studied the op-
timal range of pitch for sonification [FM33] and the optimal slope
of pitch increments to perceptually match one unit increment (i.e.,
power-law exponent) [WM10]. Based on these empirical studies,
various software has been developed to create audio charts (e.g.,
[Pie19, WC03]). However, the penetration rate of audio charts in
the wild remains low due to several reasons, including the low ac-
curacy and individual variances in perceiving audio signals and bi-
ases of creators who design audio charts [Neu19]. Moreover, one

prominent reason is the lack of a consolidated framework that can
prescribe designers how to create an audio chart given data or con-
vert a visualization into an audio chart. In contrast, when creat-
ing visual charts, designers and automated systems can consult
with established frameworks, such as Mackinlay’s effective rank-
ings [Mac86], to get guidance on the appropriate mappings be-
tween visual channels and given data, enabling an effective and
efficient creation process.

The guiding objective of this work is to create a ranking of au-
dio channels to help create an audio chart, specifically for VIP.
Toward this vision, we investigated how VIP perceive various au-
ditory channels to represent different data and chart types. In de-
signing visualizations, effectiveness (approximated by accuracy) is
often the primary criteria to determine which encodings should be
used. While effectiveness is an essential component, we believe that
lowering the burden of constructing a mental model of the data and
the visual structure of charts is equally important to serving people
with visual impairments. Therefore, we investigated the perceived
intuitiveness of each mapping. Through a controlled online study
conducted via Zoom, we evaluated the intuitiveness and accuracy
of five auditory channels (pitch, volume, length, tapping, timbre)
to represent three data types (quantitative, ordinal, and nominal).
We also studied whether these intuitiveness mappings transfer to
chart-level perception. We derive suggestions for future studies to
establish a robust auditory channel ranking.

Our study revealed that participants considered pitch as the most
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Dimensions / Channels Note
Temporal Dimension Often used to convey the axis. Equivalent to position encoding.

Auditory
Dimension

Speech Channel Often used to convey ticks, labels and legend.

Non-speech
Auditory Channel

Pitch The way in which a frequency of a sound wave is perceived.
Volume The strength or intensity of a sound.
Panning Positioning of sounds in the left or right spectrum of a stereo.
Length Representing playing a sound for a certain amount of time.
Tapping Representing repeating a short sound a certain number of times.
Timbre The quality or “texture” of the sounds.

Modulation Index

Being composed of 2-seconds sounds using
a modulation frequency, which uses a different
frequency from the frequency used in the 2 secs,and a
modulation index, which is the number of harmonics.

Display
Dimension

Continuity
Continuous

Continuous sounds are used to represent
data points across the axis.

Discrete
Discrete sounds include beats of silence between
sounds that represent data points across the axis.

Tempo The speed at which a sound is played.

Mapping
Dimension

Polarity
Positive

The lower value of an auditory channel is mapped to the
lower data value, and the higher value of an auditory channel
is mapped to the higher data values.

Negative
The lower value of an auditory channel is mapped
to the higher data value, and the higher value of an
auditory channel is mapped to the lower data values.

Table 1: The design space of auditory charts.

intuitive channel to encode the data, regardless of the data type.
However, other channels such as tappings (the number of taps to
encode data) and length (the length of sounds to encode data) were
more accurate in decoding the underlying data. The intuitiveness
rankings of quantitative and ordinal data were similar but slightly
different from nominal data. We observed that visual metaphors
such as line charts are “continuous” and scatter plots are “scat-
tered,” impacting perceptions when evaluating audio charts’ intu-
itiveness. For example, participants find continuous sounds more
intuitive in representing line charts, whereas discrete sound encod-
ings were preferred when representing scatter plots. We find that
even when charts encode the same sets of variables, participants
voted for different auditory channels to be more intuitive to repre-
sent the charts due to their visual characteristics.

We make several contributions. First, we present the design
space of audio charts by aggregating prior work to inform our study
and future designs. We demonstrate the use of the design space in
our experiment. Second, we report evidence that VIP find different
auditory channels intuitive to represent different data types. In con-
trast to prior work, which mostly focuses on quantitative variables,
our work extends the assessment to all three data types, provid-
ing more generalizable guidance in designing audio charts. We also
report findings from what combinations of auditory channels best
represent different chart types. We observed that the most intuitive
mapping at the data level might not be aligned with the most intu-
itive mapping at the chart level due to their “visual” characteristics,
implying that additional consideration is needed to design audio
charts. Lastly, informed by our experiments, we present directions
for future studies to establish a robust effectiveness ranking.

2. Related Work & Background

2.1. Visualization accessibility for VIP

Several approaches have been investigated to communicate visual-
izations using alternative modalities beyond vision. The approaches
include sonification (e.g., [BBR∗02, Bre02, SFH05]), tactile visu-
alization [WM18, EW17a, EW18, EW17b, PR10, YMB∗20, FM15,
Hu15, EMW19], olfactory strategies [PBE19], and summarization
through text [JMK∗22, ESC∗07, MSMC14, GTPG13]. Kim et al.
conducted a survey regarding accessible visualizations and pro-
vided an exhaustive list of literature of the last decade [KJRK21].

2.2. Sonification

Sonification is the use of audio channels to convey data [KWB-
fAD99]. While our focus is to support VIP, not every study inves-
tigated sonification to serve VIP. Indeed, there is evidence demon-
strating the difference in perception between sighted people and
VIP [CW10, WM10]. However, we include them in the following
section as they provide full design space of sonification and poten-
tially relevant empirical findings.

While it is not common, some prior work explored sonification
in the context of visualizations, as opposed to the context of data.
Various chart types have been explored with sonification, such as
bar charts, line charts, and maps [Bre02, BBR∗02, CJP∗19, CW10,
SJJJ19, YB02, ZPS05, CMS07, KWKH19, Tom16]. An early audio
access method prototyped by Bulatov and Gardner emphasized that
visually impaired users must be capable of building a mental im-
age of where objects and data points are located [BG98]. Moreover,
research conducted by Sakhardande et al. explored audio to repre-
sent bar charts and found that visually impaired users were faster
using audio than speech on point estimation and point compari-
son tasks [SJJJ19]. This finding is similarly reflected in work by
Brewster, which investigates line charts through various visualiza-
tion tasks [Bre02]. Audio graphs resulted in better interaction than
graphs with only speech, as well as a reduction in cognitive de-
mand. These works highlight how the sonification of visualizations
can contribute to the effective interpretation of visualizations and
completion of visualization tasks. However, there is a lack of com-
prehensive exploration of a variety of auditory channels, the differ-
ent polarity of mapping (i.e., positive polarity maps lower values
in a channel to lower data values and higher values in a channel to
higher data values; negative polarity maps the opposite), and dif-
ferent data types that may be used in visualizations.

The prior studies can be classified by auditory channels that
they target to investigate. Pitch has been one of the most popular
channels that have been extensively studied [WL01, DW07, Bre02,
BBR∗02, BB03, CMS07, FWGK01, PD08, KWKH19, NKW02a,
SBS∗02, Tom16, WK05, Wal02, Wal07, ZPSL08, NH05, NKW02b,
PL05]. Pitch is how a frequency of a sound wave is per-
ceived [Cha21a]. Previous studies have explored using positive
and negative polarities with pitch [DW07, SBS∗02, WK05, Wal02,
Wal07]. Walker and Kramer [WK05] found that the sighted par-
ticipants’ preferred polarity depends on the mapping in consid-
eration, as well as that it is difficult to predict the preferred po-
larity but can be determined empirically. Most of the studies ex-
plored only quantitative data types to examine the auditory per-
ception [Bre02, WK05, Wal02, Wal07] with only a few excep-
tions [HHN11].

Volume is the strength or intensity of a sound [Sci21]. Volume
has been explored to represent data, often used with pitch [FR03,
NKW02a, FCBS06, NH05, PL05]. Neuhoff’s work demonstrated
that changes in volume could influence pitch change and vice
versa [NKW02a]. Tapping represents repeating a short sound a
certain number of times. Length represents playing a sound for a
certain amount of time. Although there is a lack of work directly
looking into tapping and length as auditory channels to encode
data, tick marks were involved in several studies to measure axes
or length [SW02, BNCM01, WC03, FR03, CW10, DW07, NW06].
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Work by Smith and Walker showed that including tick marks in the
form of clicks to provide x-axis information resulted in a greater
proportion of correct answers than the condition that did not pro-
vide tick marks [SW02]. Panning is the positioning of sounds in
the left or right spectrum of a stereo [pan21]. Panning has been
investigated in various studies [DW07, WMG04, BB03, CW10].
For example, panning was used to distinguish between different
sequences of data points [DW07, BB03] and to represent deci-
mals [WMG04]. Timbre is a specific quality or texture of a particu-
lar sound [Cha21b]. For example, different instruments have differ-
ent timbres. There have been a few works using the timbre in their
charts [WC03, SB07, FR03, NH05, BB03]. For example, work by
Brown and Brewster demonstrated a study using same-instrument
and different-instrument timbres to represent one data set (a math
function) in each ear. Participants were measured on their accuracy
in drawing the auditory graph. Results showed high accuracy in
participants’ drawings with no effect between same-instrument and
different-instrument timbres to represent data series [BB03].

Neuhoff et al. found that prior musical experience plays an es-
sential role in skills such as mapping, scaling, and conceptual rela-
tionships in sonified visualizations. Moreover, perceiving the direc-
tion of pitch change is difficult for participants with little musical
experience [NKW02a]. Sandor and Lane also reported that peo-
ple with more musical training perform better in tasks related to
pitch [SL03]. However, some experiments have shown there is no
absolute relationship between musical experience and the ability to
interpret encoded data messages [WK94].

Our work is different in various aspects. First, our study inves-
tigates auditory perception by different data types in the context
of visualization design. All prior studies focus on the quantitative
data type [Bre02, WK05, Wal02, Wal07]), which limits the contri-
bution to designing real-world audio charts. Numerous works only
look at the data aspect (e.g., [WK05, Wal02]) without charts in-
volved, not providing insights on audio chart design. Second, our
study extends the number of auditory channels to a broader va-
riety: pitch, volume, tapping, length, and timbre. Previous stud-
ies have looked at a limited set of auditory channels at a time,
hindering deriving some comparative conclusion among the chan-
nels (e.g., [CMS07, YB02]). Third, our study investigates the in-
tuitiveness and effectiveness of mapping for VIP. As visually im-
paired individuals may not have any visual information, the intu-
itiveness of mappings can lower the cognitive burden of construct-
ing a mental model for the visualization. Only a handful of works
measure intuitiveness and specifically target users with visual im-
pairments [WK05].

2.3. Design Space for Audio Chart

Based on the prior work, we derive the design space for our exper-
iment and future audio chart design (Table 1). First, we created a
Google Sheet where each column consisted of the metadata of the
paper (e.g., type of paper, title, authors), the type of auditory signals
(e.g., auditory channels), the characteristics of the signals (e.g., par-
allel, serial) and the experiment set-up (e.g., conditions, tasks) if the
paper is an experimental paper. As we reviewed papers, we iterated
on the columns, resulting in 19 different items. Three researchers
clustered the audio signal-related columns iteratively, resulting in

14 items. We used the term “dimension” for higher-level clusters
and “channel” for lower-level elements.

Some dimensions/channels are not possible to combine with oth-
ers. For example, timbre can not be combined with polarity. Also,
some auditory channels, such as tapping and length, can not be
combined with consistency elements. In addition to the auditory
channels and polarity we illustrated above from prior work, we con-
sidered a few more dimensions to cover the entire space. Temporal
dimensions can be considered equivalent to the position encoding
in the visual channel. While there is a lack of explicit characteriza-
tion, prior work has considered temporal dimension when creating
audio charts [SJJJ19]. Also, most of the available software maps
one of the quantitative variables to temporal dimensions. For ex-
ample, to represent a line chart, Sonification Sandbox would map
one quantitative variable to the temporal dimension and one with an
audio channel such as pitch [WC03]. Speech channel has also been
used in a few works (e.g., [Bre02]). For example, in representing
a bar chart, the system would read out the x-axis categories when
the x-axis variable is mapped to the speech channel. We used this
design space to build our experimental conditions.

3. Experiment: Intuitiveness & Accuracy of Mapping

We designed a within-subject experiment to evaluate how partic-
ipants perceive different auditory channels (e.g., pitch, volume).
The experiment consists of three parts. Part 1 investigates how intu-
itively different auditory channels can represent different data types
(e.g., nominal, ordinal) and how accurately participants perceive
the underlying data. Part 2 investigates whether the intuitiveness
of the mapping in data-level perception transfers to chart-level per-
ception. In other words, we study whether the channels that par-
ticipants perceived as intuitive to encode a specific data type are
also intuitive when they represent the data type in a chart. Part 3
examines their prior experience with audio charts and open-ended
feedback for our experiments.

In this experiment, we consider intuitiveness and accuracy (i.e.,
effectiveness). While it is apparent for sighted people what types
of data are presented in visualizations, intuitiveness in the mapping
between a data type and auditory stimuli is crucial to communi-
cate the data effectively for VIP. It is notoriously hard to define
and measure “intuitiveness”, but as a first step, we prompted par-
ticipants with a simple question, “how intuitive the mapping is,”
using a five-point Likert scale. We adopted this methodology fol-
lowing a study that investigates the intuitiveness of different vi-
sual channels (e.g., fuzziness, color saturation) representing uncer-
tainty [MRO∗12]. Before the beginning of the session, we ensured
that participants were in a quiet environment. We presented demo
audio to test whether participants could hear the audio clearly from
their devices.

3.1. Participants

Participants were recruited from mailing lists of organizations serv-
ing VIP. Our recruitment criteria were participants who are 1) at
least 18-year-old, 2) legally blind, and 3) not experiencing hear-
ing loss. We recruited a total of 20 participants. Participants’ ages
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ranged from 20 to 38 (M=30.4, SD=5/6). Among the 20 partici-
pants, 16 participants were blind, and 4 had functional visions (all
of those 4 participants have a visual acuity of 20/200 or less). The
detailed demographic information is in the Supplemental Material.
All study sessions were conducted via Zoom. The average length of
a study session was around 1 hour (SD=5 mins). Participants were
compensated with a $30 Amazon gift card.

3.2. Part 1: Evaluating Intuitiveness and Accuracy on
Mapping Auditory Channels to Data

We investigated intuitive audio mappings for different data types.
Since data abstraction is the starting point in the visualization de-
sign, we sought to understand how participants’ perception differs
for different data types. We expected to see the differences since
quantitative and ordinal data have a notion of magnitude (i.e., small
or large) while nominal variables do not. Barrass [Bar05] also con-
jecture that timbre might be the best auditory channel for mapping
nominal variables. We formulated the study conditions by conju-
gating three factors: data type, auditory channel, and polarity of
mapping.

3.2.1. Study Stimuli & Conditions

We formulated the study conditions based on three factors.

Data type: We varied the data types encoded by auditory channels.

• Quantitative (Q): We presented data as test scores for a class of
students. The lowest score is 1 and the highest score is 100.

• Ordinal (O): We presented data as five educational degrees:
middle school, high school, bachelor’s degree, master’s de-
gree,and PhD.

• Nominal (N): We presented data as five different fruits: apple,
banana, peach, grape, and watermelon.

Auditory channel: We experimented with five auditory channels
(pitch, volume, tapping, length, and timbre) to map to each data
described above. We studied these five channels as they are com-
monly used in sonification software.

• Pitch: The frequency used for the minimum value was Ab #56
(207.65Hz), and the frequency used for the maximum value
was F #113 (5587.65Hz). Humans tend to hear higher-frequency
sounds louder than lower frequencies [FM33]. Therefore, we
limited the pitch range to higher frequencies to control the per-
ception differences.

• Volume: The minimum volume was 70%, and the maximum
was 100%. We anticipate that participants will not always wear
earphones. Thus, the minimum volume of 70% was the lowest
sound that allowed participants to hear clearly, as tested in our
informal pilot study.

• Tapping: Each data point was represented by a variable-length
sound featuring multiple taps, where each tap represents a unit
of the data. The length of each tap was set after the pilot study to
0.5 seconds.

• Length: Each data point was encoded through the length of a
continuous sound. We set the length proportional to the data
value with a proportionality constant of 0.5 seconds for consis-
tency with the tapping condition.

• Timbre: Timbre is the quality or texture of sounds [Cha21b]. We
used three distinctive tone qualities (string ensembles, violins,
and pianos) to encode different data values.

While manipulating one channel, we kept all remaining channels
constant. The default setup used 100% volume, C3 pitch, and a
string ensemble instrument sound. These are either the defaults of
an established sonification software [WC03] used to generate our
study stimuli or were determined via the informal pilot.

Polarity of Mapping: We varied the polarity of auditory channels
except for timbre since it does not have the notion of polarity.

• Positive: Positive polarity involves using lower values of a chan-
nel for lower data values and higher channel values for higher
data values. For example, pitch-positive mapped lower pitch to
lower values and higher pitch to higher values.

• Negative: Negative polarity involves using lower channel values
for higher data values and higher channel values for lower data
values.

We combined the five audio channels and the two polarities
(except timbre), resulting in 9 auditory conditions (pitch-positive,
pitch-negative, volume-positive, volume-negative, tapping-
positive, tapping-negative, length-positive, length-negative, and
timbre). These were then conjugated with the three data types
(Quantitative, Ordinal, and Nominal), yielding 27 conditions
(e.g., Q-pitch-positive, O-pitch-positive, N-pitch-positive...). All
participants examined all conditions. Participants analyzed one
data type at a time, where the order was randomized across
participants. Within each data type block, the order of the nine
auditory condition blocks was also randomized. To generate the
stimuli, we used the Sonification Sandbox [WC03] developed by
Walker and Cothran, which provides a mapping between data
and various audio channels such as pitch, volume, and timbre.
The Sonification Sandbox provides reliable default values which
have been empirically validated as a result of research on people’s
auditory perception [WL01, SW02, Wal02]. Since the tapping
condition was not supported, we repeated the default sound
produced by the Sonification Sandbox with a gap in between.

3.2.2. Procedure

We first asked participants their demographic information, includ-
ing gender, education level, occupation, and vision condition (e.g.,
functional vision, light sensitivity, onset age). We also asked about
their musical experience to analyze potential correlations with their
performance [NKW02a].

Part 1 aims at assessing the intuitiveness and accuracy of differ-
ent audio encodings for different data types. To measure intuitive-
ness, participants first heard the minimum and maximum values
represented by the assigned condition and were asked how intuitive
the mapping was on a 5-point Likert scale. For example, in Q-pitch-
positive condition, participants were told that the data ranges from
1 to 100, followed by the lowest pitch sound representing the mini-
mum value, and the highest pitch sound representing the maximum
value. To measure accuracy, the participant heard the minimum
and maximum values first (e.g., for the Q-pitch-positive condition:
“1 [the sound of Ab #56;], 100 [the sound of F #113].”) ), followed
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by three audio clips representing three data values randomly gen-
erated from the data set within the minimum and maximum range.
After each audio clip, we asked participants to estimate the encoded
value by comparing the minimum and maximum sounds. The par-
ticipant was asked to estimate between 1 to 100 for quantitative data
and from middle school to Ph.D. for ordinal data. Since nominal
variables cannot be inferred from an audio clip without a legend,
we did not measure accuracy for nominal data.

3.2.3. Data Preliminary

To analyze intuitiveness by the factor (data type, auditory chan-
nel, and polarity) and the condition, we built ordinal Logistic Re-
gression models known to be suitable for analyzing Likert scale
data [WK16]. To analyze the accuracy, we built mixed-effect mod-
els [SG91] to accommodate the fixed random effects in our study
setup. To measure the accuracy, we calculated the absolute differ-
ence between the participants’ three responses and the respective
ground truth data, which were encoded in the audio clips using
the Sonification Sandbox. The three absolute errors were averaged
to compute the final metric. Our analysis did not deviate from the
original plan based on the study design (e.g., factor level analy-
sis, condition level analysis) and did not conduct any opportunistic
analysis.

3.2.4. Results

Factor Level Analysis on Intuitiveness We used the self-rated in-
tuitiveness as a dependent variable, and the data type, polarity, au-
ditory channels and the interaction between polarity and auditory
channels as independent variables. The result shows that the aver-
age values of self-rated intuitiveness were significantly varied by
the polarity (χ2=22.41, p<0.001) and auditory channel (χ2=29.83,
p<0.001). There was an interaction effect between auditory chan-
nels and the polarity (χ2=12.74, p<0.05). The data type does not
affect the average values of intuitiveness (χ2=2.58, p=0.27, Mean
of quantitative=3.2, SD of quantitative=1.2, Mean of ordinal=3.0,
SD of ordinal=1.2, Mean of nominal=3.0, SD of nominal=1.2).

Effect of Polarity on Intuitiveness For the polarity analysis, we
excluded the timbre as it does not have a notion of magnitude (i.e.,
no notion of higher/lower timbre). We also excluded the intuitive-
ness of audio encodings evaluated on nominal data for the same rea-
son. We observed that polarity impacts encoding intuitiveness. Par-
ticipants’ self-rated intuitiveness was higher for auditory channels
with positive polarity (i.e., larger data values map to higher chan-
nel values). The average rating of the positive polarity was 3.39
(SD=1.15), and that of the negative polarity was 2.76 (SD=1.09).
The difference was statistically reliable (t=6.02, p<0.001).

The effect of Auditory channels on Intuitiveness The self-
rated intuitiveness ratings by the auditory channel are shown in
Fig. 1. Participants found the pitch to be the most intuitive to en-
code data, regardless of data type and polarity. Tapping had the
second-highest self-rated intuitiveness, followed by length, timbre
and volume. In our post hoc analysis, the intuitiveness rating of the
pitch was reliably higher than tapping (t=-2.05, p<0.05) and all fol-
lowing channels. Tapping conditions were rated higher than length
conditions (t=-2.82, p< 0.01) and all following channels. Length
conditions and timbre conditions were (t=-0.79, p=0.4) not reliably

Figure 1: Evaluating intuitiveness by auditory channels. Partici-
pants find pitch most intuitive to encode data, followed by tapping.
The error bar indicates the standard error.

Figure 2: Evaluating intuitiveness by auditory channel and data
type. The aggregated participant’s rankings of intuitiveness were
similar when auditory channels were mapped to the quantitative
and ordinal data but slightly different when those were mapped to
the nominal data. The error bar indicates the standard error.

different as well as with volume conditions (t=-1.65, p=0.98). The
timbre conditions and the volume conditions were not significantly
different (t=-0.50, p=0.62).

The effect of Auditory Channel by Data Type on Intuitive-
ness As shown in Figure 2, the intuitiveness ranking was similar
across data types with a few exceptions. Especially when auditory
channels are mapped to quantitative and ordinal data, the trends are
very similar. The main exception was timbre, which ranked second
to last for quantitative and ordinal data types but second (third in
terms of median value) for the nominal data type. We measured the
correlation of rankings between the three data types using Spear-
man’s ranking correlation coefficient. The intuitiveness rankings of
the auditory channels of quantitative and ordinal were highly corre-
lated (S=0, p<0.001), but the rankings of quantitative and nominal
were not correlated (S=20.68, p=0.13).

We further break down the result by polarity (Fig. 3). The rank-
ings between the two data types were similar (S=4, p<0.001). The
intuitiveness ratings of pitch-positive conditions for both quantita-
tive and ordinal data were reliably different from tapping-positive
(Q: t=-3.71, p<0.001, O: t=-4.68, p<0.001) and all the follow-
ing conditions. While tapping-positive conditions were more intu-
itive than tapping-negative conditions (t=3.21, p<0.01) and all the
following conditions for encoding the quantitative data, tapping-
positive conditions were similar to length-positive conditions (t=-
1.35, p=0.18). All the combinatorial analysis is in the Supplemental
Material.

For mapping the nominal data, the equivalent result is presented
in Figure 2 (nominal) since polarity does not apply to nominal data.

Factor Level Analysis on Accuracy We now analyze what fac-
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Figure 3: Evaluating intuitiveness by auditory channel and polar-
ity. The rankings of the quantitative data and ordinal were similar.
Refer to figure 2 for the ranking of nominal data. The error bar in-
dicates the standard error. P=Positive, N=negative

tors impact the accuracy of participants’ perceptions. The accuracy
is computed as the average accuracy of three data points that we
prompted participants to decode. The accuracy was calculated by
taking absolute values of the difference between participants’ re-
sponses and the ground truth. Ground-truth quantitative data ranged
from 1 to 100, and ordinal data ranged from middle schools to
Ph.D., which was mapped into a 1 to 5 range. We did not eval-
uate perception accuracy on nominal data since these cannot be
predicted from audio signals.

For the analysis, we created a mixed-effect model using the lme4
package in R [BMBW15] for the quantitative and ordinal data con-
ditions, respectively. We used the average absolute difference as a
dependent variable, polarity, auditory channel, musical experience
and the interaction between polarity and the auditory channel as
fixed effects, and participants as a random effect. The result shows
that the accuracy varied by polarity (χ2=5.93, p<0.05) and audi-
tory channel (χ2=10.64, p<0.05). There was no effect of musical
experience (χ2=0.52, p=0.97) nor the interaction between auditory
channels and the polarity (χ2=1.43, p=0.84).

The Effect of Polarity on Accuracy We found that polarity im-
pacts the accuracy of decoding quantitative data (t=3.33, p<0.001).
Negative polarity conditions yielded an average error of 22.74
(SD=20.01) and positive polarities yielded an average error of
14.07 (SD=13.40) when the data is quantitative. Similarly, posi-
tive polarities (M=0.68, SD=0.60) yielded reliably lower decoding
errors than negative polarities (M=0.91, SD=0.69) when perceiving
ordinal data (t=2.54, p<0.05).

The effect of Auditory Channels on Accuracy Figure 4 shows
the effect of the different auditory channels on the perception er-
rors of quantitative and ordinal data. Tapping was the most accu-
rate auditory channel to represent quantitative and ordinal data.
In perceiving quantitative data, tapping conditions yielded signif-
icantly lower errors than pitch conditions (t=4.75, p<0.001) and
all other channels. Similarly, for ordinal data, tapping conditions
yielded reliably lower errors than pitch conditions (t=3.40, p<0.01)
and all other channels. We found no difference between the pitch
and length conditions for both quantitative (t=0.63, p=0.53) and or-
dinal data (t=0.17, p=0.86). We also found no reliable difference
between length and volume (t=0.97, p=0.33) when encoding quan-
titative data. In the case of ordinal data, the length encoding was
not reliably different from volume (t=1.21, p=0.23).

(a) (b)
Figure 4: Evaluating participants’ accuracy of perceiving the data
by auditory channel. The error bar indicates the standard error.

(a) (b)
Figure 5: Evaluating participants’ accuracy of perceiving the data
by auditory channels and polarity. The error bar indicates the stan-
dard error. P=Positive, N=negative

The Effect of Auditory Channel and Polarity on Accuracy
Figure 5 shows the effect of the auditory channel and polarity
for quantitative and ordinal data. The trends under quantitative
and ordinal data conditions were similar (S=8, p<0.001). Tapping-
positive conditions appeared to be the most accurate in perceiv-
ing quantitative and ordinal data. The tapping-positive encoding
was reliably superior to the second-best encoding length-positive
(Q: t=3.19, p<0.01, O: t=3.19, p<0.01) and all following condi-
tions. In representing quantitative data, we found no differences
between length-positive and tapping-negative (t=-1.33, p=0.18),
pitch-positive (t=0.30, p=0.76), pitch-negative (t=1.25, p=0.21) or
volume-positive (t=1.38, p=0.17). For ordinal data, the length-
positive encoding was not reliably superior to tapping-negative (t=-
0.49, p=0.63) and all other encodings. The full analysis is in Sup-
plemental Material.

Difference Between Early-onset vs. Late-onset, Blind vs.
Low-vision Individuals We did not observe differences in per-
ceived intuitiveness or accuracy between participants who had
early-onset and who had late-onset (we use age 16 as a threshold to
define early-onset [LLQ∗12]. Similarly, we did not observe differ-
ences in perceived intuitiveness or accuracy between blind or low
vision participants. The analysis is in the Supplemental Material.

3.2.5. Summary

Participants considered pitch to be the most intuitive channel to
encode the quantitative, ordinal, and nominal data. However, other
channels such as tappings (i.e., the number of tappings to encode
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data) and length (the length of sounds to encode data) were more
accurate in decoding the underlying data. The overall intuitiveness
rankings of quantitative and ordinal data were structured similarly
but slightly different from nominal data.

Dimension
Bar & Pie Chart

(1N-1Q)
Line & Scatter Plot

(1Q-1Q)
Temporal Dimension

N N N N
Q Q Q Q

Auditory Dimension

Speech Channel

Non-speech Auditory Channel

Pitch Q Q Q
Volume Q Q Q
Length Q
Tapping Q
Timbre

Display Dimension Continuity
Continuous x x

Discrete x x x x x x

Mapping Dimension Polarity
Positive x x x x x x x x
Negative

Table 2: Study condition we formulated with the aggregated design
space (Q=quantitative data, N=nominal data, x=check mark).

3.3. Part 2: Does Data-level Intuitiveness Transfer to
Visualization Communication?

When designing visualizations, it is assumed that the data-level ef-
ficacy of visual channels can transfer to the chart-level. For exam-
ple, according to Mackinlay ranking, the position is the most ef-
fective visual channel in visualizing quantitative data (data-level);
therefore, scatter plots (chart-level) are a good choice to visualize
quantitative data. In the sonification world, however, we hypoth-
esize that the direct transfer of channel perceptions from data to
visualization might not be possible, as listeners are interested in
capturing both the underlying data and essential visual components
of the chart. As a first step in validating our hypothesis, participants
examined a sonified chart and were asked to assess the intuitiveness
of audio mappings to represent various types of charts.

3.3.1. Pre-survey

Prior work demonstrates that VIP are generally familiar with many
types of charts since they have experienced them via tactile dis-
play or embossed materials in school [JMK∗22] They are most fa-
miliar with simple bar charts, pie charts, and line charts, and have
significantly lower familiarity with stacked bar charts, scatter plots
and area charts [EW17b,EW18]. To ensure participants’ familiarity
when evaluating data and chart mappings, we evaluated the famil-
iarity of seven charts. We surveyed participants before the study
to investigate their familiarity with the following chart types: area
chart, bar chart, line chart, pie chart, scatter plot, donut chart, and
violin plot. We asked two questions to measure their familiarity.
First, we asked them to rate their familiarity on a 5-point Likert
scale (e.g., How familiar are you with area charts? “Not famil-
iar at all” to ‘Extremely familiar”). Also, we asked whether they
had seen or touched each chart (e.g., Have you seen or touched
area charts through a tactile display or an embossed paper before?
“Yes”, “No”, “I don’t know what an area chart is”). We gave them
a short description of each chart before asking these questions. We
sent out a Qualtrics survey link through participants’ emails, and
responses were collected via Qualtrics before the study. With the
result from the survey (refer to Sec. 3.3.4), we set out to study bar
charts, pie charts, line charts, and scatter plots, as these were iden-
tified as the most familiar chart types in the preliminary survey.

3.3.2. Study Stimuli & Conditions

Table 2 summarizes all combinations of auditory channels used to
represent each chart type. The design space helped us think through
all the combinations available to create an audio chart for each chart
type. Since the combinatorial design space is large, we limited the
study conditions based on the feasibility (e.g., timbre cannot convey
quantitative information without legend) and our design intuition
(e.g., when presenting nominal data, sounds should be discrete).

Chart Type: We used four chart types based on the familiarity.

• Bar Chart & Pie Chart (x-axis: nominal variable, y-axis:
quantitative variable): The sonification of bar charts and pie
charts was created using either volume, pitch, length, and tap-
ping to encode the y-axis and the temporal dimension with
speech to encode the x-axis. For example, the audio chart will
read out each category on the x-axis (e.g., watermelon) and play
the corresponding quantitative data value with the assigned au-
ditory channels (e.g., pitch). We only test discrete conditions for
those two chart types based on the intuition that discrete sounds
represent nominal variables.

• Line Chart & Scatter Plot (x-axis: temporal dimension (with-
out speech), y-axis: quantitative variable): Line charts and
scatter plots were represented using volume or pitch to encode
the y-axis. They played continuously or discretely to evaluate
whether the visual properties would influence their intuitiveness.
Length and tapping were excluded as encodings for the y-axis
based on our design intuition, where they would give listeners
the impression that each data point was represented by a lengthy
object, such as a bar.

Data Distribution (as a random variable): We varied the data
distribution encoded in a chart. To create bar and pie chart datasets,
we re-used the five nominal data values used in Part 1 for the x-axis
and created corresponding quantitative data (y-axis) by considering
two trends (Monotonic Trend, Bell Curve with Noise) as a starting
point. For the line chart and scatter plot, we sampled 10 data points
for the x-axis ranging from 0 to 100, similar to Part 1, and created
the corresponding y-value by considering the same two trends.

• Monotonic Trend: The data points increase. We generated the
data by adding random noise to the series [2, 4, 6, 8, 10] for bar
and pie charts, and [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] for line charts and
scatter plots.

• Bell Curve: The data points follow a Bell curve with noise.

Bar charts and pie charts were created using one of the four audio
channels (pitch, volume, length, or tapping) to represent the y-axis
and the temporal dimension with speech to represent the x-axis,
resulting in four study conditions each. Line charts and scatter plots
were created using one of two audio channels (pitch or volume)
played as continuous or discrete sounds to represent the y-axis and
temporal dimension without speech to encode the x-axis, resulting
in 4 conditions. All participants examined all conditions.

To generate the audio charts, we used the Sonification Sand-
box [WC03]. Since this tool does not support nominal data, we used
Kukarella [ttv] to convert text-to-speech to read out nominal cate-
gories in our data and used Apple GarageBand to concatenate the
audio clips to create the stimuli for bar and pie charts. The visual-
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(a) (b)
Figure 6: (a) Results from preliminary survey measuring familiar-
ity with different chart types using a 5-point Likert scale. (b) Results
from preliminary survey gauging their visual and tactile experience
with different chart types.

ization of the data and chart types are shown in the Supplementary
Material.

3.3.3. Procedure

We started by explaining what type of data was encoded for each
chart. Participants listened to three audio charts representing the
chart and were asked which audio chart best represented the chart
type. Participants were allowed to say “none of them” to “all of
them”. To assess all conditions without overloading participants,
we split the stimuli for each chart type into groups to contain at
most three audio clips. The order of chart types was randomized.
The order of conditions in each chart was randomized within each
chart block. We also randomized the data distribution per chart type
(i.e., either a data with monotonic trend or bell curve trend would
be played, and participants receive the same dataset within the same
distribution). During the entire session, we encouraged participants
to share the rationales for their responses.

3.3.4. Results

Familiarity with Charts on 5-Point Likert Scale Figure 6 (a)
shows the result. Participants’ self-ratings reveal that they are most
familiar with pie charts (M=4.1, SD=0.9), followed by bar charts
(M=4.0, SD=1.0), line charts (M=3.9, SD=0.9), and scatter plots
(M=3.4, SD=1.5). Participants were relatively unfamiliar with vio-
lin charts (M=1.6, SD=1.0), donut charts (M=2.3, SD=1.5), as well
as area charts (M=2.4, SD=1.3).

Visual or Tactile Experience of Charts Figure 6 (b) shows the
result. The majority of participants have seen or touched pie charts
(16/20), bar charts (15/20), and line charts (15/20). About half of
the participants experienced scatter plots (12/20) and area charts
(12/20) visually or through tactile displays. Only a few participants
had experience with donut charts (4/20) and violin charts (1/20).

Overall, the self-rated familiarity and the visual or tactile expe-
riences were aligned with each other. Participants were primarily
familiar with basic charts, especially pie charts, bar charts, line
charts, and scatter plots. Based on the collection aggregated by
Borkin et al. [BVB∗13], circle charts, including pie charts, com-
prised only 3.2% of all visualizations. We conjecture that pie charts
are more prevalent in education settings than the overall usage in
the wild; therefore, they had more experience with pie charts.

Self-rated Intuitiveness Since participants were asked to choose
the most intuitive audio chart encoding out of multiple choices, we
aggregated participants’ votes for each chart. We filtered the results

Figure 7: Evaluating intuitiveness of auditory channels to rep-
resent different types of charts. The response from partici-
pants who haven’t seen or touched the chart were excluded.
Cont.=continuous, Disc.=discrete

from participants who indicated that they had not seen or touched
the specific charts (138 out of 424 data points were removed).

Figure 7 shows the votes that each condition received. The pitch
obtained the most votes to represent bar charts, followed by tap-
ping. Tapping had the highest number of votes, followed by length,
representing pie charts. The pitch-continuous condition earned the
most votes to represent line charts, followed by volume-continuous.
Pitch-discrete encoding obtained the most votes when representing
scatter plots, followed by pitch-continuous. Participants voted more
often for continuous encodings to represent line charts and discrete
encodings to represent scatter plots.

3.3.5. Summary

As we hypothesized, participants’ responses demonstrated that they
consider factors other than data type intuitiveness. While the pitch
was the most intuitive channel to represent all data types, partic-
ipants voted tapping and length the most to represent pie charts,
which contain a quantitative variable. We suspect that participants
may take into account the charts’ “visual” look in judging the intu-
itiveness of audio channels to represent charts. The patterns became
apparent when we compared line charts and scatter plots. Partici-
pants considered discrete sounds more intuitive when representing
scatter plots, while continuous sounds were more intuitive when
representing line charts.

3.4. Part 3: Post-Task Interview

After the main experiment, we followed up with post-task ques-
tions. We asked participants to share their prior experience with
audio charts and experience with the experiments.

Prior Experience with Audio Charts 13 out of 20 participants
had limited experience with audio charts. Prior experience included
the use of the Texas Instrument graphing calculator, VoiceOver,
Apple Health App, etc. P3 stated, “The only experience I had was
when I was in college, I had the software called audio graphing
calculator on my computer. So I used that a little bit when I was in
college, but that’s my only experience.” P8 also had a limited expe-
rience with calculators for blind people: “I used ones that are built
into like a Texas Instrument talking calculator. Okay, I don’t know
if you’ve seen it, and they made it for blind people, and it has like
tones and stuff (for) the charts and graphs.”
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Designing Audio Charts beyond Mapping Participants liked
the idea of playing audio for the minimum and maximum in the
beginning to set the scale of the data range. P4 further suggested
playing the entire scale to provide a better sense of it: "Go from a
lower scale to a higher scale, to give a representation of that data
before everything." P3 emphasized the importance of providing the
overviews of the mapping: "Make it very clear what sounds are
being played and what sounds are assigned to what kind of data
point." Several participants recommended speeding up the audio
chart. The audio should “move fairly quick” and should be lim-
ited "between 10-15 seconds," as suggested by P15. P13 asserted
that "We are pretty accustomed to not having things really slow,
so speed the sounds up would probably help to get the accuracy
without going crazy."

4. Discussion

Our results showed that participants found auditory channels
mapped with positive polarity to be more intuitive and enable more
accurate data decoding. Pitch is the most intuitive to represent any
data type in terms of individual channels. Given the continuous
nature of pitch encodings, we found it surprising that pitch was
deemed intuitive for nominal variables. We conjecture that partic-
ipants’ preference for pitch encodings stems from their familiarity
with this channel and that pitch enables easy distinction between
two data points when compared side by side.

While rated as the most intuitive for encoding data, the pitch is
not always accurate in conveying data compared to more discrete
channels, such as tapping. Since effectiveness and intuitiveness do
not go together in this case, further studies are needed to under-
stand the trade-offs of using pitch and tapping channels to represent
quantitative and ordinal data in audio charts.

4.1. Alignment/misalignment with Prior Work

Our finding regarding people’s perception of the polarity of data en-
codings is aligned with prior work. Walker and Mauney [WM10]
reported that more people find positive polarities to be better when
size, temperature, pressure, and velocity data are encoded. Simi-
larly, most participants found positive polarities more intuitive in
our experiments for data types that implied the notion of mag-
nitude (i.e., quantitative, ordinal). Data decoding accuracies were
also reliably higher for encodings with positive polarity. Partici-
pants found the pitch to be the most intuitive regardless of data
types. This result is partially aligned with the findings of Walker
and Kramer [WK05]. They found that pitch is better for repre-
senting quantitative variables than other channels such as tempo.
We partially confirmed the conjecture made by Barrass, who spec-
ulates that timbre is a good auditory channel for mapping nom-
inal variables [Bar05], by observing that timbre was the second
most intuitive channel to represent nominal data but one of the
least intuitive for quantitative and ordinal data. While a prior work
claims that musical experience can impact people’s perception of
pitch [NKW02a], the sheer amount of evidence indicates the oppo-
site (e.g., [HHN11]). Our result also shows no pattern that people
with musical experience performed better at accuracy tasks, includ-
ing pitch perception. Our findings reveal that participants associate

the tapping mapping with pie charts. Interestingly, prior work done
by Franklin and Roberts [FR03] demonstrates that a “Morse code”
style (similar to tappings) encoding has the highest accuracy in per-
ceiving values in the pie chart out of the five designs experimented
with.

4.2. Expressiveness Criteria

While effectiveness criteria are important to consider in designing
data representations, expressiveness criteria also play a role in the
mapping process [Mac86]. We would like to start an initial discus-
sion around the expressiveness criteria when mapping audio signals
to data and charts. Since the discussions are based on the reflection
of our results and intuition gained from conducting the study, fur-
ther empirical validations are required. We can apply expressive-
ness criteria on two levels: 1) can an audio signal convey all the
facts but only the facts that the data carries? 2) can an audio signal
convey all the facts but only the facts that a chart visually carries?

Data-level Expressiveness: All the channels that have the no-
tion of magnitude (e.g., pitch, volume) may express the quantitative
and ordinal variables without violating the expressiveness criteria,
as both carry the notion of “larger and smaller”. However, the tim-
bre, which does not intuitively map to values, may confuse listeners
when it encodes quantitative or ordinal variables.

Chart-level Expressiveness: Discrete audio signals, regardless
of the type of audio channels, can be mapped to visual marks that
are not continuous (i.e., points). Chart types using line and area
as marks may be better expressed by continuous signals, as the re-
sult of Part 2 alludes. In conjunction with data-level expressiveness,
some visual encodings that often represent categorical variables
(e.g., color, shape) may be more expressive when using an audio
channel that doesn not have the notion of magnitude (e.g., tim-
bre). Beyond element-level (e.g., marks and visual channels) con-
sideration, expressiveness criteria can be applied to charts’ overall
“look”. Such as what we showed in Study 2, the audio signals can
convey visual appearances to some extent. For example, 3D audios
may express the spatiality that pie charts carry better than other
channels.

4.3. Suggested Directions for Future Experiments

While researchers and developers have worked on sonification ex-
tensively and created many libraries, the penetration rate of audio
charts in the wild remains low. One potential reason is the lack of
generalizable design guidelines that work with all data types and
chart types. If a perceptual ranking of auditory channels is formal-
ized and compatible with data and images models that visualization
frameworks use, the creation and conversion space of audio charts
can be drastically smaller, helping designers choose effective au-
ditory encodings. Toward that vision, we list a few directions for
future experiments that derived from our exploratory investigation.

Study Chart-Level Perception: One major takeaway of our
study is that participants consider extra information beyond the data
type when evaluating audio encodings to represent charts, unlike
visual chart perception. While a bar chart and a pie chart may en-
code the same set of data (1N-1Q), participants found the pitch
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condition (followed by tapping) to be more intuitive to represent a
bar chart, whereas the two most voted encoding channels for pie
charts were tapping and length. Some participants alluded that they
try to map acoustic characteristics to visual characteristics when
assessing the intuitiveness of an audio mapping to represent a vi-
sual chart. For example, many participants explicitly highlighted
the appearance of a pie chart and tried to map what they listened
to, to the shape of the pie. P14 mentioned, “It’s kind of actively
going around the circle, and maybe having another constant note as
a guide that kind of takes you around it would be good." P3 also
stated that “a bar chart is almost like blocks of lines and the pie
chart is more of a circle segmented into pieces. They should be dif-
ferent.” Another example from our study is that participants find
that pitch-continuous encodings provide the most intuitive audio
chart to represent line charts. In contrast, pitch-discrete encodings
are the most intuitive for scatter plots. P4 stated that “some progres-
sion of changes in the pitch makes me imagine a continuous line.”
P1 also shared that “you want to know how scattered the points are,
and where they’re located. I really like the idea of different notes
because that really makes it seem like it is scattered."

Unlike visual charts, our study suggested that audio chart de-
signs should consider effective and intuitive mappings for the chart
type and take “visual” metaphors into account to convey the chart
better. Future studies should explore chart-level effectiveness and
intuitiveness to construct a universal ranking based on chart type
instead of data type.

Narrow Down Condition Space: Using our design space (Ta-
ble 1) and approach to formulate conditions (Table 2), the future
study can expand the evaluation to other chart types and combi-
nations of the channels. However, the condition spaces of possible
encodings may be too large. Since it is evident that participants
consider the visual look of the charts when they evaluate auditory
mappings, the future experiment can narrow down the conditioned
space by leveraging this fact. For example, researchers can only
evaluate discrete dimensions if a chart uses a discrete mark (e.g.,
point), or only evaluate continuous dimensions if a chart uses a
continuous mark (e.g., area, line).

In designing conditions for more complex chart types such as
stacked bar charts or grouped bar charts, researchers can extract
the visual metaphors from it (e.g., “stack” for a stacked bar chart,
“juxtaposition” for grouped bar charts) and prioritize the auditory
channels that align with these metaphors.

Using Tactile Stimuli or Extensive Description for Unfamil-
iar Chart Types: We observed that many participants were not
familiar with some chart types, such as donut charts and violin
charts. In future studies, researchers can use tactile stimuli to con-
vey the visuals first to ensure participants’ familiarity with a partic-
ular chart type. Researchers can also prepare an extensive descrip-
tion based on the charts they are familiar with (e.g., Area charts are
similar to line charts, but the area under the line is filled to encode
data).

Study Speed as Design Factor It is known that people with vi-
sual impairments can perceive verbal information spoken in fast
speed [MHD∗08]. Our study set up the speed of tapping and length
conditions relatively low (i.e., 0.5 seconds for one data unit) to en-
sure clear understanding. However, P13 asserted that the speed can

be increased “We are pretty accustomed to not having things slow,
so speed the sounds up would probably help get the accuracy with-
out going crazy.” A future study can vary the speed to learn the
maximum threshold speed to warrant accurate perception.

4.4. Limitations

We did not require people to wear headphones or earphones in our
setting. As a result, 7 out of 20 participants wore headphones with
stereo sound support, and one participant used a laptop with stereo
sound outputs. While it can be minimal, this may impact partici-
pants’ responses during our study.

We tested the effect of data types with one dataset per type as
an initial experiment. We envision that this set-up can be scaled
up in various directions: 1) varying ranges of the datasets (e.g., for
quantitative variable datasets, does the change of order of magni-
tude change the perception?), 2) varying topic of datasets [WM10],
3) varying the number of points in datasets (e.g., does complexity
change the perception?), and 4) varying the combination of encod-
ings (e.g., Are there interactions effects?). We believe that the dif-
ferent setup may not modulate the results of Study 1 (intuitiveness)
since participants mostly relied on the notion of each audio chan-
nel to judge intuitiveness. However, the accuracy results may be
changed as the dataset space changes.

We did not measure the accuracy of nominal data since audio
cannot provide any signal to predict the ground truth. However, an
open question for future research is how each audio channel influ-
ences the recall of nominal values. A legend must be provided for
a user to decode nominal data in an audio chart. Future work could
examine the effectiveness of audio channels by playing the legend
first, then evaluate how well participants can recall the value later
to gauge how effectively different audio channels support nominal
data comprehension.

We evaluated the perceived intuitiveness, inspired by a method
suggested by prior work [MRO∗12, YCS∗21]. However, other
methods might provide informative validation to our find-
ings [MJUO17, RBP∗15].

5. Conclusion

We aggregated prior work on sonification to formulate a design
space of audio charts to inform our study and future designs. We
conducted an experiment with 20 visually impaired people to in-
vestigate the intuitiveness and effectiveness of auditory channels
to represent data and their intuitiveness to represent charts. We
found evidence that the data type can impact the intuitiveness to-
ward auditory channels through the experiment. The study findings
also suggested that the visual aspect of charts impacts participants’
preferences towards different auditory channels. We concluded by
how future experiments can be conducted to construct generaliz-
able guidelines.
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