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Abstract

Generative Adversarial Networks (GANs) have established themselves as a prevalent approach to image synthesis. Of these,
StyleGAN offers a fascinating case study, owing to its remarkable visual quality and an ability to support a large array of
downstream tasks. This state-of-the-art report covers the StyleGAN architecture, and the ways it has been employed since its
conception, while also analyzing its severe limitations. It aims to be of use for both newcomers, who wish to get a grasp of the
field, and for more experienced readers that might benefit from seeing current research trends and existing tools laid out.
Among StyleGAN’s most interesting aspects is its learned latent space. Despite being learned with no supervision, it is sur-
prisingly well-behaved and remarkably disentangled. Combined with StyleGAN’s visual quality, these properties gave rise to
unparalleled editing capabilities. However, the control offered by StyleGAN is inherently limited to the generator’s learned
distribution, and can only be applied to images generated by StyleGAN itself. Seeking to bring StyleGAN'’s latent control to
real-world scenarios, the study of GAN inversion and latent space embedding has quickly gained in popularity. Meanwhile, this
same study has helped shed light on the inner workings and limitations of StyleGAN. We map out StyleGAN’s impressive story
through these investigations, and discuss the details that have made StyleGAN the go-to generator. We further elaborate on the
visual priors StyleGAN constructs, and discuss their use in downstream discriminative tasks. Looking forward, we point out
StyleGAN'’s limitations and speculate on current trends and promising directions for future research, such as task and target
specific fine-tuning.

CCS Concepts

» Computing methodologies — Learning latent representations; Image manipulation;, Computer graphics; Neural networks;

1. Introduction

The ability of GANs to generate images of phenomenal realism at
high resolutions is revolutionizing the field of image synthesis and
manipulation. More specifically, StyleGAN [KLA19] has reached
the forefront of image synthesis, gaining recognition as the state-
of-the-art generator for high-quality images and becoming the de-
facto golden standard for the editing of facial images. See Figure 1,
top for some visual examples.

StyleGAN presents a fascinating phenomenon. It is unsuper-
vised, and yet its latent space is surprisingly well behaved. As it
turns out, it is so well behaved that it even supports linear latent
arithmetic. For example, it supports adding a vector representing
age to a set of latent codes, resulting in images representing the

original individuals, but older. Similarly, it has been demonstrated / | € 'S g bE i=mFE i

that StyleGAN arranges its latent space not only linearly, but also

in a disentangled manner, where traversal directions exist that al- Figure 1: Images synthesized by StyleGAN, its followups and
ter only specific image properties, while not affecting others. Such derivative works.

properties include global, domain-agnostic aspects (e.g., viewing
angles or zoom), but also domain-specific properties such as ex-
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Sketch
Figure 2: Editing a real image of Scarlett Johansson (on the top
left) with StyleGAN. We show both in-domain and out-of-domain
manipulations.

Mona Lisa Pixar

pressions or gender for human faces, car colors, dog breeds, and
more (see Figure 1, and Figure 2). Exploring what these qualities
entail, recent StyleGAN-based work has presented astounding re-
alism, impressive control, and inspiring insights into how neural
networks operate.

As groundbreaking as it may be, these powerful editing capabil-
ities only reside within the model’s latent space, and hence only
operate on images generated by StyleGAN itself. Seeking to bring
real-world images to the power of StyleGAN'’s latent control, in-
version into StyleGAN’s latent space has received considerable at-
tention. Further harnessing StyleGAN’s powers, other applications
have also arisen, bringing contributions to the worlds of segmenta-
tion, augmentation, explainability, and others.

In this report, we map out StyleGAN’s phenomenal success
story, along with analyzing its severe drawbacks. We start by dis-
cussing the architecture itself and analyze the role it plays in creat-
ing the leading generative model since its conception in 2018. We
then shift the discussion to the resources and characteristics Style-
GAN’’s training requires, and lay out the work that reduces, re-uses,
and recycles it.

In Section 3, we discuss StyleGAN’s latent spaces. We show how
linear editing directions can be found, encouraged, and leveraged
into powerful semantic editing. We inquire into what properties
StyleGAN can and cannot disentangle well and dive into a surpris-
ingly wide variety of approaches to achieve meaningful semantic
latent editing.

In Section 4, the quest for applying StyleGAN’s power in real-
world scenarios turns to a discussion about StyleGAN inversion. To
express a given real image in StyleGAN’s domain, many different
approaches have been suggested, all of which thoroughly analyze
and exploit the generator’s architecture. Some propose latent code
optimization and others apply data-driven inference. Some works
seek an appropriate input seed vector, while others interface with
StyleGAN at other points along the inference path, greatly increas-
ing its expressive power. Unsurprisingly though, it turns out that the
well-behaved nature of StyleGAN’s latent space diminishes in re-
gions far from its well-sampled distribution. This in practice means
that given a real-life image, its accurate reconstruction quality (or
distortion) comes at the cost of editability. Finding different desired
points on this reconstruction-editability trade-off is a main point of
discussion in the works covered in this section.

Encoding an image into StyleGAN'’s latent space has more merit
than for image inversion per se. There are many applications where
the image being encoded is not the one the desired latent code
should represent. Such encoding allows for various image-to-image
translation methods [NBLCO20,RAP*21,APCO21a]. In Section 4,
we present and discuss such supervised and unsupervised methods.

In Section 6, we show the competence of StyleGAN beyond its
generative power and discuss the discriminative capabilities Style-
GAN can be leveraged for. This includes applications in explain-
ability, regression, segmentation, and more.

In most works and applications, the pre-trained StyleGAN gen-
erator is kept fixed. However, in Section 7, we present recent works
that fine-tune the StyleGAN generator and modify its weights to
bridge the gap between the training domain (in-domain) and the
target domain, which could possibly be out-of-domain.

Each section addresses both the newcomer, with basic concepts
and conceptual intuition, and the experienced, with a summary of
the most established and promising approaches, along with some
pointers regarding when to use them.

2. StyleGAN Architectures

This report addresses the benefits hidden in Generative Adver-
sarial Networks (GANs). First introduced by Goodfellow et al.
[GPAM™14], GANSs pose an interesting and unique approach. Two
networks are interlocked in a perpetual game during training. One
network, the Generator, seeks to generate images that are from
the target distribution, while the other network, the Discriminator,
seeks to distinguish between actual images from the training set and
those created by the generator. The two networks start the training
without any knowledge of the domain and spend the entire train-
ing process learning from each other. Conceptually, this could be
thought of as a repetitive process where the generator finds a way
to fool the discriminator, and the discriminator, in turn, finds a way
to detect this "attack". This approach allows self-supervision, and
hence these networks can be trained without explicit labeling.

StyleGAN, however, seems to do much more than reproduce
samples from the target distribution. While following the adver-
sarial learning process, it turns out that StyleGAN, more than other
GANsS, constructs a remarkably well-behaved latent space. Without
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any supervision, StyleGAN arranges examples it sees in a smooth,
highly disentangled order, driven by powerful semantic understand-
ing.

In this Section, we portray how StyleGAN’s architecture is built,
try to understand why this architecture induces such cutting-edge
emerging disentanglement, and how the architecture can be im-
proved to match specific needs, according to relevant literature.

StyleGAN1 The style-based generator architecture for generative
adversarial networks, or StyleGAN for short, was first proposed
by Karras et al. [KLA19]. At the core of StyleGAN’s architecture
lie the style modulation layers, from which StyleGAN draws its
name. Borrowing from style-transfer literature, these layers are de-
signed to enable control over the “style" of generated images by ad-
justing the statistics of the feature maps along the generative path.
The generative path starts from a learned constant C, representing
the epicenter of the distribution, and all the information and gen-
erative power of the network is injected through the style and an
additional random noise vector 7. In the first version of the archi-
tecture, [KLA19], the style injection layers utilized the Adaptive
Instance Normalization (AdalN) mechanism [HB17]; each chan-
nel of the feature maps is first normalized to zero mean and unit
variance, followed by re-scaling using new means and variances
predicted from a given latent code.

However, the use of AdaIN layers was not the only major
change proposed. Rather than injecting the network with a la-
tent code z sampled directly from some Gaussian prior Z, Style-
GAN introduces a novel mapping network which converts these
normal-distributed codes into vectors in an
intermediate latent space V. The authors
propose an intuitive argument for adding
such a network: the probability for sam-
pling a particular combination of image at-
tributes in the latent space should eventu-
ally match the probability for that combi-
nation to appear in the real dataset. For
those cases where the data is not uniform
with respect to these attributes, it follows
that the mapping from Z to the image fea-
tures must become curved in order to di-
minish the incidence rate of rare attribute
combinations. A learned mapping network,
however, could learn to “unwrap" the latent
space back to a flat form, and simply ac-
count for probability densities by mapping
fewer codes to regions that would otherwise
portray a rare combination of attributes (see
inset figure, from Karras et al. [KLA19]).
Karras et al. postulate that this linearly-
disentangled space is a more natural representation for the network,
allowing it to more easily recreate a wide range of variations. As
Karras et al. and follow-up works demonstrate, the learned latent
spaces of StyleGAN offer considerable disentanglement. These in-
novations give rise to a network that, at the time, was unrivaled in
quality, invertibility, and support for a wide range of generative and
discriminative tasks.

Distribution of
features in training set

Mapping from
Z to features

Mapping from
W to features
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Figure 3: The StyleGANI [KLA19] architecture. The novel archi-
tecture is based on the progressive growing approach (b, right),
combined with a Style injection mechanism (b, middle). In addi-
tion, a mapping network (b, left) deforms the Gaussian Z space to
better match the distribution of the training data.

StyleGAN2 With StyleGAN being quickly adopted into
widespread use, it was inevitable that artifacts inherent to the
model would come to light. These included characteristic water-
droplet-shaped blobs which consistently appeared in all images.
Additionally, a “texture-sticking" effect was observed, where
certain attributes of the generated image, such as the teeth or
eyes, would display strong spatial bias, remaining fixed to specific
image coordinates even through latent space interpolations. In
a follow-up work, Karras et al. [KLA*20] identify the source
of these artifacts, and re-design key aspects of the network to
correct them. They first identify that the water-droplets are a
manifestation of a flaw in StyleGAN’s normalization scheme
- by normalizing each feature map separately, any information
found in their relative magnitudes is destroyed. The generator
would then hide information about the signal strength through
localized spikes that dominate the statistics. They overcome this
hurdle by shifting normalization from the feature maps, where
the adaptive layer normalization forces new statistics, and onto a
modulation of the convolutional kernels themselves. By doing so,
they apply weaker normalization, based on the expected feature
statistics rather than exact signal strength, and the network no
longer needs to hide signal strength information - which in turn
makes the blob-shaped artifacts disappear. This technique has also
been shown to promote disentanglement between geometry and
appearance in other scenarios [YSW™*20].

The “texture sticking" effect, meanwhile, was hypothesized to
be an artifact of the progressive growth scheme. Karras et al. sug-
gest that in such a setup, every resolution block serves as an output
block for some stage of the training process. In such a scenario, the
network attempts to create excessive high-frequency detail in these
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Figure 4: An example for the “texture sticking" effect [KLA*20].
As can be seen, the teeth do not follow the head when rotated, but
rather remain attached to their absolute position in the image.

intermediate resolutions, which leads to aliasing along the genera-
tive path and in turn breaks shift-invariance [Zhal9]. They address
this issue by revisiting progressive growing and replacing it with
a skip-connection-based architecture, where each resolution block
outputs a residual, which is summed up and up-scaled. These mod-
ifications, coupled with a novel path-length regularization loss and
in-depth analysis of network capacity, lead to improvements both
in standard quality metrics such as FID, but also in the ability to
invert images into the latent space of the GAN.

StyleGAN3 At first, StyleGAN2 appeared to address the “texture-
sticking" problem. However, more careful analysis revealed that,
while the issue was resolved for large-scale objects such as the
mouth or the eyes, it remained present when examining finer details
such as hair or beards. To resolve this issue, Karras et al. sought out
the various sources through which spatial information could leak
into the convolutional operations, with the aim of fully restoring
translational invariance to the network. These sources include the
image borders, per-pixel noise inputs, positional encoding, and the
aliasing caused by careless treatment of upsampling filters and non-
linearities such as ReLUs. Through a series of small architectural
changes coupled with a rigorous signal processing approach, these
sources of unwanted information were removed, and translation
and rotational equivariance was restored. The novel architecture of
StyleGAN3 [KAL*21] brought with it remarkable improvements,
leading to considerably smoother interpolations. However, the new
approach brought with it new challenges. Karras et al. observe that
when conducting layer mixing experiments, some properties were
not cleanly inherited from just one of the codes. Preliminary inves-
tigations of the network also revealed newly introduced artifacts,
from the tendency of generated faces to have a single frontal tooth,
to the appearance of a faint “grid" to which background features
and fine details such as hair would often get stuck. These phe-
nomena suggest degraded disentangled properties, however, as of
writing these words, the novel alias-free architecture is still in its
infancy, and it remains to be seen what unique uses, improvements
or challenges arise from it.

Parallel to these improvements, various works sought to identify
areas in which StyleGAN could be improved. Lin et al. [LZG*21]
note that the high computational cost of full-resolution image gen-
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Figure 5: StyleGAN3 [KAL*21] architecture. The main compo-
nents of the architecture remain similar to previous versions. A se-
ries of small architectural changes, derived from rigorous signal
processing analysis, renders the new version of StyleGAN equiv-
ariant to rotation and translation.

eration makes it impractical to utilize the network for interactive
editing on edge devices. They proposed an elastic generator archi-
tecture that could produce previews at lower resolutions while re-
taining the same latent semantics. A user could then edit these pre-
views with a fraction of the computational budget, restoring the out-
put to its full resolution only as a final step. [GHBCO21] followed
prior observations which revealed a flaw in the generator’s ability
to produce high-frequency details. They demonstrated that some
patterns are beyond the network’s ability to recreate and linked the
flaw to the inherent spectral bias of neural networks. They proposed
to tackle this by shifting the generation to the frequency domain,
realized by a first-level wavelet decomposition. By doing so, they
reduced the network’s need to learn high-frequency functions and
achieved a more faithful generation of high-frequency patterns.

In an alternative approach to synthesis, Anokhin et al.
[ADK*21] forgo convolutions and instead design a style-based net-
work which, given the coordinates of a pixel and a style code,
predicts the color of that pixel. This conditionally-independent
pixel synthesis approach (CIPS) was able to rival the quality of
images produced by traditional convolutional methods while en-
abling novel synthesis applications such as the creation of cylin-
drical panoramas. Sendik et al. [SLCO20] hypothesize that the
single learned constant at the root of the generative path is a lim-
iting factor when training on sets that contain multiple modalities.
They hence develop a multi-constant model, where the generator
could better represent the dataset modalities by assigning them dif-
ferent mixtures of constants. Kwon et al. [KY21] propose aug-
menting the network with Diagonal Spatial Attention (DAT) lay-
ers, which modulate the network’s feature maps along the spatial
directions. These modulations are in turn controlled through an ad-
ditional latent code. Through this addition and an appropriate loss
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term, the authors disentangle “content” from “style", allowing a
user to control spatial features such as pose or expression, with-
out affecting style traits such as color or makeup. Casanova et al.
[CCV*21] suggest training a GAN conditioned on a single input.
Their intuition is that unconditional GANs face difficulties in re-
producing complex distributions [LTR* 19, LWB*20] such as Ima-
geNet [RDS*15]. Typical conditional models seek to resolve this
challenge [BDS18] by conditioning the synthesis process on class
labels, thereby partitioning the data into multiple clusters which
are more easily modeled. However, acquiring such labels is labor
intensive. Instead, they suggest partitioning the data into overlap-
ping neighborhoods by clustering the data in some pre-trained fea-
ture space. The “label" associated with an image is then the feature
vector in this space, and real images observed by the discrimina-
tor when conditioned on such a vector are sampled from the group
of images with representations most similar to the given vector. In
this way, the network learns to generate images sharing visual and
semantic traits with a given sample.

While not strictly extensions of StyleGAN itself, a large body
of work nevertheless draws inspiration from its novel architecture.
These works typically repurpose the style-based modulation lay-
ers or mapping network and incorporate them into new generative
frameworks. One line of work aims to merge the growing Trans-
former [VSP*17] literature with image synthesis. Hudson et al.
[HZ21] proposed the Generative Adversarial Transformer, which
utilizes a bipartite mechanism through which the latent codes and
image features attend and influence each other.

Others have proposed to entirely replace the convolutional
blocks with transformer-based modules such as ViT [LCJ*22,
DBK*21], Linformer [PK21, WLK*20], or the Swin Trans-
former [LLC*21,ZGZ*21]. While these have yet to achieve the
same fidelity or widespread use as their progenitor, they have al-
ready shown considerable progress in layout control and conver-
gence times. Moving towards 3D representations, a set of recent
works propose to marry the style-based architecture with implicit
models, such as Signed Distance Functions [PFS*19] or Neural Ra-
diance Fields [MST™*20]. These models leverage weight and feature
modulations [GLWT22, OELS*21,ZXNT21, XPY*21] or directly
employ a StyleGAN network to predict a set of feature planes that
serve as inputs to a small implicit network [CLC*21]. These works
achieve impressive visual quality, enable explicit control over pose,
and can be used to predict detailed surface representations. How-
ever, their increased memory requirements have so far prevented
them from reaching the resolution and quality of StyleGAN itself.

Training Data "An open secret in contemporary machine learning
is that many models work beautifully on standard benchmarks but
fail to generalize outside the lab" [JCI19]. Indeed, StyleGAN is no
different. It is recognized in the literature that unsupervised training
is more difficult when learning a complex domain [CCV*21]. In the
case of StyleGAN, the learned domain seems to require strict struc-
ture. The data domain should be almost convex, i.e., between every
two points there should be valid samples that interpolate them on
the data manifold. For this reason, for example, it is difficult to con-
struct a full human body model. For the same reasons, StyleGAN
does not handle multi-modal distributions well and behaves poorly
for scenes where objects do not have specific potential locations.
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In recent work, Sauer et al. [SSG22] demonstrate that some of
these challenges may be overcome through careful model scaling,
though whether or not StyleGAN’s unique latent-space properties
persist through this modification remains an open question. In the
future, we will likely witness additional works that address explicit
data issues, i.e., works that try to apply StyleGAN to other types
of data, perhaps by dropping or adding examples during training
to make the data’s landscape more smooth, by transfer learning be-
tween datasets (see Section 7), by more directly addressing multi-
modalities in the data, or by incorporating more elaborate attention
mechanisms into the architecture.

2.1. Latent Spaces

Unlike common GANS, StyleGAN has more than one innate latent
space. Moreover, to increase the expressive power of StyleGAN, it
is common to work with extensions of these spaces, illustrated in
Figure 6. Here, we review the commonly used spaces and describe
the differences between them.

o The first latent space is Z in the sense that random latent codes
can be sampled from it to be inserted into the generator itself. Z
is defined to be a normally distributed space, and it is the only
space that has a closed-form definition. Therefore, images that
belong to the GAN’s manifold can be easily sampled from Z.

e Latent codes from Z are transformed to latent codes in W
through an MLP, commonly referred to as the mapping network.
In a sense, the distribution of WV is learned, and therefore better
matches the distribution of the real data compared to the original
Z space. This learned distribution provides the virtue of disen-
tanglement. Many works employ this disentanglement property
to achieve semantic image editing by traversing the latent space.

e Latent codes in WV are not directly inserted into the synthesis net-
work. Instead, each latent code in W is first transformed through
a learned affine transformation. Such an affine transformation is
learned during the training of each layer of the synthesis net-
work. The space spanned by the outputs of these transforma-
tions is commonly referred to as the StyleSpace, or S. Unlike W
in which a single latent code is used for generating an image,
in S there are several latent codes for a single image, one for
each affine transformation block (e.g., 26 for a generator with a
1024 x 1024 output resolution). It has been shown [WLS20] that
S is even more disentangled than WW. More specifically, each
dimension, or channel, of S tends to control a single semantic
attribute of the generated image. Therefore, by carefully manip-
ulating the dimensions of S it is possible to obtain highly disen-
tangled edits.

e Representing real images with StyleGAN remains a challenge.
The good properties of W have attracted most works aiming at
representing real images to focus on it. Abdal et al. [AQW19]
propose working in an extended latent space, denoted by W+
In W+, one inserts a different latent code for each layer of the
synthesis network (e.g., 18 for a generator with a 1024 x 1024
resolution). StyleGAN was not trained on W+ and thus images
sampled from it do not necessarily have high quality. Moreover,
it should be noted that oftentimes, when operating in W+, it is
possible to reach areas that are outside the learned distribution of
W. Such areas further push the latent code outside the distribu-
tion over which the generator was trained on. As the distribution
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Figure 6: The StyleGAN architecture and its latent spaces. A random latent code 7 is sampled from the normally distributed latent space
Z (on the left), then transformed to the learned latent space VW through an MLP mapping, passed through a set of different learned affine
transformations (denoted by A) to reach the S space, and finally inserted into the synthesis network. It is common to work in the extended

spaces of Z and W, referred to as Z+ and YW+, respectively.

of W cannot be explicitly modeled, keeping the latent code in
the trained distribution is a challenging task.

e To alleviate the need of preserving the latent code inside the dis-
tribution of W, it is possible to work with an extension of Z in-
stead of W. Similarly to the definition of W+, in Z+ [SLL*21]
a different latent code is sampled for each layer of the synthesis
network (e.g., 18 for a 1024 x 1024-resolution generator). Note,
that in S there is no notion of S+ as the latent codes for each
layer are different by design.

3. Latent Space Editing

Perhaps the most exciting aspect of GAN learning is the way the la-
tent space is arranged in a well-trained GAN. Traditionally, GANs
in general, and StyleGAN specifically, can be used to simply gen-
erate a wide variety of images of the same kind. These can serve
as a form of data augmentation for downstream training (see Sec-
tion 6). However, it has been shown that GANSs tend to arrange their
latent space smoothly, i.e. such that close regions in the latent space
depict similar images.

This, combined with the notion that GANs produce images that
are within the distribution of the target domain gives rise to latent-
based editing. In other words, the two concepts suggest that travers-
ing the latent space yields a path of smoothly changing images,
each of them on their own belonging to the target domain (e.g. re-
alistic human faces). This could be thought of as geodesic traversal
on the manifold of all valid images. Even the first works in gener-
ative modeling already demonstrated how latent code interpolation
between two examples yields a natural morphing between them
[GPAM™*14]. As it turns out, careful traversal in the latent space
can also produce desirable semantic changes in the resulting image
that would otherwise be very difficult to perform. These include
changes in viewpoint, lighting conditions, and domain-specific at-
tributes such as expressions for faces, colors for cars, or widths of
buildings. Of course, the most desirable edits are the disentangled
ones — those that change one attribute without affecting any other.

Applications of such powerful editing tools are endless, from au-
tomatically adding smiles to facial images, through interior design
explorations, to rapid car design.

In this aspect, StyleGAN shines. As previously discussed (Sec-
tion 2), StyleGAN operates best on well-structured data. When
trained on such data, StyleGAN constructs a highly disentangled la-
tent space in an unsupervised manner, simply by virtue of inductive
bias. Many techniques have been proposed to traverse this latent
space and facilitate semantically disentangled latent-based editing.
Of all sections in this report, the editing art is the most diverse,
presenting creative approaches borrowed from different fields.

Early approaches to this task pointed out that StyleGAN’s la-
tent space is so well behaved and disentangled, that it even sup-
ports linear latent space arithmetics. These linear editing works
demonstrate, for example, that to make a face older, one can tra-
verse in a specific, pre-computed, direction. These works come in
two main flavors — supervised and unsupervised. The first works
in the field have presented a thorough analysis of GAN behav-
ior [JCI19, LLST20] (including StyleGAN), and showed how one
can identify linear traversal directions that present high disentan-
gled qualities. Using edits that are easily attainable in image space
(e.g. 2D rotation or zoom, and pan), they look for directions in the
W space (Section 2.1) that produce the same effect. Changing the
magnitude of traversal along these directions induces a disentan-
gled edit that is weaker or stronger according to the step size. This
early work also drew conclusions regarding the extent of the space’s
linearization. That is, they show that going too far along a direction
will eventually break the disentanglement, and affect other crucial
factors of the image. They also offer an analysis on, and a way to
improve, the extent of the linearization.

Supervised Linear Approaches The most natural approach to
finding editing directions is to do so explicitly, through full supervi-
sion. Perhaps one of the most noteworthy works in linear editing is
InterFaceGAN [SGTZ20,SYTZ20]. This work leverages per-image
binary annotations to identify hyper-planes in the latent space that
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separate the two binary attribute values. These planes can be found
using Support Vector Machines (SVMs). Then, to edit one attribute
without affecting others, one finds a direction that is orthogonal
to one plane and parallel to the others. Figure 7a depicts some of
the typical editing directions extracted by this method. Yang et al.
[YSZ20] further propose a way to evaluate how well the activations
of specific layers are correlated with semantic attributes, based on
105 pretrained attribute classifiers. Recently, Wu et al. [WLS20]
employ a pretrained classifier, or use a few images for direction
identification. Their key idea is to identify correspondence between
the most active channels and the semantics corresponding gen-
erated images depict (termed semantic consistency). The authors
show that this correspondence indicates specific channels in the
generator’s activations that control very disentangled image char-
acteristics. This offers a fine-grained approach to latent editing that
is different from the popular latent-editing approaches which mod-
ify all activations of a layer (or more). Editing in S space (see Sec-
tion 2.1) is shown to provide highly disentangled, spatially adaptive
directions for editing.

Unsupervised Linear Approaches In many cases, collecting the
data required for supervised editing can be difficult or prohibitively
expensive. To expand the range of available editing directions, de-
spite these limitations, unsupervised editing methods have been
proposed. Perhaps the first was proposed by Voynov et al. [VB20].
The core idea is to predict a set of traversal directions and concur-
rently try to infer their meaning from the images corresponding to
the code before and after the edit. They propose to jointly learn a set
of directions and a model to identify the corresponding image trans-
formations. Under this paradigm, the assumption is that directions
that are easy to identify with high accuracy are likely candidates for
disentangled editing directions. GANSpace [HHLP20], take a more
natural approach, and simply search for the dominant directions in
the latent codes of a dataset, using Principal Component Analy-
sis (PCA). Alharbi et al. [AW20] propose editing through adding
random noise to the input learned constant, rather than augment-
ing the style input. They show that by enforcing a spatial structure
to the noise, spatial disentanglement can be encouraged, and can be
paired with the semantic disentanglement StyleGAN already offers.
In all three cases, manual inspection is used to identify whether
these directions indeed produce valuable edits, and infer their se-
mantic meaning. SeFa [SZ21] takes a different approach to the un-
supervised editing problem. They propose analyzing the weights
of the pretrained generator and identifying principle directions that
are most affected by these weights. To do so, they perform an eige-
nanalysis of the matrix representing the latent-to-image space pro-
jection. This analysis is closed-form, meaning it is fast and does not
require even sampling the network. This approach is still valuable
and has been used for other domains and GAN architectures as well
[SBM20].

Non-linear Approaches As may be expected, non-linear ap-
proaches can present higher quality editing at the cost of simplicity.
Hou et al. [HZL*22], operate similarly to Yang et al. [YSZ20] by
using classifiers. However, they propose to move beyond global,
linear directions and towards a non-linear traversal paradigm. In
their case, a different direction is generated per example for the
same editing operation. The editing is then performed by chang-
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ing the latent code of only one layer at a time, in a style-mixing
manner (see Section 2), thereby improving disentanglement. Style-
Flow [AZMW21b] is a seminal work in the realm of facial edit-
ing, presenting one of the most versatile and stable editing ap-
proaches, disentangled enough to produce a realistic result even
when performing several editing operations serially, as can be seen
in Figure 7b. The core idea for this work is the clever employment
of normalizing flows — a method through which a bi-directional
mapping can be obtained between the latent space and an input
code, conditioned on specific attributes. This mapping is trained
in a supervised manner through an elaborate multi-attribute clas-
sifier. This promising normalizing flow-based approach has also
seen follow-up work in an unsupervised setting [LHS21]. Alaluf
et al. [APCO21a] use an age regression network to provide con-
trol over age in human faces. Looking towards more recent works
along this line [WYF21], perhaps the state-of-the-art lies with
DyStyle [LCL*21]. The main contribution of this supervised ap-
proach is a dynamic network, trained to handle multiple edits at the
same time. Here, a different network is trained for each attribute,
producing its own latent editing direction. For every training ex-
ample, consisting of a different composition of desired edits, only
the relevant networks are applied, with their outputted codes fused
into one using a self-attention mechanism. This approach enables
high-quality editing in flexible domains, especially when compos-
ing several edits together. The combined dynamic approach seems
not only to improve sequential editing, but also provide enough reg-
ularization to improve the state-of-the-art for a single edit as well
(see Figure 7c). Aiming for video editing, Yao et al. [YNGH21]
train a dedicated latent-code transformer to achieve more disentan-
gled edits.

Different Supervision Modalities Other approaches have been
proposed that leverage supervision, but differ in nature from ex-
plicit attribute supervision or classification-based techniques. Sty-
leRig [TEB*20] suggests employing synthetic data to guide the
editing process. They acquire a roughly 200-parameter 3D Mor-
phable Face Model (3DMM) using traditional PCA over 200 in-
put faces. This model can be used in a self-supervised manner to
train a network to perform the editing over VV. Through a plethora
of synthetically generated paired examples, the method finds high-
quality edits. This is because perfect labeling can be assigned to im-
ages that are rendered by specific parameter changes in the 3DMM
model. This approach, however, was only able to find high-quality
editing directions for a subset of the face model parameters. Per-
haps unsurprisingly, the successfully found directions do not enable
more diverse edits compared to less supervised methods. A similar
approach has also been proposed [ZCL*21], using general meshes
instead of 3DMM, for more diverse objects. Through differentiable
rendering, parameters like camera position and object shape can
be self-supervised easily. Taking this line of work a step further,
Ghosh et al. [GGU*20] propose generating the parameters of a 3D
facial model learned from 4D scans. In this paradigm, the geometry
is constructed through a learned 3D model (FLAME [LBB*17]),
and StyleGAN generates appearance and texture. Combining the
two models offers more expressive facial variations in shape and
expression, and an inherent disentanglement between geometry and
appearance. FreeStyleGAN [LD21] use standard calibration tools
to construct pairs of facial images and associated camera parame-
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ters. These pairs are used to learn explicit control over image views
within the GAN’s aligned image manifold. Taking this approach a
step further, the authors use a flow-based model to learn an image
mapping module that can transform the generated images beyond
StyleGAN’s aligned domain. HistoGAN [ABB21] employs color
histograms to recolor images and paintings.

Several works employ the power of language. They guide edits
by using textual descriptions, which are more global and abstract in
nature. Patashnik et al. [PWS*21], one of the first works to propose
this approach, employs CLIP [RKH"21], a powerful pre-trained
model that embeds text and imagery to a joint latent space. By
finding traversal directions that bring the produced image and the
desired text description closer together, this method demonstrated
new and exciting semantic editing operations, such as makeup re-
moval and specific hairstyles for human faces (see Figure 7e). Te-
diGAN [XYXW21] employ a novel architecture and training pro-
cess for the language model to be trained along with the generator.
While potentially powerful, the resulting networks are not as ex-
pressive as language models pre-trained on web-scale data. Hence,
they fail to achieve the same quality. Chefer et al. [CBPW21] uti-
lize CLIP to blend two facial images, demonstrating better preser-
vation of the original identity while successfully transferring mean-
ingful semantic features from the desired target images. Abdal et al.
[AZF*21] find meaningful directions in CLIP-space in an unsuper-
vised manner, map them to latent-space directions, and use CLIP
to automatically generate natural language descriptions for these
directions.

Finer Control Several of the latest works propose operating in a
more disentangled latent space — the S space [WLS20, LLST20,
XSZ*21] (see Section 2.1). However, it is significantly larger, pos-
ing a computational challenge. Furthermore, augmenting the gener-
ator activations themselves after the AdaIN (StyleGAN [KLA19])
or Modulation (StyleGAN2 [KLA*20]) layers, provides even finer
control. This allows applying local changes in the image maps,
rather than a global change. For example, Bau et al. [BAC*21]
offers users the ability to paint a mask in a given image and to de-
scribe in free text what this region of the image should depict. They
do this by feeding the same modulation layer different style codes,
according to the spatial location in the resulting map: one code for
regions inside the painted mask, and one for the rest.

Albahar et al. [ALY*21] suggest spatial control through the
initial input constant, while leveraging the inherent semantic un-
derstanding StyleGAN naturally develops, reinforced by human
pose labeling. Unlike most editing works, which manipulate the be-
havior of a pretrained StyleGAN, this work proposes architectural
changes to the generator, to adapt it to human pose inputs. Through
full supervision [CHS* 19], they train StyleGAN to change the pose
of human clothing models. Through pose labeling and paired UV
coordinates, the clothes are warped in UV space to better match
the new pose (see Figure 7c). Similarly, Abdal et al. [AQW20]
change the spatial activations to allow scribble-level control for the
user (see Section 4 for more details). StyleFusion [KPACO21] pro-
pose a new mapping architecture for StyleGAN to better disentan-
gle a target attribute. This results in a learned blending between
style codes, resulting in fine-grained local control of the edited im-
ages. They also introduce an additional latent code for controlling
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Figure 7: Examples of prominent editing works. (a) Inter-
faceGAN [SYTZ20] extracts linear editing directions through
attribute level supervision. (b) StyleFlow [AZMW?21b] is the
first to present editing that is stable enough to be composed,
through employing normalizing flows and attribute-level supervi-
sion. (c¢) DyStyle [LCL*21] addresses compositional editing di-
rectly, producing more accurate, elborate, and diverse editing.
(d) StyleCLIP [PWS*21] employs free textual editing, through
a visual-linguistic pretrained model [RKH*21]. (e) Pose with
Style [ALY*21] employs human pose supervision to edit body poses
and clothing. (f) StyleMapGAN [KCK™*21] provides localized edit-
ing by augmenting StyleGAN’s architecture with spatially adaptive
modulation. Zoomed-in viewing recommended.

global aspects of the images (e.g. pose, lighting, background). Fi-
nally, StyleMapGAN [KCK*21] suggest an architectural change
where the global WV latent code is replaced with a spatial map, and
the global style infusion layer (i.e. AdaIN or weight modulation)
is replaced with a spatially adaptive one. This allows blending two
images very naturally, with a high level of detail and finer local
control (See Figure 7f).

Studying the wide and versatile editing works, it is clear that
latent-based editing holds great potential and sparks the curiosity
of many. Some of the most recent works present unprecedented
quality, showcasing the expressive powers of GANs in general and
of StyleGAN in particular. However, all of these works still operate
in lab conditions. They present a handful of novel editing opera-
tions. These, however, are still restricted (e.g. only specific expres-
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sions can be altered and the degree of possible changes in pose
is limited). These restrictions pose practical challenges when em-
ploying StyleGAN for industrial or in-the-wild use. Furthermore,
they bear the burden of the generator’s limited capabilities regard-
ing the versatility and structure of the training data (see Section 2).
In the future, we will probably witness more works that adapt to
new data on the fly, possibly using techniques such as fine-tuning
(Section 7), or layer mixing, where several different models are
trained, and their layers are mixed according to specific applica-
tions [PA20, PZW*20]. In any case, it seems that a core challenge
editing works face is the evaluation of their quality, as discussed in
Section 5.

4. Encoding and Inversion

The success of the aforementioned latent space editing techniques
results in a natural question of how to apply such techniques to edit
real images (i.e., images not necessarily residing within the GAN’s
domain). To do so, we need to find the latent representation of a
given image, a task commonly referred to as GAN Inversion. First
introduced by Zhu et al. [ZKSE16], the inversion task aims to find
a latent vector from which a pre-trained GAN can most accurately
reconstruct the given image. Formally, given an input image x, we
want to minimize the distortion of the reconstructed image obtained
from the inverted latent code w using a well-trained generator G:

w* = argminZ (x, G(w)), (1

where £ is some reconstruction loss (e.g., the LPIPS perceptual
loss [ZIE* 18] and/or the pixel-wise L2 loss). In the following, we
explore the various core approaches for performing this inversion
process, outlined in Figure 8.

4.1. GAN Inversion

Existing optimization-based GAN inversion methods search for
the desired latent vector via a per-image latent vector optimization
by solving Equation 1 [LT17, CB18, AQW19, AQW20, BSP*19,
ZAQW?20, ZKSE16, YCYL*17, GSZ20, WT20]. Early works per-
forming optimization attempted to invert into StyleGAN’s learned
latent space VV. However, it has been shown that inverting a real im-
age into a 512-dimensional vector w € WV is not expressive enough
to accurately encode and reconstruct real images. As such, it has
become common practice to invert images into an extended la-
tent space YW+ [AQW20] defined by a concatenation of multiple
w vectors, one for each input of StyleGAN. While optimization
techniques often result in near-perfect reconstructions of the input,
they typically require several minutes to do so for a single image.

To accelerate this optimization process, some works trained an
encoder over a large collection of images to learn a direct mapping
from an image to its latent representation [PvdWRA16, LXTL17].
Here, the training objective can be defined by,

0f = argeminZE(Xi,G(Eeg (1)) 2

where the weights 0 of the encoder are sought. Pidhorskyi et al.
[PAD20] propose a StyleGAN-based autoencoder, where the en-
coder network E is trained alongside the generator.
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Figure 8: Various approaches for GAN Inversion. Optimization-
based techniques perform a per-image optimization procedure on
the latent vector to minimize the reconstruction loss between x and
y. Encoder-based schemes aim to learn a direct mapping between
the image x to its latent representation E(x). Hybrid techniques
attempt to combine “the best of both worlds* by initializing the
optimization procedure with the inversion prediction of a trained
encoder. Finally, recent generating tuning methods fix a latent
code and learn to modify the generator itself to obtain the recon-
struction of the given image. Figure layout adopted from Xia et al.
[XZY*21].

Many works have explored various avenues for improving the
performance of encoder-based inversion methods in an attempt to
close the gap in performance with optimization techniques. Some
have explored various encoder architectures for improving the in-
version quality.

Richardson et al. [RAP*21] and Xu et al. [XSZ*21] explore
a hierarchical encoder based on a feature pyramid network (FPN)
to better match the coarse, medium, and fine-level details of Style-
GAN?’s hierarchical structure. For extracting the learned styles from
the encoder’s feature maps, Richardson et al. [RAP*21] introduce
18 separate map2style modules, one for each input layer of Style-
GAN. Wei et al. [WCZ*21] and Alaluf et al. [APCO21b] find
that a complex hierarchical encoder is unnecessary, especially in
unstructured domains (e.g., cars, churches, horses) and instead pro-
pose simpler backbones. Wei et al. [WCZ*21] further replace the
18 map2style blocks with a simple block comprised of a single av-
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Figure 9: StyleGAN inversion. Upper row presents inversion re-
sults of optimization methods: optimization to YW+ as proposed by
Karras et al. [KLA*20], Hybrid approach where pSp [RAP*21]
and optimization to W+ are employed, and PTI [RMBCO21].
Second raw demonstrates the inversion using encoders, IDIn-
vert [ZSZZ20], pSp [RAP*21], e4e [TAN*21] and ReStyle
[APCO21b], over the same input image. The third row illustrates
the editability of different regions in the latent space. The same
smile editing was applied over inversion to W+ space, VW space
and well-behaved regions of W+ using the e4e [TAN*21] encoder.
As can be seen, optimization to YW+ achieves high-quality recon-
struction but poor editability. PTI mitigates this tradeoff by using
W space and tuning the generator weights, but suffer from exten-
sive time consumption. Like PTI, HyperStyle [ATM*21] uses the
W space for editing, but efficiently learn to modify the generator
weights rather than perform time-intensive optimization. Lastly, the
ability of PTI and HyperStyle to handle out-of-domain attributes,
such as face painting, is presented at the bottom row. Zoom-in is
recommended.

erage pooling layer and fully connected layer. Rather than encoding
an image into a set of style vectors, Kim et al. [KCK*21] instead
invert images into an intermediate latent space with a spatial dimen-
sion, resulting in more accurate reconstructions compared to other
encoder networks. They also demonstrate that this extended latent
space enables reference-guided local edits of real images. More re-
cently, Wang et al. [WZF*21] explored inverting into multiple la-
tent spaces to achieve higher-fidelity inversions. They first invert an
image into W, to capture low-frequency details. A second encoder
is then trained to map the distortion map — the difference between
the given image and its initial inversion — into a set of spatial fea-
ture modulation maps that capture the remaining high-frequency
image information.

Another direction for improving the inversion of encoders is the
improvement of the loss objectives used to learn the direct mapping

A.H. Bermano, R. Gal, Y. Alaluf, R. Mokady, Y. Nitzan, O. Tov, O. Patashnik, & D. Cohen-Or / StyleGAN

from an image to its latent representation. Zhu et al. [ZSZZ20]
employ a discriminator for an adversarial-based training of the en-
coder network and use the discriminator as an additional loss to
the encoder. To improve the inversion on the human facial domain,
Richardson et al. [RAP*21] introduce a dedicated identity loss us-
ing a pre-trained facial recognition network. Tov et al. [TAN*21]
extend this to additional domains by employing a similarity loss
based on a MoCo [CFGH20] feature extractor pre-trained on Im-
ageNet. Wei et al. [WCZ*21] utilize a pre-trained face parsing
network to achieve more localized supervision during the encoder
training.

While encoder-based techniques result in an efficient inference
scheme, taking a fraction of a second per image, the reconstructions
are typically less accurate than optimization-based approaches.
In an attempt to close the gap between the two methodologies,
Alaluf et al. [APCO21b] introduce an iterative refinement scheme
over standard encoder-based inversion techniques. Instead of di-
rectly outputting the inferred latent code using a single forward
pass through the network, the encoder outputs a sequence of resid-
uals used to iteratively improve the inverted latent code and cor-
responding reconstruction. Others [ZKSE16,7ZS7Z720] exploit the
advantages of both of the above approaches and employ a hybrid
technique combining the two. First, an initial approximate latent
code wy,iriq 1s inferred via a trained encoder. This latent code is
then used to initialize the optimization procedure. In [GTN*20],
the encoder network is used to initialize an optimization process,
which in turn supervises the training of the encoder network via
a set of reconstruction losses. We refer the reader to Figure 9 for
a comparison of various optimization-based and encoder-based in-
version techniques. Xia et al. [XZY*21] provide a comprehensive
survey and analysis of recent inversion methods, exploring the three
aforementioned methodologies and their use in various editing ap-
plications.

While the inversion process is a well-studied problem, it remains
an open challenge. Numerous works [AQW20,ZAQW20, TAN*21,
757720, WT20] demonstrate the existence of a reconstruction-
editability trade-off. Whereas JV/+ has been shown to be more ex-
pressive than W [AQW20], supporting more accurate reconstruc-
tions, its use leads to latent codes which lie in regions of the latent
space that were unobserved during the generator training. In these
regions, the semantic structure of the latent space deteriorates, re-
sulting in degraded performance of latent space traversal editing
methods, as demonstrated in Figure. 9. Some works searched for
a good point on this trade-off curve. Tov et al. [TAN*21] design
an encoder to embed images into YW+ that are close to W, result-
ing in a good balance between reconstruction quality and editabil-
ity. Zhu et al. [ZAQW20] analyze various latent spaces to achieve
more control over the reconstruction-editability trade-off. In an at-
tempt to side-step this trade-off, Roich et al. [RMBCO21] propose
a pivotal tuning method to inject new identities into well-behaved,
editable regions of StyleGAN’s latent space. They first use a stan-
dard optimization procedure to find a latent code w € W approxi-
mating the input image. This is followed by a per-image fine-tuning
session where the generator weights are modified to improve the re-
construction quality. Other generator tuning approaches have also
been proposed for achieving high fidelity reconstructions (see Sec-
tion 7).
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While most generator tuning approaches improve the image in-
version via a per-image optimization of the generator weights,
such an approach is costly in terms of inference time. To reduce
this inference overhead, Alaluf et al. [ATM*21] and Dinh et al.
[DTNH21] propose a hypernetwork-based encoder that learns how
to modify the pre-trained generator weights to best reconstruct
a given image. Such a learned approach results in high-fidelity
reconstructions and edits, at a fraction of the time compared to
optimization-based tuning approaches.

Finally, while most works studying inversion focus on encod-
ing and editing still images, when it comes to video editing new
challenges arise. Specifically, video inversion should be temporally
consistent. Tzaban et al. [TMG*22] demonstrate that by combin-
ing encoders [TAN*21] with generator tuning techniques [RM-
BCO21], the consistency of the original video can be main-
tained. Another challenge can be found in the texture-sticking
phenomenon observed in StyleGAN1 and StyleGAN2 [KAL*21],
which hinders the realism of generated and manipulated videos.
To overcome this, Alaluf et al. [APW™*22] combine the PTI [RM-
BCO21] and ReStyle [APCO21b] encoding techniques for encod-
ing and editing videos with the StyleGAN3 [KAL*21] generator.
Further leveraging the equivariance of StyleGAN3, they demon-
strate the ability to expand the field of view when working on a
video with a cropped subject resulting in more uniform video edit-
ing.

4.2. Latent Space Embedding

Image inversion provides a latent code that reconstructs a given
image. As the image itself is given, the produced latent code is
usually not of interest on its own. Rather, one applies inversion to
then manipulate the latent code to produce a new latent code that
corresponds to a novel image.

In this light, the limitations of inversion are clear. First, inversion
methods require that the input image be invertible. That is, it must
reside within one of the latent spaces of StyleGAN. Second, it is
assumed that there is a known global transformation in the latent
space to produce the desired manipulated code. However, for some
applications, at least one of these assumptions is not true. For ex-
ample, consider commonly studied image-to-image tasks such as
semantic map-to-image and sketch-to-image [IZZE17]. As Style-
GAN is trained on one domain, usually the natural image domain,
the sketch image would not be invertible to StyleGAN’s latent
space.

Hence, several works have analyzed this limitation and have pro-
posed a broader task of Latent Space Embedding. In this setting,
for some image x, one seeks a function f such that G(f(x)) ~ h(x),
where G is the pretrained StyleGAN generator and / is some con-
ceptually known function in image space (e.g., sketch-to-image).
Under this perspective, inversion is a special case in which 4 is the
identity function. However, many methods have proposed training
such function f for specific transformations 5.

First, Nitzan et al. [NBLCO20] propose using StyleGAN to dis-
entangle identity from other facial attributes and recompose novel
images. They do so by extracting identity and attribute represen-
tations from different images, combining them, and then training
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Figure 10: Examples of prominent works leveraging latent space
embedding. (a) Nitzan et al. [NBLCO20] disentangle identity from
other face attributes and recompose them to generate novel face
images. (b) pSp [RAP*21] proposed a generic pix2pix-like archi-
tecture for embedding into StyleGAN’s latent space. (c) PULSE
[MDH*20] perform super resolution by recovering the StyleGAN
latent code that after downsampling reconstructs the original im-
age. (d) Time-Travel Rephotography [LZY*21] restore old photos
with a similar approach to PULSE, using a “old photo" degreda-
tion module instead of downsampling.

a mapping network to directly produce the latent code that fuses
the two representations, resulting in a novel face image, see Fig-
ure 10(a).

Next, Richardson et al. [RAP*21] proposed a generic frame-
work, pixel2style2pixel (pSp), to perform a wide variety of image-
to-image tasks, such as the aforementioned sketch-to-face and se-
mantic map-to-face. pSp employs an encoder architecture based on
a feature pyramid network (FPN), to naturally match the StyleGAN
hierarchical generative path. Through the right inductive bias, this
work demonstrates state-of-the-art inversion quality, along with
various other successful encoding tasks for human faces, including
in-painting, super-resolution, unsupervised frontalization, coloriza-
tion, and more, see Figure 10(b).

Several works used the above concept of latent space embed-
ding for a variety of tasks, often obtaining state-of-the-art per-
formance. Most notably for the task of restoring corrupted im-
ages. PULSE [MDH®20] solves super resolution of facial im-
ages. Specifically, PULSE performs a latent-space optimization
to recover a code, from which StyleGAN synthesis followed by
downsampling reconstructs the original low-resolution input image
(see Figure 10(c)). Time-Travel Rephotography [LZY*21] (Figure
10(d)) restores old photographs, transforming them to modern im-
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agery. They do so by following a similar approach to PULSE, with
a dedicated degradation module replacing the down-sampling step.
GFPGAN [WLZS21] solves blind face restoration by construct-
ing dedicated losses and architecture. GLEAN [CWX*21] use an
encoder-latent bank-decoder architecture to solve super-resolution
tasks. Once more, the decoder is a well-trained StyleGAN genera-
tor.

Of the aforementioned tasks, a task receiving considerable atten-
tion is that of sketch-to-image due to its immediate application to a
variety of real-world settings. Building on the multi-modal sketch-
to-image approach from pSp [RAP*21], Wei et al. [WCZ*21] uti-
lize a specialized face parsing loss to improve the alignment be-
tween an input sketch or semantic map and the output realistic fa-
cial image. Finally, Wang et al. [WBZ21] modify a pre-trained
StyleGAN for transforming a given sketch into a realistic image.
As the generator tuning is subtle, the inherent characteristics of
the original generator (e.g., color, texture) are well-preserved while
supporting multi-modal synthesis.

A myriad of other applications has also been explored via the
task of latent space embedding. Chai et al. [CWI21] train an en-
coder for performing image composition and image completion by
leveraging the strong image prior of a pre-trained StyleGAN gen-
erator. Alaluf et al. [APCO21a] pair a pSp encoder [RAP*21] and
pre-trained age regressor [RTVG15] for performing age transfor-
mation on real images via StyleGAN’s latent domain. Jang et al.
[JJ7*21] transform real facial images to caricatures by altering the
specific layers of a pre-trained StyleGAN. Specifically, they lever-
age the hierarchical nature of StyleGAN and modify the coarse
input layers controlling head shape while keeping the fine layers
controlling style and color unchanged.

Xu et al. [XZ21] and Ling et al. [LKL*21] edit a given im-
age in the domain of its part-segmentation. The fundamental ob-
servation is that one can train a simple function, f inferring a se-
mantic segmentation, corresponding to the image generated by a
latent code, from intermediate activations of StyleGAN on that la-
tent code. Specifically, they use the up-sampled and concatenated
per-layer activations as input to f. This observation and construc-
tion was concurrently proposed by other works [TRS21,ZLG*21]
for different applications and are discussed in Section 6. Given an
image, Xu et al. [XZ21] propose to compute its semantic segmen-
tation using off-the-shelf methods. Then, the segmentation map is
edited with some desired effect and finally, it is embedded into the
latent space of StyleGAN through StyleGAN’s own layers as well
as those of the function f. The resulting latent may then be for-
warded through StyleGAN to generate the edited image.

Other works [WCZ*21,ZLW*21, YQQ*21] examined the task
of face swapping by blending the latent representations of two in-
put images embedded via a learned encoder. Zhu et al. [ZAFW21]
study the task of hairstyle transfer. In their work, they decompose
an input latent code into a pair of latent codes representing struc-
ture and appearance. To transfer a given hairstyle, they blend be-
tween several images by taking specific regions of the structure la-
tent codes and combining them with a target appearance. Finally,
Chandran et al. [CWZ*21] combine traditional and neural synthe-
sis approaches by projecting high-quality skin maps into the latent
space of StyleGAN, which is tasked with filling in regions that tra-

ditional methods struggle with — such as the eyes, inner mouth, or
hair. While all the aforementioned works showed incredible results
and promise in real-world scenarios, they are limited in the domains
they operate over. Some works have explored going beyond the fa-
cial domain and have explored applying StyleGAN for full-body
synthesis in various applications such as virtual try-on and portrait
reposing [LVKS21, ALY *21].

5. Evaluation Metrics

While many aspects of GAN quality can be evaluated qualitatively,
it is often desirable to assess the model quality more objectively.
Evaluation metrics can be used to produce reliable, standardized
benchmarks and to better gauge the advancement of the field. As we
discuss below, this problem is not restricted to StyleGAN editing
alone, but to the evaluation of most GANs and editing operations.

GAN Evaluation The evaluation of generative models is straight-
forward when ground truth is at hand. For example, GAN inver-
sion can be measured by various metrics assessing the distortion,
such as pixel-wise distance using mean-squared error, perceptual
similarity using LPIPS [ZIE*18], structural similarity using MS-
SSIM [WSBO03], or identity similarity [MMR*20], employed for
facial images using a face recognition network [DGXZ19]. In the
absence of such ground truth for the task of unconditional image
synthesis, the evaluation of GAN quality remains an open chal-
lenge. Undoubtedly, the most popular metric is the Frechet Incep-
tion Distance (FID) [HRU*17]. FID measures the similarity be-
tween two distributions using the Frechet Distance, where each
distribution consists of visual features extracted by utilizing a pre-
trained recognition network [SVI*16]. Namely, given two sets of
images, low FID indicates these sets share similar visual statistics.
For the case of GANS, the target dataset is compared to the same
number of random synthesized images, showing the similarity be-
tween these distributions.

Former to FID, Inception Score (IS) [SGZ*16] was introduced
for the same purpose, measuring KL divergence over the same
feature statistics. An additional approach has been suggested to
measure the distance between real and generated images using the
Sliced Wasserstein Distance (SWD) [RPDB11], which computes
the statistical similarity between local image patches extracted from
the Laplacian pyramid of the images. However, as FID is shown to
be better correlated with the human perception of high-quality im-
ages, it has become the most widely used metric.

Despite its vast popularity, the FID metric does have drawbacks.
As the extracted visual features are local, FID struggles to grasp
a global structure. For facial images, which bear a simple struc-
ture, FID is still effective. Yet, images containing extremely un-
realistic structures but high-quality textures, such as a cat with
eight legs, can still achieve a good FID score undesirably. An-
other major concern is the employment of the popular truncation
trick [Mar17, KLA19]. Many works generate images using a la-
tent truncation but measure FID without it, as it alters the dis-
tribution substantially and leads to a deterioration of FID val-
ues [KPLCO22].

Sajjadi [SBL*18] proposed a solution to this exact problem
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by breaking down the GAN evaluation into recall and precision.
High precision indicates high quality and realistic image genera-
tion, while high recall refers to generating a large amount of varia-
tion which is similar in diversity to the original data.

Editing Evaluation For most practical cases, acquiring ground
truth data and labeling to directly evaluate editing is infeasible or
altogether impossible. As such, creative solutions have been pro-
posed to tackle the problem of editing quality evaluation. Contrary
to disentanglement or GAN quality, the evaluation of StyleGAN’s
editing ability has not been widely studied. A few key aspects need
to be analyzed for the evaluation of these editing procedures. Con-
sider the example of adding a smile to a facial image. The most
important aspect is the semantic meaning, namely, whether the edit-
ing successfully implants a smile. For binary editing, this could be
easily performed using a classifier [MBWB19, LZU*17], but in
most cases, continuous editing is required. A regression model can
be adopted for this case. However, for many attributes, these mod-
els are unavailable or require a vast amount of annotations to be
trained. For example, recent works [ZAQW20, RMBCO21] used
the Microsoft Face API [Mic20] to measure face rotation but fail
to measure the smile extent continuously. Furthermore, Zhu et al.
[ZAQW20] demonstrate that the semantic editing magnitude when
employing fixed editing is larger for the more native and editable
regions of StyleGAN, and hypothesize that the magnitude could be
utilized as an editability metric.

Another key aspect is refraining from distorting the unedited
parts of the image, usually referred to as preserving the original
identity. For example, smile editing should not result in the appear-
ance of glasses or a change in haircut. Some works [NBLCO20,
RAP*21, APCO21a, TAN*21,RMBCO21] focus on facial images,
where identity preservation could be evaluated using facial recog-
nition networks [DGXZ19]. Since these networks are trained to be
invariant to most attributes, adding a smile should not affect the out-
put substantially. Therefore, an identity similarity can be measured
by the cosine similarity of the facial identity representations. Nev-
ertheless, as have been shown by Zhu et al. [ZAQW20], the less ed-
itable latent spaces produce lower magnitude edits, leading to a bias
in favor of these barely editable regions. Intuitively, the identity is
better preserved better when the editing effect is reduced. Conse-
quently, Roich et al. [RMBCO21] suggest measuring the identity
similarity while performing edits of the same magnitude, e.g. rota-
tion to a predetermined angle. Such metrics have been shown to be
more robust, with the identity similarity for the less editable YW+
space inversion being inferior compared to the native WV space. Re-
cent works [YNGH21, ATM*21] have taken the above procedure a
step further, plotting the measured identity similarity along a range
of editing magnitudes. This results in a continuous curve measur-
ing identity preservation as a function of editing strength. In the
context of videos, Tzaban et al. [TMG*22] measured temporal co-
herence of edited videos, separating the evaluation of local (TL-ID)
and global (TG-ID) identity consistency. Locally, they evaluate the
identity similarity between pairs of adjacent frames. Globally, they
measure similarity between all possible pairs, i.e. not necessarily
adjacent.

Still, these metrics are mostly limited to facial data, as it is

challenging to procure identity recognition networks for other do-
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mains such as churches, cars, or cats. To this end, Abdal et al.
[AZMW?21b] focused on the setting of sequential editing and pro-
posed to measure similarity between results obtained when apply-
ing the same semantic directions in a different order. Tov et al.
[TAN*21] suggested the latent editing consistency (LEC) metric
to evaluate the editing quality realized by a given encoder E. Their
method consists of performing latent editing followed by synthe-
sis, encoding, and applying the reverse editing. Optimal editing is
expected to result in minimal distortion as the editing procedure
should only affect the desired attribute.

One more concern is image quality. One of StyleGAN’s key ben-
efits is high visual quality, and editing methods should aim to pre-
serve it. To this end, the common FID metric can be used over
the edited images. However, editing might cause a significant bias
between the edited and the real data, leading to inaccurate evalu-
ation. If available, a classifier or regression model can be used to
balance both image collections with respect to some attribute. A
further approach, presented by Zhu et al. [ZAQW?20], is to eval-
uate the interpolation quality. They suggest that good editability
should retain the high quality of StyleGAN even for the interpo-
lated images, and utilize the FID metric for this purpose. Lastly,
a number of works utilized a user study to evaluate editing qual-
ity [ZAQW20, TAN*21] through human judgment. Although this
approach carries a profound understanding of the editing proce-
dure, it consumes significant resources and is susceptible to un-
wanted manipulations. To this day, there is no widely acceptable
assessment metric for latent manipulation quality.

6. Discriminative Applications

While the generative capabilities of GANs, and StyleGAN in
particular, are indeed groundbreaking, one may ask what non-
generative tasks can potentially be tackled using GANSs. In its most
basic form, the GAN’s capability to generate a large number of
images, all essentially re-sampled from the same target distribu-
tion, can be used for data enrichment and augmentations for down-
stream training tasks. Indeed, many early works proposed using
a GAN as an augmentation tool to generate more training data
[ASE17,ZLL*18, TA19], possibly also through the use of latent-
space editing [HGG21].

Leveraging the GAN’s editing capabilities, Chai et al. [CZS*21]
propose an ensembling method for image classification, by aug-
menting the input image at test-time. The input is projected into the
pre-trained generator’s latent space, and editing operations such as
style mixing are applied to it, generating different views. The gen-
erated images are then fed into a classification network, and the fi-
nal prediction of the model is based on an ensemble of the network
predictions on all of the images. Unlike conventional ensembles in
deep learning, where predictions of several models are combined
to yield the final result, this method proposes using different views
of the same image (while preserving its identity) and ensemble the
classifier predictions on the images at test-time.

Aiming to leverage the semantic understanding of StyleGAN in
new ways, Peebles et al. [PZZ*21] present a novel framework to
approach the task of dense visual alignment. Using sampled la-
tent codes and their corresponding images, the authors jointly learn
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Figure 11: Examples of discriminative applications built around
the StyleGAN generator. These include the ability to synthesize
highly detailed segmentation masks (a) [ZLG*21], regress facial
landmarks or room layouts (b) [XSZ*21] and even learning align-
ments and dense correspondences which can be used to propagate
edits between different images or video frames (c) [PZZ*21].

a latent representation used for latent-space editing, and a Spa-
tial Transformer Network to align the generated images according
to the edit, as illustrated in Figure 11c. Once both manipulations
converge to a single viewpoint, the authors can employ the STN
to align real images. Abdal et al. [AZMW21a] present an unsu-
pervised segmentation method based on a pre-trained GAN. The
authors recognize that nullifying some of the activations actually
causes the GAN to erase the foreground object, producing an im-
age with only a background. Hence, they form two networks, one
that generates only the background for an image, and another which
generates only the foreground, naturally leveraging the GAN’s in-
ternal semantic understanding. They then use the two networks to
train a segmentation mask generation network in an unsupervised
manner. This notion, of extracting a segmentation map with the
help of StyleGAN’s structure, has been employed similarly by oth-
ers [ZLG*21,LYK*21,LKL*21,LVKS21].

However, StyleGAN’s well-behaved latent space offers more op-
portunities. In a fine example of taking full leverage of the la-
tent space, Xu et al. [XSZ*21] show how to exploit pre-trained
generative models for a wide variety of analysis and generation
tasks. In essence, they propose an adversarial feature learning tech-
nique [DKD17]; they extract meaningful feature maps through
StyleGAN inversion and use them for a wide variety of tasks. The
authors show that the channel-level modulations performed by a
style code can be used as descriptive features for downstream tasks.
Hence, by simply training an encoder, high-quality feature vectors
can be produced in an unsupervised manner. The authors evalu-
ate the quality of the features on different generative and discrim-
inate downstream tasks, including image editing, image recogni-
tion, landmark detection, and more (see Figure 11b). Nitzan et al.
[NGBCO21] further observe that the linear nature of semantic di-
rections in StyleGAN’s latent space, i.e.the same linearity exploited
by the editing literature (see Section 3), can be leveraged as a tool
for few-shot regression. Their basic premise is that if the space is
indeed linear, then given two labeled points along a disentangled
axis, any interpolated point between them should produce an in-

terpolation of their labels as well. In other words, they show that
linear editing directions are not only global, in the sense that they
cause a similar effect for all inputs, but also that the magnitude of
these effects is linear in the size of the traversal step. Through this
realization, they achieve state-of-the-art few-shot regression perfor-
mance on various properties, such as yaw angle and age estimation
for human faces.

Continuing this line of thought, several papers leverage Style-
GAN’s intermediate representation to perform semantic segmen-
tation. As previously discussed (see Section 4.2), a simple func-
tion, f, may be learned between the up-sampled concatenated per-
layer features and a semantic segmentation of the image. As illus-
trated in Figure 11a, Zhang et al. [ZLG*21] propose to use Style-
GAN together with f to generate a virtually infinite paired synthetic
training set for semantic segmentation. Alternatively, Tritong et al.
[TRS21] directly use StyleGAN and f for segmentation by first
inverting a real image into latent space. In the context of local edit-
ing, Collins et al. [CBPS20] and Kafri et al. [KPACO21] perform
a simple clustering procedure over StyleGAN’s internal represen-
tations to obtain a semantic segmentation of an input image. This
semantic map can then be used to perform local editing over an im-
age, guided by a target reference image. Lang et al. [LGY*21]
propose to not only exploit the emerging disentanglement prop-
erties of a pretrained StyleGAN, but to train a StyleGAN model
for a specific disentangled axis. Through a clever training scheme,
combining training StyleGAN along with a classifier for binary or
multi-class recognition (e.g., a cat vs. dog classifier), they drive the
latent space to capture classifier-specific attributes. As they demon-
strate, through this joint training process, the linear editing direc-
tions that emerge from this model correspond to specific properties
that the classifier searches for. For example, in the cat vs. dog case,
the emerging editing directions include the shape of the eye, and
the pointedness of the ears. This means that the image can be aug-
mented to be more or less suitable for a specific label (e.g., a cat
could be turned to be more dog-like), thus providing explainable
examples of how the classifier makes its decision.

As can be seen, StyleGAN’s unsupervised arrangement of its la-
tent space in disentangled directions is an exciting property that
could potentially be leveraged for various applications. In the near
future, it is likely that more works along these directions would be
introduced, maybe establishing GANs as a method useful for many
downstream tasks in machine learning in general, reaching beyond
data augmentation or entertainment. Furthermore, it stands to rea-
son that future generations of GANs may be designed with more
consideration to discriminative tasks.

7. Fine-Tuning the Generator
7.1. Data Reduction

Training a StyleGAN model requires substantial amounts of data,
confined to quite a small domain. This means that the amount of
available data serves as a strong bottleneck for adapting StyleGAN
to new domains. An established way to address the lack of data is
through augmentation. To stabilize training in limited data scenar-
ios, several methods [ZLL*20,KAH*20,ZZC*20] used differential
augmentations during the training process. In contrast to classifi-
cation tasks, generative augmentations pose a challenge — if the
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Figure 12: Many works have approached the task of transform-
ing images from one domain (e.g., real faces) to other, seman-
tically similar domains (e.g., cartoons). Typically, this has been
done either through guidance via a textual description of the de-
sired target domain (a) [GPM*21], a short fine-tuning approach
trained on a handful of images (b) [SLL*21], or single-shot adap-
tation approach with style introduced via a desired reference image
(c,d) [LLQ*21, ZAFW20].

discriminator observes sufficient augmented samples, the genera-
tor might produce such augmented results by itself. In many cases,
the augmentations leakage to the generated images is highly un-
desirable, e.g.when the augmentations contain rotations or unre-
alistic colorization changes. By monitoring overfitting indications
during training and adaptively increasing augmentation strength,
Karras et al. [KAH*20] are able to introduce additional supervi-
sion to the network through augmentations, without allowing them
to leak into the generated results. They achieved state-of-the-art
results in low data domains, significantly reducing the number of
training samples required for training. Sinha et al. [SAS*20] also
suggest explicitly providing the discriminator with negative out-
of-distribution samples to bias the generator away from unwanted
samples. Another direction, proposed by Yang et al. [YSXZ21]
is to empower the discriminator to better extract knowledge from
the training set by providing it with an auxiliary task in the form
of instance-discrimination via a contrastive learning objective. Ku-
mari et al. [KZSZ21] propose to leverage the feature space of pre-
trained vision models, trained for different vision tasks. By progres-
sively selecting and employing the models as additional discrimina-
tors, they manage to improve synthesis quality in both limited-data
and large-scale settings.

Another established and popular approach is domain adapta-
tion, where different works seek to convert pre-trained StyleGAN
models into other semantically similar domains using few data ex-
emplars. Aside from reducing the amount of data needed to train
a model from scratch, Karras et al. [KAH*20] fine-tuned a Style-
GAN generator trained over the FFHQ dataset into the domain of
MetFaces, a collection of images from the Metropolitan Museum
of Art, using only 1,336 training samples. Following the above,
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Pinkney et al. [PA20] leverage the disentangled control over the
coarse, medium, and fine semantic attributes StyleGAN offers and
perform domain-mixing for depicting the geometry of one domain
with the textural appearance of another. The authors fine-tune a
well-trained StyleGAN for human faces using only 300 cartoon
examples. They then propose blending the models, replacing high-
resolution layers of the fine-tuned model with the pre-trained layers
of the source domain. This yields a toonification effect, producing
an output domain of cartoons, with the complex variety and struc-
ture of human faces. Several works make use of a similar form of
fine-tuning. Song et al. [SLL*21] introduce several synthesis paths
within the generator for different attributes, achieving high-quality
portrait stylization. Following the fine-tuning process, Jang et al.
[J1J%21] leverage the semantic correspondence between the two
models. By feeding the same latent codes to both generators, an ex-
tensive paired training data set can be generated. This data is then
used to train a translation network between the domains (in this
case, a shape-exaggeration network operating over the caricatures
domain).

Within the few-shot settings, several works perform domain
adaptation based on as few as 10 training exemplars. When the
translation is done between semantically similar domains, the
methods manage to preserve the semantic properties and diversity
of the source domain. Li et al. [LZLS20] maintain diversity by
applying an elastic weight consolidation loss, regularizing weights
change based on Fisher information, computed from a discrimina-
tor. To facilitate few-shots adaptation, Ojha et al. [OLL*21] pro-
pose explicitly maintaining the source domain structure, through
a distance consistency loss between pairs of resulting images. In
addition, a shared image and patch discriminator is applied to cre-
ate patch-level adversarial similarity throughout the latent space to-
gether with image-level similarity around chosen anchors.

Taking domains with data shortage to the extreme, Gal et al.
[GPM*21] perform zero-shot domain adaptation, fine-tuning Style-
GAN without providing any exemplar images. They propose de-
scribing the desired target domain in text and using a pre-trained
linguistic-visual model [RKH*21] to guide the adaptation. The
GAN is trained such that the CLIP-space direction between the re-
sulting images before and after the tuning process aligns with the
CLIP-space direction between a pair of source and target descrip-
tion texts. Zhu et al. [ZAFW20] perform single-shot domain adap-
tation by matching the reference image in the target domain with
a corresponding synthesized image from the source domain, ob-
tained through latent space optimization. Using the reference pair,
in addition to the CLIP-space loss defined in StyleGAN-NADA,
they introduce a new objective, which is to maintain CLIP-space
direction similarity between each reference image and the current
training iteration’s synthesized image. Using this method, the au-
thors manage to achieve better adaptation of pose, lighting, and
expression through the domain transfer process. Taking a different
approach, Yang et al. [YSZ"21] freeze the generator weights and
learn a linear transformation in Z space, using as little as a sin-
gle reference image. We refer the reader to Figure 12 for sample
domain adaptation results.
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7.2. Data-Aware Generator Tuning

Arguably, the most promising direction for StyleGAN development
is through data-aware model manipulation. A pre-trained Style-
GAN model is phenomenal in local structure and disentanglement
(see Section 2), but is relatively confined in generality. As such, it
stands to reason that there could be significant benefit in adapt-
ing the model to include new, specific data points. Then, if the
GAN’s structure is maintained, these new points could be better
processed for editing or discriminative applications. This concept
has been suggested in the past already [BJLPS18]. For example,
in the context of GANs, Bau et al. [BSP*19] propose adapting
the image prior learned by Progressive GAN [KALL18] to im-
age statistics of an individual image. Through minimal fine-tuning,
the authors were able to faithfully reconstruct a given image, and
present editing capabilities of quality unseen at the time, including
synthesizing new objects seamlessly, removing unwanted objects,
and changing object appearance. Similarly, Pan et al. [PZD*20]
use BiIGGAN [BDSI18] to capture high-level semantic image pri-
ors such as color, texture, spatial coherence, etc., for tasks such
as colorization, inpainting, morphing, and category transfer. This is
contrary to the traditional approach [UVL18], where only low-level
priors are captured. Their method is based on GAN-inversion, but
they overcome the difficulty of GAN-inversion methods to generate
out-of-domain images by allowing the generator to be fine-tuned
on the fly when searching for the latent source. They regularize
the generator fine-tuning with feature matching loss from the dis-
criminator, and use progressive fine-tuning (from shallow layers to
deep).

In the context of StyleGAN, Roich et al. [RMBCO21] take a
similar approach. Given a real-world image that is similar, but not
included in the domain of a pretrained StyleGAN (e.g., an image
of a human face, with very untypical facial features, makeup, or
hairstyle), they propose finding the closest latent code to the de-
sired appearance (termed the ‘pivot’), and fine-tuning the genera-
tor so the exact appearance would be reconstructed with this code.
In addition, they ensure the process does not impair the disen-
tangled latent space through regularization. This simple approach
produces significantly better reconstructions (see Fig. 9), and al-
lows employing off-the-shelf editing techniques with high qual-
ity, essentially bypassing the notorious distortion-editability trade-
off (see Section 4). Such fine-tuning sessions are typically brief,
lasting an order of a single minute. As described in Section 4.1,
this generator tuning can alternatively be performed as a forward
pass procedure using hypernetworks [ATM*21, DTNH21]. Tza-
ban et al. [TMG*22] further improve the tuning scheme to se-
mantically edit a video while preserving temporal coherence. First,
they observe that using an encoder for the initial inversion allows
for a temporally-smooth edit after tuning the generator. Second,
they propose to further tune the generator to better stitch the edited
cropped face back to the original frame.

Bau et al. [BLW™20] perform a similar tuning operation, but
where the awareness is to the task instead of the data. The authors
propose changing semantic and physical properties (or rules) of
deep generative networks, relying on the concept of linear associa-
tive memory. While current methods for image editing allow users
to manipulate single images, this method allows changing seman-

tic rules and properties of the network, so that all images gener-
ated by the network have the desired property. This includes re-
moving undesired patterns such as watermarks and adding objects
such as human crowds or trees. Kwong et al. [KHL21] outline a
method for cross-domain editing by inverting images into a source
domain and re-synthesizing them in a fine-tuned model using the
same code. Cherepkov et al. [CVB21] expand the range achievable
by existing state-of-the-art generative models used for image edit-
ing and manipulation, such as StyleGAN2. While existing methods
find interpretable directions in the model’s latent space and oper-
ate on latent codes, they find interpretable directions in the space
of generator parameters and use them to manipulate images and
expand the range of possible visual effects. They show that their
discovered manipulations, such as changing car wheel size, can-
not be achieved by manipulating the latent code. Finally, Liu et al.
[LGB*22] demonstrate that brief fine-tuning sessions can be used
to condition a model on labels derived from the latent-space itself,
thereby “baking” editing directions into the GAN and improving
treatment of rare data modalities, such as extreme poses or under-
represented ethnicities.

8. Conclusions

StyleGAN has revolutionized the field of image synthesis, bring-
ing with it consistent, high-quality results with exceptional photo-
realism across multiple domains. More interestingly, through a
combination of layer-wise style modulations and a novel mapping
network, StyleGAN is capable of mapping out a smooth, semantic,
and highly-disentangled latent space in an entirely unsupervised
manner. This enables latent-based editing, yielding effects such as
photo-realistic and plausible alterations to age, hairstyles, or body
poses, and even transformations into celebrities or magical beings.

However, StyleGAN struggles with domains that do not exhibit
strong structure. An in-depth look over the diverse set of works
covered by this report will reveal that they all demonstrate their
abilities on a rather limited collection of domains, and with no re-
gard to the temporal axis. To address these limitations, there is yet
much development that the generative field must undergo.

While many works focused on re-using a pre-trained generator
for downstream tasks, a recent trend has shown that some of these
domain-related limitations can be overcome if one adapts the gen-
erator to their specific needs. In essence, such approaches build
upon the extensive knowledge that StyleGAN can glean from a rich
source domain, and transfer it to new realms such as 3D rendering,
paintings, or wildlife.

Another noteworthy direction resides in extracting knowledge
from StyleGAN for non-generative needs. StyleGAN has already
been leveraged for regression, segmentation, and explainability, but
there is doubtless more that could be learned from exploring its
structured latent space. On the quest to self-supervision and learn-
ing representations that naturally disentangle and understand the
elements comprising data distributions, StyleGAN is an important
milestone.
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