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Figure 1: Given the initial template of the cloth mesh and the target obstacle mesh, our network can predicate a plausible target 3D cloth
mesh for general scenes. We highlight (a) the final cloth mesh wrapped around a bunny, (b) a jacket draped on a non-SMPL human body; (c)
t-shirt deformation on a SMPL human body, (d) a human dressed in a robe represented by 100K triangles. All predicted meshes are different
from the datasets used for training. Our approach runs at 30 — 45fps on an NVIDIA GeForce RTX 3090 GPU.

Abstract

We present a novel mesh-based learning approach (N-Cloth) for plausible 3D cloth deformation prediction. Our approach is
general and can handle cloth or obstacles represented by triangle meshes with arbitrary topologies. We use graph convolution to
transform the cloth and object meshes into a latent space to reduce the non-linearity in the mesh space. Our network can predict
the target 3D cloth mesh deformation based on the initial state of the cloth mesh template and the target obstacle mesh. Our
approach can handle complex cloth meshes with up to 100K triangles and scenes with various objects corresponding to SMPL
humans, non-SMPL humans or rigid bodies. In practice, our approach can be used to generate plausible cloth simulation at
30—45 fps on an NVIDIA GeForce RTX 3090 GPU. We highlight its benefits over prior learning-based methods and physically-

based cloth simulators.
CCS Concepts

» Computing methodologies — Machine learning; Physical simulation;

1. Introduction

Generating plausible cloth simulation has been an active research
area for many decades. The driving applications include video
games and VR, computer animation, special effects, the fashion
industry, virtual try-on applications, etc. There is extensive liter-
ature on simulating cloth deformation using physically-based and
data-driven methods.
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Physically-based methods treat cloth simulation as a deformable
modeling problem and solve is using techniques from scientific
computing and geometric computing. These methods also perform
collision handling for accurate simulation. The resulting algorithms
can generate high-fidelity simulations and can be accelerated by
exploiting GPU parallelism. However, they are mostly limited to
offline simulations and are not considered fast or practical for in-
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teractive applications such as games and VR. There has been con-
siderable interest in developing data-driven or learning-based ap-
proaches for interactive simulation. The data-driven methods use a
large number of pre-computed simulated clothing samples to syn-
thesize cloth deformation. Recently, many learning-based meth-
ods have been proposed for draping cloth or adjusting cloth de-
formation to human motion [PLP20; SOC19; LMR*15; BME20a;
BME20b; WCC*21; STOC21]. While these methods can predict
clothing deformation in 3D space at interactive rates, they may not
work well for arbitrary scenarios with different types of objects ex-
erting force on the cloth. In practice, these learning methods are
mainly limited to predicting the deformation of clothes that con-
form to human movements. Moreover, many of these algorithms
are limited to SMPL-based human body models [LMR*15] or vir-
tual try-on applications. It is not clear whether these learning meth-
ods can extend to other types of irregular fabrics such as a table
cloth wrapping around an arbitrary obstacle like a bunny. Often
these methods also require some pre-processing such as skinning
[GCS*19; GCP*20], which can introduce artifacts into subsequent
network training.

Main Results: We present a novel learning-based method (N-
Cloth) to interactively predict cloth deformations in 3D. Our ap-
proach is designed for general scenes represented using triangle
meshes and makes no assumption about the topology of the cloth
or the shape/topology of the obstacle. Moreover, the simulation en-
vironment may consist of arbitrary rigid or deforming objects (e.g.,
humans in motion) that apply forces on the cloth and can result in
complex deformations. Our learning method predicts the target3D
cloth mesh deformation based on the initial state of the cloth mesh
template and the target obstacle mesh.

A key aspect of our learning-based approach is the use of a net-
work that directly uses the input meshes and does not require pre-
processing (e.g., mesh skinning). We extend the classic encoder-
decoder architecture [RHBLO7] with two major components: a
graph-convolution-based encoder network and a fusion network.
The first network transforms the input cloth and object meshes into
latent vectors of a latent space and greatly reduces the input data
size. This enables our algorithm to handle complex objects in the
scenes defined using triangle meshes (e.g., with up to 100K tri-
angles). Our fusion network is used to derive the deforming mesh
from the input cloth meshes and obstacle meshes in the latent space.
This increases the accuracy of our overall learning-based method
in terms of predicting arbitrary 3D cloth deformations. The con-
nections between the outputs of an obstacle encoder and a cloth de-
coder are introduced to generate more accurate cloth deformations.
Moreover, our learning method can also generate detailed features
like wrinkles.

We qualitatively and quantitatively analyze the performance of
the proposed mesh-based network in a variety of scenarios. These
include cloth meshes corresponding to many types and topologies.
Furthermore, the obstacles in the scene correspond to rigid objects
or a human body. In practice, our approach can generate plausible
cloth deformations for all these scenarios, even when the predicted
meshes are different from the datasets used in training. We also
compare the performance with TailorNet [PLP20], a SMPL-based
network, and observe lower error with respect to the ground truth.

The novel aspects of our learning-based approach include:

e A novel mesh-based network for various scenes: Our ap-
proach can handle arbitrary obstacle meshes. This is in con-
trast to recent learning-based methods that are mainly limited to
parametric human models [PLP20; SOC19; LMR*15; BME20a;
BME20b; WCC*21; STOC21].

e End-to-end neural network: Our method can predict cloth de-
formation given the initial cloth template and the target obsta-
cle mesh. We do not perform any pre-processing (e.g., skinning
computations [GCS*19; GCP*20]).

e Interactive speed: Our approach can predict cloth deforma-
tion at 30 — 45 fps on an NVIDIA GeForce RTX 3090 GPU.
We observe 5 — 8X and 220 — 300X speedups over prior
GPU-based [TWL*18] and CPU-based physics-based simula-
tors [NSO12; NPO13], respectively.

o Plausible Results: We have evaluated the accuracy of our ap-
proach on a large number of complex cloth deformations and
observe plausible results. Compared with TailorNet, our method
can predict the cloth mesh with more wrinkles.

e Lower Memory Overhead: Our approach can handle cloth
meshes with up to 100K triangles on commodity GPUs.

2. Related Work

In this section, we give a brief overview of prior work on cloth
deformation using physically-based simulation and learning-based
methods.

2.1. Physically-based Cloth Simulation

Physically-based algorithms use explicit Euler integra-
tion [Pro95], implicit Euler integration [BW98], iteration op-
timization [LBOK13; LBK17], or projective dynamics [BML*14]
to calculate the cloth deformation under external/internal forces.
Many techniques have been proposed for robust collision han-
dling [BFA02; BEB12; TTWMI4; GLMO5]. Impulse-based
methods and impact zones [BFA02; HVTGOS; Pro97; TWL*18]
are used for penetration handling. Recently many techniques have
been proposed to accelerate these simulations using one or more
GPUs [TWT*16; LTT*20]. In practice, accurate cloth simulators
can generate high—fidelity simulations, and we regard them as the
ground truth for our learning approach.

2.2. Data-driven Approaches

Many data-driven approaches have been proposed for cloth defor-
mation synthesis [FYK10; WHRO10]. By combining high-quality
wrinkles with a coarse cloth simulation [ZWCM21; CMM*20], vi-
sually plausible results can be generated at interactive rates. These
methods commonly need to simulate coarse deformed meshes.
Furthermore, these methods need to precompute a large dataset,
and their generalizability to arbitrary scenarios tends to be lim-
ited [dIASTH10; KKN*13; ZBO13].

2.3. Learning-based Algorithms

Recently, learning-based algorithms have been proposed for pre-
dicting cloth deformation in 3D. Using the synthetic training
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Figure 2: Our mesh-based network architecture:The initial cloth mesh template is encoded into a vector 1. in the latent space by a cloth
encoder. The obstacle mesh in the target state is encoded as vector 1,, which is used as a weighting factor in the latent space by the obstacle
encoder. With a fusion network, cloth vector 1. is weighted and fused by n functions with different weights to compute the latent vector 1;.
fisfa,--es fu are linear fusion functions with trainable parameters. Finally, the latent vector is restored to the deformed cloth mesh in the
target state by the cloth decoder. The output of each layer in the obstacle encoder is connected to the cloth decoder by a linear function to

add more obstacle impact.

data generated using physics-based simulators, learning-based
approaches can predict cloth deformation at interactive rates
on commodity GPUs. A large number of learning-based algo-
rithms [PLP20; SOC19; LMR*15; BME20a; BME20b; WCC*21;
STOC21; WSFM19; CPA*21] have been designed for specific or
parametric obstacle models such as SMPL-based [LMR*15] or
skeleton-based human body models. This makes it difficult to use
these methods in environments with arbitrary rigid or deformable
objects that can interact with the cloth.

Some learning-based algorithms are not limited to SMPL mod-
els. These approaches aim to process human bodies with skeleton.
Holden et al. [HDDN19] obtain the vector of the vertex attributes
of in the subspace through PCA and divide the deformation into
linear and nonlinear to make assumptions and to predict the subse-
quent deformation. The GarNet network architecture proposed by
Gundogdu et al. [GCS*19; GCP*20] predicts the cloth deformation
from the target posture with DQS (dual quaternion skinning) pre-
processing [KCZOO07] from the initial state and uses it as the final
cloth deformation. [ZCWM21] learns to generate rendered charac-
ters and cloth on posed skeleton joints. All these methods focus on
human bodies with skeleton and can not handle scenes without hu-
man skeletons. Our aim is to find an approach capable of processing
many scenes with human meshes and other rigid body meshes.

3. Our Approach
3.1. Overview

Our goal is to predict the target deformed cloth mesh based on the
target obstacle mesh and the initial cloth mesh. We assume that
they are represented as 3D meshes. The initial cloth mesh provides
a template for deformation. The target obstacle mesh is used to
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guide deformation. We do not make any assumptions about the ini-
tial topology of the cloth, though it remains fixed during the simu-
lation or deformation. Thus, our network is an end-to-end method
for predicting the cloth deformation. Formally, our approach can be
described as:

M; = No(M; . My), (D

where M is the predicted deformed target cloth mesh and M7 is
the target obstacle mesh. M{ is the initial, undeformed cloth mesh
template which is undeformed and constant for one specific kind of
cloth. During the prediction, the topologies of the cloth mesh and
the obstacle mesh are invariable. Ny is the mesh-based network and
0 represents the network parameters obtained by training.

We extend the classic encoder-decoder neural network architec-
ture [RHBLO7] to generate the 3D cloth deformation. An overview
of our approach is shown in Fig. 2. The deformation in mesh space
is nonlinear and too complicated to be modeled. The nonlinearity
of the mesh deformation is transformed to linear fusion in latent
space through a cloth encoder and an obstacle encoder. Thus, we
obtain the latent representation of the target cloth mesh by linear
fusion. The target cloth mesh is obtained by a cloth decoder. We
will describe the network in more detail.

3.2. Encoder Network

We use the encoder network to transform the input cloth mesh M{
and the obstacle mesh M7 from the 3D mesh space into a latent
space. Our goal is to handle arbitrary triangle cloth meshes. A tri-
angle mesh is similar to graph data. Therefore, the networks for
processing graph data are applicable to resolving relevant mesh
problems. Referring to [GJ19], graph convolution is used in this
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paper to perform feature extraction on a mesh with abundant trian-
gles. Both the cloth encoder and the obstacle encoder have similar
network architectures.The first network block of our encoder net-
work is shown in Fig. 3. Both the cloth encoder and the obstacle
encoder have several network blocks similar to this initial block.
Then we elaborate on the various parts of the first network block
in the encoder. As shown in Fig. 3, we use the GCN layer [KW16]
to extract features from the geometry information (vertex coordi-
nates) and topology information (edge connectivity) of the mesh.
In this manner, the GCN layer maintains the topology of the mesh.
The GCN layer can be formulated as in [KW16]:

X(l+1) :0<D*%A(/)D*%X</)W“)> , )

where A0 =40 41, AW is the adjacency matrix of layer /. [ is the
identity matrix for adding self-loops. X (+1) and X ) are the feature
matrices of the layer [ 4+ 1 and [, respectively. D;; = ):]-A~i_i, and

w1 is a trainable weight matrix for layer /. Since the output of the
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Figure 3: The first network block of our encoder network: Our net-
work takes geometry information (vertex coordinates) and topology
information (edge connectivity) of meshes as inputs and performs
data down-sampling by outputting meshes with reduced geometry
and topology information.

GCN layer has the same topology as the input, this formulation can
result in a large number of training parameters for high-resolution
meshes and thereby exceed the GPU memory budget. To reduce the
model parameters and complex non-linearity in 3D space, we use
top-k-pooling [GJ19] to perform data down-sampling by outputting
meshes with reduced topology information, i.e., with fewer vertices
and connectivity information among them.

Top-k-pooling will pick k vertices from the original vertex set
and discard other vertices to perform down-sampling. This process
may result in multiple isolated point sets, which may not work well
for subsequent GCN layers because these layers extract features in
terms of information related to the of the vertex. Thus, we recalcu-
late the connectivity of mesh vertices before using a top-k-pooling
layer to improve triangle connectivity. Therefore, we calculate the
square of the adjacency matrix A as follows [GJ19]:

Ay =40, 3)

where Al(,l) is the new adjacency matrix for next top-k-pooling com-

putation. The new adjacency matrix A,<41> corresponds to introduc-
ing more vertices around a given vertex and will reduce the isolated
points after pooling.

Fig. 4 shows the connectivity between a single vertex and sur-
rounding vertices in the mesh where the adjacency matrix is AW
or A,(p. The connectivity between vertices is strengthened with the

adjacency matrix AE,Z).

unconnected
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Figure 4: The connectivity of vertex v; with adjacency matrices AW
(a) and A,(,l) (b). The connectivity between vertices is strengthened
(1)

with the adjacency matrix A’ .

3.3. Fusion Network

The output of the cloth encoder and the obstacle encoder are I and
I, respectively. I and I, are vectors in the latent space extracted
from the cloth mesh and the obstacle mesh, respectively. I and I,
are expressed as follows:

IC = EC(MI() = (x17x27x37 T 7Xm)7

) C))
I() :EO(MI() = (W17W27W37"' 7WVL)7

where E. and E, represent the cloth encoder network and the ob-
stacle encoder network, respectively. m and n are the dimensions
of I and I, respectively. x1,x2,...,xm and wy,wo,...,w, are the
component of latent vectors I. and I, respectively.

We use the fusion network to generate I;, which corresponds to
the vector of the target cloth mesh in the latent space from I and I,.
Our formulation of the fusion network is inspired by prior work in
image processing and 3D character control. Rocco et al. [RAS17]
added a correlation layer to the network for geometric matching
between 2D images, and Holden et al. [HKS17] proposed a phase-
functioned network the weights of which are updated by a phase
cyclic function for 3D character control.

We perform the fusion by linearly weighting a set of linear fusion
functions {1, f2, f3," -, fn}> which all take L. as an input. Here I,
is used as the linear weight. The linear fusion functions are defined
as follows:

&
o?
fille) = | 77| [y txp o o] ®)
o'
where {0} ,07,--- o} is a set of trainable coefficients and i €

[1,n]. The overall fusion process can be expressed by the following
formula:

L =Y wifi(l)
=1

=wifi(le) +wafa(le) + w3 f3(Ie) + -+ wafu(lc).
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We use this formulation to obtain the vector I; of the target cloth
mesh in the latent space. Thus, we obtain a linear latent space where
the deformation can be expressed as a linear fusion. In practice, we
observe that our linear formulation can predict plausible results,
and the errors are rather small (see Section 4).

In the mesh space, the influence of the obstacle mesh on the de-
formed cloth mesh may be complex and non-linear (e.g., due to
collisions between the cloth and the obstacle). With our fusion net-
work, we are able to model the non-linearity as weighted combina-
tions of latent vectors and obtain the parameters of the combination
function by training. In addition, the dimensions m and n of I and
I, respectively, also govern the accuracy of our predicted defor-
mation. In our implementation, we set m = 96 and n = 80 for most
benchmarks. We choose these dimensions by experiments and find
that increasing them does not obviously improve the results.

3.4. Decoder Network

We use the decoder network to generate a cloth mesh in the
world space from ;. The problem of recovering the cloth mesh
from the latent space has been investigated by [CZY20; CMM*20;
CGY*21]. Although these methods use graph convolution net-
works, the resulting decoder networks use the same sampling infor-
mation as the encoder networks. In addition, there is almost no de-
formation between the input mesh and the output mesh. However,
this formulation does not work well when the target cloth mesh
involves a large deformation relative to the initial mesh. In our for-
mulation, we assume the cloth mesh maintain the same topology
during deformation. As a result, we reduce the problem to only
computing the geometric information of the deformed mesh (i.e.,
the vertex coordinates).

To compute the coordinates of the deformed vertices, we use a
Multilayer Perceptron (MLP) network to decode the feature vec-
tor I; of the target deformed cloth. In each layer of cloth decoder,
we apply dropout regularization by randomly disabling 20% of the
hidden neurons to avoid overfitting the training data. The output of
our decoder network is a one-dimensional vector that will be re-
shaped to (num,3) as vertex coordinates of the target cloth mesh,
where num is the number of vertices of the target cloth mesh. In
addition, we add the output of each layer of the obstacle encoder to
the input of the corresponding layer of the decoder through a linear
layer connection. In this way, we increase the effects of obstacles
on the cloth decoder and find improved results.

3.5. Loss Functions

Loss function is a key component of our learning-based algorithm.
We use different loss terms to achieve plausible results and over-
come penetrations. We use the position information of the de-
formed cloth meshes as the ground truth and calculate the MSE
loss between it and the network prediction output. The MSE loss
on the positions can be expressed as:

bk

i
Xp —Xg

. )
2
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where xi, is the position of vertex i on the predicted cloth mesh, xé
is the position of vertex i on the ground mesh, N is the number of
vertices, and ||...||, is the L? distance.

In addition, we also use a new type of loss to remove penetra-
tions between the generated cloth and the obstacle. Our goal is to
generate non-colliding cloth meshes. The penetration loss between
the cloth mesh and the obstacle mesh can be expressed as:

Le—;}i“l(dg—min<<x§,—xf,>-nf,,dg)>, ®)

where x}} is the position of vertex i on the cloth mesh and xf, is the
nearest point to x;, on the obstacle mesh. n, is the normal vector of
xé on the obstacle mesh. de is the minimum distance of penetration.
N is the number of vertices of the cloth mesh. As shown in Fig. 9,
the penetration loss can greatly overcome penetrations between a
cloth mesh and a human body. We build the AABB tree of the ob-
stacle to find the nearest point on the obstacle mesh. Fig. 10 shows
the effectiveness of the penetration loss on obstacles with different
numbers of triangles (0.36k, 0.64k, and 2.75k).

To prevent self-penetrations in the generated cloth mesh, we use
the following loss function:

ﬁsZilii(dg—min((xj,—x;;>-n};,ds))7 )

where x{, is the nearest vertex to xj, on the cloth mesh. i # j and
i,j € [1,N]. We concatenate two pieces of cloth with opposite
normal vectors of vertices to validate the self-penetration loss in
Fig. 11. However, the experiments reveal that Eq. 9 is limited and
cannot handle all self-penetrations.

The overall loss function used to predict the cloth deformation
is:

L=Lp+Ac+uLs, (10)

where A and u are blending coefficients. In practice, we use A = u=
1 and observe good results for all the benchmarks with these val-
ues. Since the predictions tend to be random at the beginning of the
training, Eq. 8 and Eq. 9 may result in inaccurate predictions. We
use Eq. 10 to train the network at the beginning and add Eq. 8 and
Eq. 9 during the final training process. The number of parameters
of our network and the computed gradients will hinder the scalabil-
ity of training on large meshes. Therefore, Eq. 7 is computed on a
GPU, while Eq. 8 and Eq. 9 are computed on a CPU.

3.6. 3D Cloth Prediction

With the trained network, we can obtain the predicted cloth mesh
by inputting the initial cloth mesh and the target obstacle mesh.
Since the initial cloth mesh representation has a fixed topology for
a specific cloth, we only need to input the target obstacle mesh; our
network is used to predict the deformed target cloth mesh.

4. Implementation and Performance

In this section, we describe our implementation and highlight the
results on many benchmarks. We also compare the performance
with prior physics-based simulators and learning-based methods.
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4.1. Implementation

We have implemented our algorithm on a standard PC (Ubuntu
18.04.4 LTS/Intel 17 CPU@4.2G Hz/8G RAM, NVIDIA GeForce
RTX 3090 GPU). We perform both network training and cloth pre-
diction on the same platform. Our implementation uses PyTorch
1.7.0 and Python 3.8.8 as the underlying development environment.
Datasets: Our mesh-based network can handle various types of

Cloth Obstacle Key Mean

W, CEERED St triangles triangles frames error
1 Bunny Curtain 16384 12000 4839 2.47E-03
2 QMan 16148 14664 9247 3.46E-03
3 SMPL pose Tshirt 16116 55104 2163 2.45E-03
4 SMPL shape 16116 55104 2779 3.15E-03
5 Dress 15176 12999 9059 3.78E-03
6 A Jacket 11054 12999 9563 4.18E-03
7 Pants 16118 12999 8433 3.59E-03
8 Tshirt 12392 12999 9521 3.20E-03
9 QMan Robe_20k 19168 14664 8829 4.86E-03
10 Robe_100k 100404 14664 8702 5.02E-03

Figure 5: We evaluate the performance of our mesh-based network
on benchmarks with various characteristics: different types of ob-
stacles, cloths with different shapes, different resolutions, etc. We
highlight the number of triangles for the cloth and the obstacles, the
number of key-frames, and the mean vertex position error(in me-
ters) for all unseen test frames between the predictions and ground
truth simulated by a physics-based simulation ArcSim [NSO12].

cloth and obstacles. We evaluate its performance on many differ-
ent cloth meshes and obstacle meshes. We consider three types of
benchmark scenarios to evaluate our approach:

e Rigid obstacles: We lead a rigid bunny model through a hanging
cloth from different positions in the scene. The deformation of
the cloth is obtained by the simulator ArcSim [NSO12; NPO13;
PNDO14]. At each position, we relax the cloth for a period of
time to generate a quasi-static deformation. We also simulate the
results of the cloth on the bunny under different rotations and
scales. The size of the bunny is scaled from 0.5 to 1.7. To ensure
the uniqueness of the cloth covering on the bunny, we mark each
side of the cloth as 1 or -1. We also label the side that is in contact
with the bunny according to the vertex attributes of the bunny.

e SMPL human body model: For the SMPL humans, we choose
the representative data provided by TailorNet [PLP20]. Consid-
ering that the SMPL bodies in Tailornet have various shapes and
postures, we select two types of data. One is the SMPL body data
with 2779 different postures in a fixed body shape, The other is
the SMPL body data with 9 different body shapes in several fixed
postures. This selection of data also facilitates comparison of re-
sults from our network and Tailornet. For these human bodies,
we generate their triangle meshes from the SMPL parameters.

e Non-SMPL human body model: We also generate non-SMPL
humans, including a child Andy and an adult male Qman. We
upload the humans with canonical poses to the website https:
//www.mixamo.com/ and download about 90 different action

sequences. For these action sequences, we use the physics-
based simulator ArcSim [NSO12; NPO13; PNDO14] to generate
clothes on them. To eliminate dynamic effects, we perform lin-
ear interpolation between the adjacent poses and relax the cloth
on each pose for a period of time to ensure the cloth is as static as
possible. We transform all the human body meshes to the origin
of the coordinates to eliminate the absoluteness of the position.
The relative coordinates will enhance the generalizability of the
network.

Our network can also predict different types of clothes. The
child, Andy, wears different types of clothes, including a t-shirt,
pants, a jacket and a dress. The jacket and dress are loose, and their
deformation is different from the t-shirt and pants. These cloth-
ing simulations are also obtained by ArcSim [NSO12; NPO13;
PNDO14], as above.

We evaluate the accuracy of our predicted meshes by measuring
the mean error of each benchmark (as shown in Fig. 5) with the
following equation:

M bl ng—xiafll
=t N

&= i ; an

where M is the number of animation key frames. N is the number of
vertices in the 3D mesh, and x/ and x/ are the positions of vertex
i on frame j. The unit of our mean error is meters. The details for
each scene are shown in Fig 5.

Network Training: Following [PLP20] and [WSFM19], the
dataset is split for training and testing. For test data, we select
800 bunny models with different positions, rotations and scales
that have not been seen during training. For the SMPL humans,
we use the training and testing split provided in TailorNet [PLP20].
For other action sequences obtained from https://www.mixamo.
com/, 90 action sequences are used during training, which pro-
duce approximately 9,000 samples. To demonstrate the general-
izability of our network, during the test, we download 10 other
action sequences that were unseen during training from https:
//www.mixamo.com/ and predict the results of these new action
poses.

Moreover, the obstacle and cloth meshes in our scene have dif-
ferent vertices and topologies. Thus, networks used for different
scenarios have different numbers of parameters. Therefore, we train
an exclusive network for each scenario. The training time for each
benchmark varies from 24 hours to 7 days.

To accelerate the convergence of the network, we normalize the
input and output vertex positions to zero mean and unit variance for
all frames. During training, we uniformly reduce the learning rate
from le — 3 to 1e — 5. We use an Adam optimizer [KB14] to train
the parameters of the neural network.

Penetrations: Our learning-based method uses the penetration loss
function highlighted in Eq. 8, which is designed to prevent cloth-
object penetrations or cloth self-collisions. In our benchmarks, we
do not observe any deep or noticeable penetrations, though the
learning-based method does not guarantee a non-penetrating fi-
nal mesh. In our physics-based simulator, we use a large repulsion
thickness (i.e., Imm) so that the training data is not only collision-
free but there is some distance between non-adjacent mesh ele-
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Figure 6: The hanging cloth draping on bunnies in different posi-
tions, rotations, and scales that are unseen in training. Compared
to the ground truth computed using ArcSim (top row), our predicted
meshes (second row) result in visually plausible results. The devi-
ation between the ground truth mesh and our predicted mesh is
shown in the bottom row, with the error bounded by 10mm.

ments. This use of repulsion distance further reduces the chances
of self-penetrations or collisions in the predicted cloth mesh. If the
predicted mesh has a few collisions, we can solve them by simple
post-processing.

4.2. Results on Diverse Scenes

In this section, we highlight the performance of our method on dif-
ferent benchmarks and compare the accuracy with physically-based
simulation results. All predictions are performed on new test sets
that are different from the training data.

Fig. 6 highlights our results on scenes with obstacles unseen
during training corresponding to moving, rotating, or scaling rigid
bodies. Our network results in favorable generalization to obstacles
with unseen locations, rotations, and scales. Our approach makes
no assumption about the topology of the obstacles or the cloth. We
also compare the accuracy with ArcSim (an accurate physics-based
simulator) and observe a high level of similarity between our pre-
dicted 3D mesh and the ground truth mesh. The mean deviation
error between the vertices is less than Smm in our benchmarks.
Fig. 7 highlights our results on different human body models. We
use the same cloth mesh corresponding to a t-shirt on different hu-
man models. In Fig. 7, all the human bodies are represented with
triangle meshes. All predictions are on an unseen test set. For ex-
ample, the predictions of Andy and Qman are on the new action
sequences downloaded from https://www.mixamo.com/. The re-
sults of SMPL are on the test data split from TailorNet. For all
these benchmarks, our predicted results are visually close to the
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Figure 7: We show the deformation on a cloth mesh correspond-
ing to a t-shirt on different unseen human models. All these human
models are represented using triangle meshes. The human model
(b) is generated from SMPL parameters. For all these benchmarks,

our predictions are visually close to the ground truth.
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Figure 8: We highlight the performance of our network on differ-
ent clothing types corresponding to a t-shirt, pants, a jacket, and a
dress with unseen actions. We observe that our predicted mesh is
close to the ground truth and generates similar wrinkles and folds.

ground truth. Figs. 8 highlights our results on cloths of different
types. For all these benchmarks, our algorithm can generate plau-
sible results that match the ground truth meshes. For more bench-
marks about cloths with different resolutions and multiple disjoint
obstacles, please check out our supplementary material.

Fig. 9 highlights the benefits of our penetration handling ap-
proach based on a loss function. By adding the penetration term
into the loss function, our algorithm tends to alleviate the pene-
trations and self-collision artifacts. Although no penetration is un-
available in the predictions on the test set, it can reduce the de-


https://www.mixamo.com/

554 Y. D. Li et al. / N-Cloth: Predicting 3D Cloth Deformation with Mesh-Based Networks

Ground truth Without penetration loss With penetration loss

Figure 9: With the penetration term in our loss function (shown in
Eq. 8), our learning algorithm can significantly reduce the number
of penetrations (shown on the right) compared to the result without
penetration loss(shown in the middle).

alﬁ \'l? (lﬁ

Without penetration loss With penetration loss

Figure 10: The results of Eq. 8 with different obstacle discretiza-
tions.

gree of penetration and the subsequent processing work. Fig. 10
and Fig. 11 highlight the benefits of Eq. 8 (with different obstacle
discretizations) and Eq. 9, where (self-)penetrations are effectively
alleviated by these loss functions.

To sum up, our network can not only handle SMPL and non-
SMPL human bodies, but also rigid obstacles. Our network can also
process various types of clothes without providing skin models for
those clothes. Compared with the previous method, our network
can handle more scenarios. The predictions also show that our net-
work can satisfactorily generalize to new, unseen data. Even when
trained to predict a static deformed cloth mesh, our network gener-
ates a series of deformed cloth with fine temporal coherence on an
obstacle sequence (shown in the video).

5. Comparisons

In this section, we qualitatively and quantitatively compare the per-
formance of our network with prior learning-based methods.

5.1. Diverse Scenarios

In Table 1, we list the characteristics of different learning-based
methods. We highlight the capabilities of different methods in
terms of the kind of obstacles they can handle (e.g., SMPL mod-
els only or rigid objects). Compared to prior methods, our ap-
proach makes no assumptions about the type or topology of the

i ——

Without self
penetration loss

With self
penetration loss

Figure 11: The results with and without the self-penetration term
in the loss function (shown in Eq. 9).

Table 1: We compare the characteristics of our approach with prior
learning-based methods. Some of these learning-based methods are
limited to parametric human models (e.g., SMPL).

Method SMPL Non-SMPL  Triangle
body body mesh

TailorNet[PLP20] v X X
DeePSD [BME20a] v X X
[SOC19] v X X
GarNet [GCS*19] v 4 X
[WSFM19] v v X
[BME20b] v X X
DRAPE [GRH*12] v X X
Our method (N-Cloth) v 4 4

cloth or the obstacles in the scene. Most previous methods [PLP20;
BME20a; SOC19; BME20b] are based on the SMPL model,
which limits results to the SMPL human model. Other meth-
ods [GCS*19; GRH*12; WSEM19] are limited to human models
represented using joints. Although they can handle the non-SMPL
human body, they are unable to process other obstacles such as a
bunny. [HDDN19] is a complimentary method that uses PCA and
subspace-only physics simulation. However, it recurrently inputs
the previous prediction and accumulates errors. This makes the pre-
dicted cloth mesh appear flat with fewer wrinkles. Our mesh-based
method overcomes these limitations and can handle multiple, dis-
joint obstacles. Our predictions have no accumulation errors and
can retain fine details like wrinkles and folds.

5.2. Qualitative Comparisons

We perform a detailed comparison of our method with Tailor-
Net [PLP20], as the code and dataset are easily available. In Fig. 12,
we use the same dataset as TailorNet for network training. We com-
pare the accuracy of the predicted cloth meshes generated by our
method and TailorNet. We compute the difference maps for each
mesh by comparing the results with the ground truth mesh. We ob-
serve that our method predicts similar output meshes with richer
details. In addition, our method produces fewer vertex errors com-
pared to the ground truth than TailorNet. In benchmarks with many
or detailed wrinkles, we observe that our network generates bet-
ter results than TailorNet, as shown in Fig. 13. For example, our
prediction of the cloth mesh has more wrinkles in the belly and
shoulder areas, while TailorNet’s prediction is flatter.

© 2022 The Author(s)
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Figure 12: We compare the performance of our approach with TailorNet [PLP20] on unseen poses. We use the same dataset, available as
part of TailorNet for network training. We compare the accuracy of predicted meshes generated using TailorNet and those generated using
our method. We also compare the accuracy with the ground truth. We highlight the vertex error for each learning-based method by computing
the difference maps with the ground truth mesh. We get results similar to TailorNet’s, but with richer details.
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Figure 13: Our method generates better results than TailorNet in
terms of preserving wrinkles, as shown in the circled areas.

5.3. Quantitative Comparisons

We use the following error metrics for quantitative comparison be-
tween our mesh-based network and TailorNet:

1 i
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yp) )’G )
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where x} is the position of vertex i of the predicted mesh P. xiG is
the position of its corresponding vertex on the ground truth mesh
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G. yip and yé; are the normal vector at xip and xic, respectively. N is
the number of vertices of the cloth mesh. A is the Laplace operator.

Table 2 shows the error mean and variance of our method and the
predictions of Tailornet with ground truth for all test frames. The
statistical value of the prediction error of our method is significantly
lower than that of TailorNet.

Table 2: We compare the mean and standard deviations of mesh
errors for our method and TailorNet on test frames based on the
ground truth.

Evaluation TailorNet  Our Method
mean Ey;;(m)  7.90E-3 2.45E-3
std Eyjgr (M) 2.74E-3 0.54E-3
mean &4, 1.94E-2 6.97E-3
std Epqp 4.44E-3 1.20E-3
mean Enorm(®) 10.81 4.40
std Enorm(°) 2.45 1.02

5.4. Performance Analysis

‘We implement each layer of the cloth encoder and obstacle encoder
with MLP as the baseline. The decoder in our network uses MLP,
so we keep it invariable. Figure 15 shows the GPU memory usage
when our network and baseline predict a single mesh. Our network
occupies less GPU memory when making predictions. In experi-
ments, it is revealed that more GPU memory is required for base-
line training, which makes it impossible to train meshes with higher
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Figure 14: We discard the connections in the decoder and concate-
nate the cloth vector and obstacle vector in latent space as variants.
The results of these variants and our network are shown above.
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Figure 15: We implement the cloth encoder and obstacle encoder
with MLP as the baseline. We compare the GPU memory of our
network and the baseline while predicting a single cloth mesh at
runtime.

resolutions. However, our method is able to train cloth meshes with
more than 100k triangles.

We have compared the running time of our method with a GPU-
based physics-based simulator called I-Cloth [TWL*18], as shown
in Figure 16. Compared to I-Cloth, our network achieves an order
of magnitude performance improvement. Furthermore, the running
time of our method does not change much with a higher resolution
mesh. The overall accuracy and visual fidelity of the cloth mesh
generated by our method are similar to those of I-Cloth.

We observe that our approach can obtain an interactive frame
rate (about 30 — 45 fps on an NVIDIA GeForce RTX 3090 GPU).
Compared with TailorNet, our method has no obvious advantage
in running time. This is because the input of the SMPL model is
a small number of parameters, while our method inputs a mesh
with all the vertex and edge information. The human mesh provided
by TailorNet has 55k triangles, which will increase the calculation
time of our network. In practice, we concentrate more on the de-

S
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0.03

0.02
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Figure 16: Compared to a GPU-based physics-based simulator,
I-Cloth [TWL*18] (bottom), our method (top) results in faster per-
formances (5 — 8X faster). We highlight the performance for cloth
meshes with 19K and 100K triangles. The performance of our
method is almost the same for a high-resolution mesh.

formation of the cloth mesh. Therefore, we can simplify the human
body mesh, which will accelerate our network.

5.5. Ablation Experiments

We implement a series of ablation experiments to verify the effec-
tiveness of our network architecture. We remove the connections of
each layer of the obstacle encoder in the decoder as a variant of our
network. Furthermore, we discard the fusion network and use sim-
ple concatenation in the latent space as another variant. Figure 14
shows the predictions of our network and its two variants. Our net-
work architecture plays an indispensable role in the convergence of
results.

6. Conclusion, Limitations, and Future Work

We present a novel mesh-based network for interactive 3D cloth
prediction. Our approach is general and does not make any assump-
tion about the topology or connectivity of the cloth or the obstacles
in the scene. Our approach can handle complex cloth simulation
benchmarks and predict the deformed 3D mesh at about 30 — 45
fps on a commodity mesh. To the best of our knowledge, ours is
the first general learning-based method that can handle arbitrary
obstacle meshes and many types of cloths.

Limitations: Our approach has some limitations. It requires con-
siderable time to generate the training data, and it can take a
few days to generate synthetic training datasets using a physics-
based simulator. Furthermore, our approach assumes that the topol-
ogy and connectivity of the cloth mesh is fixed. If the topology
changes, we need to repeat the training step. This approach may
work well for human models used for virtual try-on or dressing,
as they have fixed topologies. Like prior learning-based methods,
we cannot provide any rigorous guarantees in terms of absolute
accuracy or collisions in our predicted mesh. The effectiveness of
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our self-penetration is limited and may introduce undesirable new
collisions. The computation of self-penetration depends on the dis-
cretization of the cloth mesh. We propose to different loss func-
tions in the future to handle such self-penetrations. Or we can
combine our approach with learning-based methods for collision
handling [TPM21; TPS*21]. Moreover, compared with the SMPL
model which only uses a few parameters, our network performs
feature extraction and fusion on the complete mesh. This results in
slower performance of our network, though we observe interactive
performance of 30-45fps.

There are many avenues to improve the performance in the fu-
ture. Our current approaches for synthetic data generation, training,
and runtime prediction are not optimized, and it is therefore possi-
ble to improve the performance. We would like to incorporate bet-
ter geometric learning-based methods that can account for highly
dynamic obstacles as well as small changes in mesh topology or
connectivity. It will be interesting to use visual knowledge [Pan21]
for cloth deformation prediction. Finally, we would like to integrate
our approach with different applications corresponding to virtual
try-on or gaming and evaluate the performance.
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