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We report additional results that were not included in the main
manuscript. Further, we describe with more details the architectures
involved in the proposed method.

1. Additional results

In this section, we collect additional results for the experiments and
applications described in the main manuscript.

Additional results on geometry reconstruction In Fig. 1, we re-
port additional examples of shape-from-spectrum recovery. These
qualitative results confirm that we outperform [MRC*19] when ap-
plied to partial shapes.

Associativity with more than 3 partial shapes In Fig. 2 we show
an example of iterative spectral union, with four different partial
shapes. Deeper iterative unions are more difficult since the predic-
tion error in each step is amplified by the subsequent steps.

Additional results on the horse class We report additional results
on the horse class. In these experiments, the spectral union operator
is pre-trained on humans and fine-tuned to horses from the TOSCA
dataset. Then, a region localization model is trained specifically
for horses, slightly modified to account for the different number of
vertices in the template.

In Figure 3 we report qualitative results of region localization
on horses; in Figure 4 we show associativity examples; in Figure 5
we present qualitative results on horses with different triangulation,
vertex density and style with respect to the horses used in the train-
ing phase; in Figure 6 we show that our method is able to generalize
to non-isometric but similar enough deformations.

Additional results on Point clouds To show the flexibility of our
approach we consider a further class of shapes composed by air-
planes from [CFG*15] represented as point clouds. We report in
Figure 7 some qualitative results on the region localization task
with this class. We also report additional results on headphones
[MZC*19] in Figure 8. These results show that our model general-
izes to different source geometries, as long as the class shape does
not change.
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2. Architecture

In this section, we describe in detail the proposed neural architec-
ture. Note that since surface area directly affects the magnitude of
the eigenvalues, at test time the shapes are normalized to have the
same area of the shapes seen at training time.
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Figure 1: Comparison of the reconstruction obtained by running
the state-of-the-art method of [MRC*19] on the green shape, yield-
ing the fourth shape, and the reconstruction obtained from our pre-
dicted full spectrum, yielding the last shape.
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2.1. Spectral union model

In Fig. 9 we show the detailed architecture of the spectral union
model.

Hyperparameters The dimensionality of each embedding is 32.
T 4 has 8 heads, 6 layers, the dimensionality of the internal feed-
forward layer is 64 and the dropout is 0.1. T g has 8 heads, 3 layers,
the dimensionality of the feed-forward is 32 and the dropout is 0.1.
Thus, p reduces the embedding dimensionality from 32 to 1.

Training The model is trained until convergence. The training ran-
domly augments online each input independently. The batch size is
32. The optimizer used is Adam with learning rate of 2e—4 and
weight decay le—5. The learning rate changes according to co-
sine annealing with warm restarts scheduler and it restarts every
10 epochs, doubling the number of epochs between restarts at each
restart.

2.2. Region Localization model

In Fig. 10 we show the detailed architecture of the region localiza-
tion model for humans.

Hyperparameters The dense layers increase the dimensionality
of the input sequence from 20 to 6890, for humans, i.e. the number
of vertices in the fixed template. In particular, the layers apply the
following transformations 20 — 1300 — 2600 — 3900 — 5200 —
6890. The dropout is always set to p = 0.5.

Training The model is trained to localize the region from both the
predicted union eigenvalues and all the ground-truth eigenvalues,
to which we add random noise. The model is early stopped, mon-
itoring the IoU metric on a validation set. The batch size is 32.
The optimizer used is Adam with learning rate of Se—5 and weight
decay le—6. The scheduler adopted is again the cosine annealing
with warm restarts, with the same hyperparameters.
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Figure 2: Example of associativity with 4 partial shapes.

2.3. Data processing for point clouds

The aereoplanes from [CFG*15] and headphones from [MZC*19]
are point clouds with semantic segmentation.

We performed some data processing to: (1) extract shapes with
only given segments (e.g., discarding earphones or strange head-
phones), (2) extract random partialities from each shape and (3)
find the segment-level matching between each shape and a fixed
template for the region localization task. We did this by defining
the graph of the segments for each shape, then searching for sub-
graphs with determined properties for (2) and solving the graph
isomorphism against the template for (3).

We obtained 75 headphones and 964 aereoplanes for the training
set, we extract random pairs of partialities from each shape.
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Figure 3: Region localization on horses. We predict the indicator function that describes the union of two partial shapes, given their
eigenvalues.
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Figure 4: Example of associativity. 1 n

Figure 5: Region localization on different horses. The partial
shapes have a different triangulation, vertex density and style.
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Figure 6: Region localization on a camel, the model is trained on horses.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



L. Moschella et al. / Supplementary Materials Learning Spectral Unions of Partial Deformable 3D Shapes

800
°® 200
0 L
600 . o Lot
=4 . S
=l . = ’ag'
Z a0 .o Z 100 oo ?
& ° ee® I [
000 .o vee & .
a 0o a .
geodec®® 00 ®
opeec L
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

Eigenvalue Index

ue

Eigenval
&=
g
s

Eigenvalue Index

0 2 4 6 8 10 12 14

16

Eigenvalue Index

18 20

0 2 4 6 8 10 12 14 16
Eigenvalue Index

18 20

200

Eigenvalue

1

alue

12eNvVi

Ei

Eigenvalue

Eigenvalue

2
2
3

=

200

.0
OfeSee®

Eigenvalue

150

100

4

6 8 10 12 14 16 18 20

Eigenvalue Index

Eigenvalue

0 2 4 6 8 10 12 14 16 18 20
Eigenvalue Index

600

400

200

0 2
500
,000
500

Ofe®

0 2

600

5]
38

o
2
3

400

200

.o
.
.o
.
.
.
.o
. eeve®
....
goese
1 6 8 10 12 14 16 18 20

Eigenvalue Index

0 2 4 6 s 10 12 14 16
Eigenvalue Index

18 20

100

50

L]
.
olevee®

6 & 10 12 14 16
Eigenvalue Index

18 20

Eigenvalue

0 2 4 6 & 10 12 14 16
Eigenvalue Index

18 20

e

1012 14 16 18 20
Eigenvalue Index

0 2 4 6 8§ 10 12 14 16 18 20
Eigenvalue Index

Figure 7: Region localization on aereoplanes. The model is trained and tested on point clouds.
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Figure 8: Region localization on headphones, trained and tested on point clouds. In the examples on the right column, despite significant
changes in the geometry of the partialities, the model localizes the same correct region.
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Figure 9: Detailed architecture of the spectral union operator.
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Figure 10: Detailed architecture of the region localization MLP for humans.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



