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Figure 1: A user bidirectionally edits a model of a bench. They modify the program to change the sharp backrest (red) to a smooth one (green).
Then, the user intends to rapidly change the bench into a chair. To accomplish this the user performs a geometric edit (orange), dragging
the top part of the leg up and to the left, while also fixing in place vertices on the opposite leg. Our system optimizes program parameters
to achieve this edit according to a variety of energy minimization heuristics (Section 3.3); returning distinct options for the user to select
between. Each option changes between 8 to 12 parameters (top) from the original program to satisfy the edit.

Abstract

Modern CAD tools represent 3D designs not only as geometry, but also as a program composed of geometric operations,
each of which depends on a set of parameters. Program representations enable meaningful and controlled shape variations
via parameter changes. However, achieving desired modifications solely through parameter editing is challenging when CAD
models have not been explicitly authored to expose select degrees of freedom in advance. We introduce a novel bidirectional
editing system for 3D CAD programs. In addition to editing the CAD program, users can directly manipulate 3D geometry and
our system infers parameter updates to keep both representations in sync. We formulate inverse edits as a set of constrained
optimization objectives, returning plausible updates to program parameters that both match user intent and maintain program
validity. Our approach implements an automatically differentiable domain-specific language for CAD programs, providing
derivatives for this optimization to be performed quickly on any expressed program. Our system enables rapid, interactive
exploration of a constrained 3D design space by allowing users to manipulate the program and geometry interchangeably
during design iteration. While our approach is not designed to optimize across changes in geometric topology, we show it is
expressive and performant enough for users to produce a diverse set of design variants, even when the CAD program contains

a relatively large number of parameters.
CCS Concepts

* Computing methodologies — Shape modeling; Graphics systems and interfaces;
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1. Introduction

Parametric Computer-Aided Design (CAD) models are ubiquitous
in engineering. Modern CAD tools (Solidworks, Fusion 360, On-
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shape, Inventor) represent part geometry using a sequence of pa-
rameterized operations, which are executed to produce a 3D shape.
Such sequences can be thought of as programs, which offer a form
of structured editing: engineers can change operation parameters
and the geometry will update without a user having to manually
model each component of the output. This is especially powerful
when automatically generating repetitive model components such
as grids or patterns, and as a module of reuse between different ge-
ometric designs. However, manipulating models solely through pa-
rameter changes is often cumbersome. Editing a model to achieve a
specific design change might require changing many different op-
eration parameters in concert, and real-world manipulations can in-
volve manipulating tens of parameters in a model made up of hun-
dreds of distinct operations.

In contrast, directly manipulating geometry by moving vertices
or faces in 3D allows users to specify their desired output with-
out having to translate design intent into a given model’s parame-
ter space. The trade-off is that direct manipulation is often impre-
cise and requires the user to directly model all aspects of a change,
which can be both tedious and error-prone, resulting in a model
which is inconsistent or physically inaccurate. However, direct ma-
nipulation does offer a number of advantages: feedback is immedi-
ate, changes are limited to what the user manipulates, and it is clear
how to edit any subsection of the model.

Neither editing paradigm is suitable for all manipulations; the
right tool for the job depends on the edit itself, which cannot be
known in advance. The primary contribution of this work is merg-
ing the two paradigms. We extend program-based CAD modeling
to allow bidirectional editing: users can either adjust program op-
erations, or directly manipulate a chosen subset of the output ge-
ometry and obtain corresponding operation parameters. As a re-
sult, CAD users and tools can leverage whichever representation
is more convenient for a given manipulation. To interleave direct
and program edits, it is critical that direct manipulations preserve
program structure. Accordingly, in this work we focus on resolving
direct manipulations in terms of model parameter changes, without
changing program structure, and focus on interactive performance
to allow for rapid iterations and geometric adjustments.

The fundamental challenge in designing this bidirectional inter-
face is the gap between tens or hundreds of parameters exposed
when composing constructive CAD operations into programs, and
the handful of degrees of freedom that users may wish to manip-
ulate during a given edit. While prior work has relied on labo-
rious manual specification of these degrees of freedom and their
valid ranges [SXZ*17; MB21] our goal is to enable direct editing
through optimization over the constructive parameters themselves.
When parameter interdependencies and constraints have not been
manually exposed by an expert, there tend to be two main prob-
lems: ambiguity, as many plausible solutions can match a direct
geometric edit, and safety, as many other parameter combinations
result in invalid geometry or execution failure.

To address ambiguity, we formulate the inverse editing problem
as a series of constrained optimizations over a set of heuristics, and
provide a suggestive interface for selecting the desired solution. In-
teractive optimization times are challenging to achieve due to the
dimensionality of the parameter space and the need to solve many

optimization problems in parallel, one for each heuristic. To solve
this optimization quickly, we developed a Domain-Specific Lan-
guage (DSL) for CAD models that is automatically differentiable,
aiming to express many common geometric operations while being
able to provide derivatives for any expressible program. We limit
our language to operators which avoid discontinuities and cannot
fail to produce a result.

Since naively calling automatically differentiated CAD ker-
nels is impractical in an editing context due to performance con-
cerns [Ban19], our solution evaluates model code to produce a com-
putation graph that does not refer to the underlying CAD kernel.
This in turn enables optimization on the generated code without
differentiating the underlying engine, or incurring any of its extra
overheads while optimizing (Section 4).

In summary, our primary contribution is a system for bidirec-
tional editing of 3D CAD models with interactive performance.
We demonstrate how such a system can represent CAD models us-
ing a domain-specific language, and describe our solutions to the
specific engineering concerns that must be addressed to make it us-
able in practice. We evaluate our system’s editing capability and
performance on a series of case study models, demonstrating its ef-
ficacy at finding viable parameter combinations to satisfy edits on
models with tens of parameters and thousands of vertices.

2. Background and Related Work

Editing program-based models is of interest to the Computer
Graphics, CAD, and Programming Languages communities. Each
of these fields have contributed their own ideas and work on the
problem, and our work draws inspiration from all three.

2.1. Editing CAD Models

Many modern CAD tools (Solidworks, Fusion 360, Inventor, On-
shape) use programs in the form of a history of operations that are
executed to construct a model. These are called history-based sys-
tems. To address the challenges of editing such CAD programs,
some of these systems incorporate direct edits (e.g. moving a face)
by appending operations to the history. Adding operations in this
manner is limited to predefined manipulations, and changes the
structure of the CAD program and types of shape variations it can
produce — they may break existing symmetries, and force users
to consider the appended operations when making changes to the
model.

Another approach is to ignore the CAD program entirely and
directly edit the geometry, without preserving any notion of his-
tory (e.g. SpaceClaim, KeyCreator, and Rhino). This history-free
approach loses the benefits provided by the program representa-
tion [Alb18; Yar13]. Siemen’s Synchronous Technology takes a hy-
brid approach and integrate history-free geometric editing on top of
a program/history [Siel7]. However, by partially disregarding the
history, the CAD model can no longer be expressed or analyzed as
a single program that defines semantically meaningful shape vari-
ations [Str16; Brul4]. In practice, this means that after a model is
manipulated directly, existing constraints (such as symmetry and
spacing) may be violated, and unexpected breakages may occur
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Figure 2: Attempting to thicken the camera mount uniformly by
changing a single parameter (middle left) loses the overall struc-
ture of the model as the thickness of the base differs from the thick-
ness of the legs. If we instead modify the chamfer radius (middle
right) the program does even run to completion, as it would result in
non-manifold geometry. To perform thickening, our tool automati-
cally updates multiple parameters in concert to achieve the desired
properties (bottom) while staying within the execution constraints.
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when the part is later updated parametrically and a manipulation
cannot be reconciled.

Unlike these methods, our bidirectional editing approach pre-
serves the history as an explicit program and allows the user to
seamlessly switch between editing the program structure and pa-
rameters, and directly editing its geometry. Procedural modeling as
done in software such as Houdini [Sid] and Grasshopper [MA] al-
ready operates directly at the program level, and is popular in 3D
work outside of CAD. Procedural models rely on users to explicitly
expose parameters to edit the generation of scene geometry. Our
work can be seen as a way to augment these tools, which already
contain the requisite information, with bidirectional functionality.

2.2. Program Editing

While prior work in programming languages has investigated solu-
tions to bi-directional program editing [HSST11] in domains like
layout design and SVG, our method differs in how we address am-
biguity that results from a user manipulation.

Such methods eliminate ambiguities by either restricting user in-
teractions [HBR14] or pre-defining which parameters a manipula-
tion will affect [CHSA16; HLC19]. Our method instead aims to
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expose more to the user by allowing arbitrary manipulations and
returning a variety of different solutions in the case of ambiguity.

There has also been increased effort to reconstruct CAD pro-
grams from existing geometry [DIP*18; NWP*18; WPL*20], in-
fer programs to construct assemblies [JBX*20], infer higher-level
operations from those programs [JCG*21], and re-write CAD pro-
grams to expose meaningful parameters [NWA*20]. While none of
these methods propose solutions to interactive manipulation, they
are critical for enabling wide application of our work: can be modi-
fied to generate and refine a CAD program suitable for input to our
system, growing the potential application of bidirectional editing
beyond human-written programs.

2.3. Procedural Model Editing

Shape-generating programs are known in the graphics community
as procedural models [WWSR03; MWH*06; LWWO08; BFHO5].
Controlling procedural models, however, is a notoriously challeng-
ing task [STBB14]. Many approaches on inverse procedural model-
ing target program generation from input specifications [TLL*11;
VGA*12; GJB*20], but do not allow direct editing. While there
is some work on local editing from program analysis [JPCS18;
LSL*19], none of these methods allow users to control geometric
edits directly while maintaining a working program. In concurrent
work to ours, Gaillard et al [GKG*22] enable direct editing at the
granularity of objects, and directly tackle exploring ambiguous ed-
its made possible in part by a fast objective function. In contrast,
our work enables editing at a vertex granularity while relying on
heuristics to address ambiguity.

Of particular note is the DAG Amendment method described by
Michel et al [MB21], which also allows inverse control of procedu-
ral models generated by a DAG of operations, using a brush inter-
action to address edit ambiguity. This work handles operations that
can change the output mesh topology as long as an unambiguous
mapping from output to input UV coordinates is maintained. Such
generality is achieved by performing differentiation using finite dif-
ferences, which is performant for models that have been designed
to expose a small set of degrees of freedom in advance, and handles
a wide variety of operations for which it is unclear how to differen-
tiate automatically.

In contrast, our work pursues the opposite tradeoff: we do not
handle operations that can result in topological changes, and in-
stead we apply fully automatic differentiation, allowing our ap-
proach to scale up to models of tens or hundreds of parameters
where finite differences would be prohibitively expensive. This ef-
ficiency allows us to perform a full non-linear optimization interac-
tively when resolving edits. As a result, our work can handle mod-
els where parameters have not been manually tuned for editing,
models where the valid ranges for parameters vary as functions of
other parameters, and edit specifications where some model geom-
etry can be fixed in place for an edit duration while multiple other
parts are changed.

2.4. Structure-Driven Geometry Editing

There is a large body of work on structure-preserving geo-
metric edits using an analyze-and-edit approach to constrain
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the shape without any underlying program [MWZ*14]. Previ-
ous work has analyzed salient features [KSSCO08], feature curves
[GSMCO09], relations between shape parts [ZFC*11], replicated
patterns [BWKS11; BWSK12], and manufacturability [SSL*14] as
methods of describing and preserving shape structure.

Our work builds upon these ideas to define inverse editing as
an optimization. However, unlike previous approaches, our method
extends geometric analysis with constraints and objectives encoded
through a program construction. We show how encoding programs
in our differentiable DSL can produce improved results compared
to applying traditional geometric optimization followed by param-
eter synchronization (see Figure 5).

Furthermore, instead of a single optimization, our system allows
users to navigate a gallery of results that are generated by prioritiz-
ing different geometric properties in the optimization goals.

2.5. Differentiable Programming

Recent years have seen an explosion in the application of differ-
entiable programming techniques in Machine Learning, particu-
larly through automatic differentiation [GWO08]. Packages such as
PyTorch [PGM*19] provide an interface by which a computation
graph is automatically constructed by executing user code, and
derivative functions are automatically derived from this graph. Oth-
ers such as JAX [FJL18] and XLA [Ten20] go a step further, and
enable compilation of user functions and their automatic derivatives
from high-level dynamic languages into native code for fast opti-
mization and training. Our work takes a similar strategy to these
tools, tailored towards the specific optimization problems in our
domain. Existing work using automatic differentiation in computer
graphics applications focuses on formulating or recreating tradi-
tional graphics pipelines (e.g. rasterization, rendering) as differen-
tiable functions [LLGR20; NVZJ19], and using it them to solve
inverse problems on procedural models [SLH*20]. Others demon-
strate applications that arise from operating directly on structured
representations such as vectors or scene primitives, at a higher level
than pixel data [RGF*20]. Other work performs finite-element op-
timization directly on parametric CAD models [HSK*19] by pro-
viding differentiable physical simulations. Our work extends both
of these lines of work, providing a language composed of differ-
entiable operators that can express a wide range of CAD models,
and derivative information for any program in the language. As a
result we enable optimization directly on a the structured program
representation during the model design and editing loop.

3. Interactive Editing System

Our goal is to enable interactive bidirectional editing of a CAD pro-
gram and the 3D geometry it generates. When a user edits the pro-
gram, our system interprets the edited program to generate the cor-
responding updated geometry. When the user directly edits the ge-
ometry by manipulating vertices, edges, or faces, our system finds
sets of updated parameters such that the program, when executed
with these parameters, produces geometry where the manipulated
elements are as close as possible to the user’s edit.

To accomplish this, we (1) specify 3D models as programs in a
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Figure 3: Pipeline. A program is interpreted to create mesh geome-
try and a corresponding computation graph. We extract derivatives
from this graph and compile a function F from parameters to ver-
tices and its derivative for use in optimization with several different
energy functions. Users can then edit the mesh, and receive updated
sets of program parameters P* corresponding to each energy. Pa-
rameters are then used to compute updated mesh vertex positions
F(P*) matching the user edit. Users choose an option and can con-
tinue editing geometrically, as well as update the program with the
found parameters.

CAD language designed to be differentiable; (2) interpret this lan-
guage to generate both geometry as well as a computation graph
representation of the program, which is then automatically differ-
entiated and compiled into native code; (3) optimize over program
parameters using a set of heuristic objectives that take into account
both program and geometric information, serving as proxies for
properties ranging from appearance to physical performance. This
pipeline is illustrated in Figure 3.

3.1. Language Design

Our language makes a few key design choices motivated by the
domain and specific problem requirements of bidirectional editing.

Explicit Geometric Representation. It is common in the CAD do-
main for users to reference features of previously constructed ge-
ometry, such as edges or faces. This is often necessary in order to
concisely describe complex CAD models with a small number of
parameters. In our system, we use a polygonal mesh representation,
and users can use vertex positions as parameters in subsequent op-
erations, and reference their values when defining constraints. Re-
lying on an explicit mesh representation makes it easier to define a
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wide variety of optimization objectives that refer to explicit features
of output geometry, such as minimizing the distance to vertices ma-
nipulated by a user or minimizing the deformation from the starting
mesh.

Static Model Topology. However, such an explicit representation
comes at a cost. Since we allow user programs to refer directly to
output vertices by index, in order to provide differentiability during
inverse editing, we must guarantee that a given operation returns the
same number of vertices for all parameter combinations — if this
number were allowed to change during optimization, it would be
unclear which vertices are being referred to by an index reference.
The same logic applies to the order of an operation’s returned ver-
tices. Both of these cases are discrete discontinuities in the model,
and it is not clear how to optimize such a program without differen-
tiating repeatedly during each optimization step. We therefore only
allow topological changes to be performed on the program, and not
inferred through geometric manipulations.

Our DSL can include any operation which creates, modifies, or
removes a statically known amount of vertices and faces. Positions
of vertices that are created or modified must be differentiable func-
tions of parameters and prior vertex positions. We guarantee that
any point in the parameter space of any program in our language is
differentiable. Degenerate or zero-size mesh elements do not pose
any issue in this framework, and are thus handled robustly. Working
within the limitations of this static topology allows us to compile
energy functions ahead of time, drastically increasing performance.

Constraints. We also allow direct specification of numerical in-
equality constraints to further limit the parameter space consid-
ered during optimization. Constraints are differentiable functions
of model parameters whose result must be kept greater than zero
(Section 3.2). Constraints are imposed automatically for some op-
erations, and we expose a mechanism for users to further impose
constraints. These constraints are treated as hard requirements, and
any result returned by our optimization necessarily respects them.
Constraints satisfy three key goals:

Firstly, we would like to avoid parameter changes that lead to
non-manifold geometry, which would cause objective functions
that are defined on properties such as volume to return inaccurate
results. Some constraints to prevent this are automatically gener-
ated by the interpreter as part of operation definitions, as we de-
scribe in Section 3.2. While not all non-manifold cases can be pre-
vented, applying the automatically-generated constraints rules out
the optimization procedure from returning a large class of undesir-
able parameter combinations by default.

Secondly, users can apply constraints in order to refine the al-
lowable variations in the program; by eliminating self-intersections
or other undesirable model variations if these come up in practice.

Using constraints, users can impose additional design objectives
such as maintaining relative proportions, aspect ratios, or distances
between mesh elements; without changing the structure of their
program to enforce these properties by construction. In contrast to
other work such as ThingLab [Bor81], users must still directly con-
struct and specify numerical quantities to bound, and the system
does not allow equality constraints or deal with constraint conflicts,
nor will it prevent the user manually changing parameters in a way
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that does not satisfy the constraints. Constraints can refer to the
positions of vertices in the model, and thus can re-use the compu-
tations made in the construction of the model itself.

3.2. Interpretation and Differentiation

Computation Graph. When executing our CAD DSL program
to generate output geometry, our algorithm operates as an inter-
preter. During the execution of each program operation, in addition
to computing the result of the operation, our interpreter also keeps
track of the individual computations that are performed, maintain-
ing a directed computation graph G (Figure 4).

Each node in G is either a constant, a variable, or a differentiable
operator f, (e.g. +, », sin, pow). Each node tracks the tempo-
rary value resulting from the execution of its operator, and each
graph edge represents a use of this value. A vertex coordinate is
fully encoded by marking a node in the graph as representing the
computation for that coordinate.

Each CAD operation in our program (e.g. Box, Chamfer, Ex—
trude) adds nodes to this graph, often directly referencing the val-
ues of vertices output by previous operations as the basis for their
computation, as depicted in Figure 4. Each operation also modi-
fies the markers corresponding to vertices, by either adding addi-
tional markers for new vertices, moving markers to new nodes to
represent vertex transformations, or removing markers (e.g. V3 of
Chamfer in Figure 4) to indicate that, while a computation may
still be present and referred to, it no longer corresponds to a vertex.

Note that our method only tracks vertex positions, and does not
deal with aspects of mesh topology such as edges and faces. These
are created and tracked by an underlying CAD system. This process
is described in more detail in Section 4. For the purpose of inverse
editing this topology is static, and we can fully describe parameter
updates by adjusting vertex positions.

Enforcing Constraints. Along with computing and tracing vertex
positions, for certain operations our interpreter automatically intro-
duces constraints on the parameters as part of the operation defini-
tion. For example, the length parameter of an Ext rude operation
is constrained to always remain larger than some positive epsilon,
ensuring geometry is extruded outwards along a face’s normal.
Accordingly, our interpreter encodes the constraint as the value
length — €, which is added to the graph, and marked as a constraint
in a fashion identical to vertex coordinates. Similar constraints are
generated for Chamfer, preventing the radius from exceeding the
length of either edge being chamfered (g3, g3 in Figure 4).

During optimization, we require nodes marked as constraints to
remain positive. As a result, this expression implicitly represents a
constraint of the form g(Py,..., P;) > 0. This can refer to vertex
coordinates, since every graph node is ultimately a function of the
parameters.

In addition to automatically-applied constraints, we expose a
Clamp operation to the program author, which can be used to set
upper and lower bounds on the allowed values of an arbitrary pa-
rameter expression, for example, bounding the maximum aspect ra-
tio for the rectangle shown in Figure 4, or bounding the range of a
vertex coordinate. When executing Clamp(a., f(Py, ..., P),B), we
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Figure 4: To construct the computation graph G for this 2D version of our camera mount program (left), we trace the operations in our
DSL (e.g. Box, Clamp, Chamfer) to generate expressions that create and modify vertex positions (e.g. Vi, V,, ...) based on the operation
parameters (middle). We encode these expressions in the computation graph G (right). Each operation references previously constructed
geometry (orange) and imposes constraints (e.g. g1, g2)- We note that, for concision, the nodes in the Chamfer and Ext rude operations
are operating on vertex values, rather than scalars. They can be treated as pairwise operations on the constituent elements.

generate constraints f(Py, ..., Pr) —o>0and B— f(Py, ..., B) >
0, with f representing the parameter expression whose value we
are bounding, and a, B representing expressions for lower and up-
per bounds on f, respectively.

Differentiation and Compilation. G implicitly represents a func-
tion F from our program parameters P to the positions of output
vertices V. We can evaluate F by updating the values of the variable
nodes, traversing G to recompute the values for all nodes whose
values have been invalidated as a result of a change in an upstream
node, and then visiting all of the marked nodes to extract the up-
dated vertex coordinates. Once G is constructed, we extract the gra-
dient VF through reverse-mode automatic differentiation [Mar19],
giving us the gradient vector of program parameters with respect to
each vertex coordinate. We can extract the parameter gradient with
respect to each constraint as well, which is critical for performant
and stable optimization.

As a final step in our interpretation pipeline, we compile F, V.F,
the constraint functions, and their respective gradients to an explicit
native code representation, which is passed off to an optimizing
compiler. As a result, we can execute F and VF several orders of

magnitude more quickly than by traversing G, as all of the over-
head of the graph representation has been compiled away. Compi-
lation is necessary to maintain interactivity during program edit-
ing and synchronization, which evaluates 7 composed with each
objective function (Section 3.3) repeatedly. Compilation can take
significantly more time than interpretation, so instead of compil-
ing after every program change, we implement this as a separate
step that a user performs in order to begin synchronizing the model
with geometric edits. Consecutive synchronization steps can re-use
a compiled representation until the program is changed, and users
only ever need to compile before making a geometric edit immedi-
ately after a program edit.

3.3. Optimization

When users directly edit geometry, they adjust the positions of a set
of vertices V' CV. Unless they manipulate all of the vertices, this is
a partial specification: the user is providing no information about
the vertices v; ¢ V. There are two primary challenges in solving
for the program parameters P, given this edit:

e The edit may not be feasible, if there does not exist any P such
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that the specification above is met while also satisfying the pro-
gram constraints g, ... , k-

e There may be many sets of parameters P that satisfy the specifi-
cation and it is ambiguous which one should be returned.

Our solution casts the problem as a constrained optimization. We
address feasibility by formulating how close a set of parameters P
is to satisfying a vertex edit as a continuous energy:

Ea(P)= Y. |Vi(P) =%l ()
v;ev’

where V; € R? denotes the spatial position of vertex v; after the
user’s edit and V;(P) denotes the position of v; when the program is
executed with parameters P.

However, the challenge of ambiguity remains. Optimization of-
fers a solution here too: we formulate a number of heuristic objec-
tives that can be combined with the edit energy to preserve char-
acteristics of the model while adhering to the user manipulation.
While our heuristics must be defined on the parameters P, by exe-
cuting and differentiating 7 (P) we can define heuristic notions of
change over vertex positions and optimize them through parameter
changes. This ability to define change over geometry allows us to
use any of a large set of well understood heuristics with our system
as long as they are differentiable.

We describe a few heuristics included in our system and the char-
acteristics they are designed to preserve. As not all objectives will
be useful on all classes of models, we allow users to select a subset
of the following objectives to apply. Additionally, we demonstrate
that while the heuristics do not comprise a fully automatic solu-
tion to the ambiguity issue, they are capable of providing diverse
solutions (Section 5), allowing users to explore the solution space.

3.3.1. Geometric Objectives

One category of heuristic is based on the assumption that the geo-
metric features that are not manipulated should change as little as
possible. One method for minimizing geometric change is to mini-
mize the change in positions of the vertices that were not manipu-
lated by the user, namely, v; ¢ V. The corresponding energy term
for this minimization is

Ewx(P)= ), Wux(v)[|Vi(P) = Vi(Po)l[s )
viEVA\V/
W () = =201V 3)

B ZM,EV\V’ Au;, V')

where Py denotes the original program parameters prior to opti-
mization. We weight the contribution of each vertex to the energy
by a localization term Wiyx. A(v;, V') is defined as the shortest
geodesic distance between v; and the unmanipulated position of
any vertex in V', encoding the notion that users are more likely to
want changes closer to the vertices they manipulated; as opposed
to changes in geometry further away. We use an L norm to priori-
tize sparsity, preferring to move a few vertex positions significantly
rather than moving many vertices a little, as the L, norm would
promote.
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Figure S: For the model in (a), the XY coordinates of the vertices
at the top and bottom loops are controlled by the same parameter.
When the top vertices are edited (orange), (b) shows the result of
minimizing the bi-harmonic energy on the vertex positions, disre-
garding the program. (c) is the result of using the vertex positions
in (b) as V' to minimize our edit objective (Equation 1), whereas
optimizing directly on the parameters produces the desired smooth
result (d).

Similarly, we can aim to preserve the lengths of edges in the
mesh (V,E) not modified by the user, that is, the edges ¢;; ¢ E',
where E/={eij€E VeV A vjEV’}. The corresponding energy is:

Eegg(P) =Y. Wegg(eij)Eeag(eif) “

e ¢E’
Eeagleif) = (|[Vi(P) =V, (P)||, = [ViP) = V;(Ro)[|,)*  (5)
Weag (€:7) = max(Warx (vi), Wax (v)) (6)

As in our vertex energy, we include a localization weight Wege
for each edge which is the maximum vertex weight of either of the
edge’s endpoints.

3.3.2. Deformation Objectives

A common approach in interactive surface modeling is to minimize
geometric deformation for all local areas when the user manipu-
lates a few vertices of a given mesh, potentially moving vertices far
away from the user’s edit to achieve a smoother overall transform.
‘We demonstrate the application of two well-studied heuristics from
the surface modeling literature to accomplish this for our system.
The first heuristic is that the deformation should be as smooth as
possible, which is achieved by minimizing the bi-harmonic en-
ergy [SCL*04]. The second heuristic targets a deformation that is
as-rigid-as-possible (ARAP), i.e., it penalizes non-rigid transfor-
mations of the model [SAO7]. ARAP is a physics-inspired energy
that preserves volume and local structure.

A naive approach to minimizing these energies might be to per-
form the deformation directly on the geometry, and then treat the
resulting vertex positions as V' for our edit objective. However, this
approach bypasses the constraints of the program and leads to non-
smooth results compared to optimizing directly on the parameters,
as can be seen in Figure 5.

Instead, we optimize the bi-harmonic and ARAP energies di-
rectly on program parameters, which define our degrees of freedom
for the deformation, instead of on vertex positions. For both defor-
mation energies we first triangulate the original mesh. This only
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changes the connectivity, and the vertices can still be represented
as functions of the parameters by invoking F(P). The bi-harmonic
energy is then formulated as:

Ep(P) = u(D(P)" QD(P)) o

where Q is the bi-laplacian of triangulated mesh and D(P) is the
displacement vector defined as D(P) = F(P) — F(Fp).

The ARAP energy can be similarly expressed in terms of the
program parameters:

Exear(P) =Y wi Y wis | (Vi(P) V()= Ri(Vi(Po)—V; (Po))|

i=1  jeN(i)
(®)

where A/ (i) is the one-ring neighborhood of vertex v; given
the triangulated mesh, R; is the approximate rigid transformation
in NV(i), and w;; = %(cotocij + cotf;;), where a;;, B;; are the an-
gles opposite of the mesh edge (v;,v;), and w; = 1.

Since the bi-harmonic function can be analytically differentiated
with respect to the deformation D, we can further speed up our
optimization by evaluating this analytic derivative using a forward
automatic differentiation pass for each parameter to create the Jaco-
bian matrix g—Di. The implementation of ARAP is similar, although
with the addition of the local optimization and iteration [SAQ7].
See Appendix A for more details.

3.3.3. Program-driven Objectives

Optimization towards geometric or deformation objectives pro-
duces meshes that geometrically resemble the initial mesh. How-
ever, just as with vertex positions and edge lengths, parameter val-
ues can also be a proxy for similarity, especially when parameters
correspond to semantic attributes of the model, like length, width,
or radii. We minimize change in parameter values according to an
L, energy, effectively focusing changes on a minimal subset of pro-
gram parameters. This is given by

Epar(P) =Y. Wpar(Pi) |Ipi — po,ll; )
pep
2
Ve NV’
Woar (P) = (1 - M) (10)
Ve

where py, is the initial value of parameter P; at the start of the op-
timization, and Vp, is the set of vertices whose coordinates in the
computation graph G contain P; as an ancestor. Our localization
term Wpar (P;) focuses change in the parameter space on parameters
that correspond more closely with the vertices affected by a manip-
ulation, even if that change might correspond to changes in many
vertices or edge lengths. This objective encodes the hypothesis that
a small subset of parameters in a CAD program can correspond to
a higher-level design criterion, and focusing variation to just these
parameters can result in variation along that design criterion, re-
gardless of the underlying geometry. For example, this objective
promotes uniformly widening the elements in a model according to
a thickness parameter, even if this results in geometric changes that
would be penalized by the purely geometric objectives discussed in
Section 3.3.1. An example of this can be seen in Figure 6b, where
the parameter energy results in thickening the entire dresser frame.

An outstanding issue with this approach is that one parameter
might be much more sensitive than another. Moreover, there is no
clear comparison between a parameter that controls rotation angle
and one which controls a length — the objective will penalize each
change equally, regardless of its effect on the output. In our exper-
iments, we were able to achieve reasonable results with the energy
as-is, mainly due to induced sparsity and localization. We propose
a more in-depth treatment of parameter normalization as part of
future work.

3.3.4. Performance Objectives

We also present objectives that aim to proxy some aspect of phys-
ical performance. For example, preserving volume can be used to
maintain a fabrication objective such as material usage:

Eyi(P) = (Vol(P) — Vol (Py)) (1

where Vol (P) represents the volume of the output mesh at param-
eters P. Another example is preserving the center of mass, which
may be essential for stability:

Eem(P) = ||COM(P) — COM(Py)||, + KvEvix (P) (12)

where COM is the center of mass given model parameters, and K,
is a weighting term. Such performance objectives are often inade-
quate for the goal of resolving ambiguity — while they reduce the re-
sult space by maintaining a property, there may still be many valid
parameter combinations that satisfy the edit. As a result we find it
useful to combine these terms with the other geometric energies,
particularly the localized vertex objective, using K, as 0.01 in our
implementation.

3.3.5. Composed Objective.

Each of the above objectives is then individually combined with
our edit objective (Equation 1) to create

Eobj = Eedit + YobjEobj (13)

where Yop; represents a weighting term for how strongly the opti-
mization should aim to preserve the property represented by Eyp; as
opposed to lowering the weight of the edit energy E.4;;. These two
objectives are often conflicting for geometric objectives, where no
parameter combination P that minimizes Eegj; also minimizes Eqp;;
causing our overall minimization of Ey; to deviate from satisfy-
ing the user’s edit. Exposing control of Yoy allows the user to tune
how strongly to enforce their edit against an objective. Each Egp;
is treated as a single objective for our optimization step, and the
user is given a choice of which objectives to run for a given model.
We note that it is also possible to combine multiple different Eop;
together with E.g4;; to form new ones, as done in Equation 12.

4. Implementation

Underlying CAD System. Our system is implemented as an add-
on to Blender [Com18], a popular 3D modeling package. We sup-
port all Blender primitives (Cube, Sphere, etc.) and a number of
common CAD operations, which can be composed arbitrarily. A
full list of supported operations is included in supplemental mate-
rials. Our language is embedded in Python, and uses a subset of
Python syntax, using custom interpretation of the Python AST to
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implement CAD operations and semantics for model parameters.
Our full implementation source and blender plugin can be found at
https://github.com/paquinn/bimodel_eg22.

It may seem at first that our system could be implemented by
naively applying an automatic differentiation tool, however there
are several challenges that arise. Implementing on top of an existing
CAD system implies that we interface with the underlying geomet-
ric kernel during interpretation in order to create and modify ge-
ometry. It is neither necessary nor desirable to differentiate kernel
calls, nor to execute them during optimization. It is not possible to
easily draw this distinction with off-the-shelf operator-overloading
based automatic differentiation tools, which do not work across
process boundaries and often rely on [PGM*19; FJL18] dynamic
language features to evaluate the function with custom datatypes
that cannot be passed off to a CAD package. Fully differentiat-
ing a CAD kernel as done in [BMA*18; Ban19] instead of provid-
ing a host language not only loses the safety guarantees offered by
our DSL, but also incurs a 10-40x slowdown on model execution,
which is untenable for interactive optimization.

As a result we explicitly construct our computation graph and
compilation pass, instead of relying on an existing package to per-
form automatic differentiation. As mentioned in Section 3.2, our
implementation still relies on the underlying CAD system to track
mesh topology, and we index Blender vertices along with the vertex
markers, updating those vertex coordinates directly with the results
of evaluating F(P). As a result we completely avoid re-executing
interpretation for changes that do not affect program structure.

Optimization and Performance. We minimize our objectives us-
ing the Sequential Least Squares Quadratic Programming (SLSQP)
[Kra*88] optimizer through the SciPy library [VGO*20] with first
order derivatives, primarily because of its ability to maintain con-
straints and make use of first-order information. Initial model in-
terpretation is interactive, with models spanning hundreds of lines
of code and over a thousand vertices usually interpreting in less
than a second in our tests, running Python on a 2.5GHz Intel Core
17 Processor and 16 GB available RAM (Table 1). These models are
comparable in size and complexity to complex CAD parts which
are then combined into larger assemblies.

5. Results

Our results focus on how bidirectional editing can be used to aug-
ment program editing through inverse synchronization steps. We
present two key results with respect to our optimization procedure:

e When a manipulation is ambiguous, minimizing the objectives
we have included tends to provide a diverse set of results. This
increases the likelihood that one is close to the user’s intent, and
additionally serves to indicate which areas of the model must be
further manipulated to remove ambiguity.

e When a manipulation is unambiguous, our objectives tend to
converge on extremely similar results, approximating the clos-
est point in the parameter space to that manipulation.

Together, these properties allow users to iterate quickly through a
series of geometric edits, ultimately allowing complete control over
model parameters through geometry, while maintaining the editing
benefits of a program representation.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

Model Size: Ops/ Verts Interpret Compile Sync (10) Sync (More)
Mount 221/20 0.02s 0.27s 0.08s -
Dresser 1593 /468 0.39s 2.06s 0.75s 1.58s
Chair 25347220 0.28s 2.40s 0.69s 0.88s
Castle 11435/ 1481 1.22s 9.99s 1.89s 6.14s
Slipper 14835 /269 0.45s 3.33s 0.73s 1.22s
Chandelier 19700/ 1554 1.35s 16.26s 1.02s 4.10s
Lamp 29033 /520 0.55s 14.87s 4.66s 18.34s

Table 1: Performance metrics. Operations represent arithmetic
operations as tracked by our computation graph. Sync represents
the total combined time of optimizing 6 objectives: E,gi, Evix, Eedg,
Epar, Epy, , and E,,). Note that synchronization time can vary greatly
depending on the number and position of vertices selected — we
present the mean of optimizing edits of 10 vertices over 10 random
edits each; to give a sense of relative performance. Sync (More)
contains edits that select more than 50% of the model’s vertices,
exceeding the amount found in typical edits.

5.1. Option Gallery

Figure 6 presents a model, an ambiguous manipulation, and the re-
sulting diverse set of options returned by optimization of different
objectives. Each objective can be described in terms of the geomet-
ric properties it preserves relative to the others.

The edit energy tends to move all relevant parameters in the
direction of the edit with no other optimization terms. Many pa-
rameters tend to change slightly, which can be frustrating when the
user is trying to affect only a specific area of the model. We see this
most clearly in the castle model, where the edit objective affects the
castle (Figure 6d) far away from the edit and shifts it more than any
other option.

Minimizing parameter change can result in more drastic ge-
ometric changes (vertices moved, edges extended) than other op-
tions, though this is highly dependent on the program. Such
changes can be seen clearly in the dresser and castle models; they
are especially prevalent when the parameters are sensitive and
small changes in value cause large geometric changes. This energy
is most useful when a model directly exposes a subset of parame-
ters that control the aspect the user wants to vary, or when the user
intended a large manipulation that other objectives would penalize.

Localized vertex-position objectives can often end up deform-
ing relative proportions of model elements (Lamp, Slipper) because
they allow vertices close to the edit to move more than those further
away.

As aresult we see sharp variation close to the edit, while the rest
of the model stays more or less fixed. This can also be seen in the
dresser example, where most of the dressers’ drawers retain their
original height, except the top row of drawers, which stretch verti-
cally in order to satisfy the objective. Moreover, in this example the
left half of the model becomes much thinner horizontally than the
right half — partially because there are simply more vertices on the
right half of the model, so moving them is penalized more.

Localized edge-length preservation in the dresser example
shows a similar behavior. By minimizing the L; norm of edge
length differences we are are encouraging sparsity, so the objec-
tive naturally prefers to stretch out the top-most vertical edges, as
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Figure 6: Option Gallery. Each model is edited (orange), displaying the results our system produces by optimizing each objective. The edit
spectfication is shown overlaid on each result to illustrate how closely the result matches the manipulation.
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heelHeight: 4.0 — 4
soleThickness: 0.6 —

319

numDivs = 10
numDivs = 20
k=150
for i in Tange(const(divs)-1):
t[i] = (i+1)/(divs)
smoothHeight[i] = 3*(t[i]**2) - 2*(t[i]**3)
t[i] = (i*1)/(divs) - 0.5
smoothHeight[i] = 1 / (1 + e**(-k*t[i]))
Translate(value=(@, @, -soleHeight*t[i]), ref=Sole[i].all())

(4)

Figure 7: Slipper workflow. A user iterates on a design for a freeform slipper. Vertices on the heel of the shoe are dragged up (1) and an
option is selected, and subsequently vertices are dragged outwards on the toe (2a). After an option is selected for the toe edit (3b), a program
manipulation tweaking the sole curvature and mesh discretization is performed (4).

localization penalizes this change the least. In the slipper model, the
edge objective prefers moving the toe forward to stretching it, be-
cause this results in overall less change in edge lengths, even when
localizing the effects.

Deformation objectives do well at maintaining the overall ge-
ometric shape of the model, as they minimize the rate of local
changes to the mesh imposed by satisfying the edit. This propa-
gates changes smoothly from the edited region into the remainder
of the model, resulting in a looser, but smoother, localization than
the vertex and edge objectives (Slipper, Lamp).

Objectives preserving global properties, such as Volume and
Center of Mass, result in more non-local changes than the other ob-
jectives as they update parts of the model outside of the user’s spec-
ified edit to maintain the overall property. This can be seen in the
positions of un-manipulated arms in the lamp model, and the width
of the bottom of the heel in the slipper model. Penalizing vertex
movements prevents the changes from being extremely drastic.

Our bidirectional editing approach also addresses two common
pain points in CAD modeling. Firstly, models encode constraints
such as proportions, patterns, and bounds on the positions of el-
ements. When editing CAD programs directly, users must reason
about which parameters need to change together, and how to main-
tain explicitly-defined constraints. Our inverse editing step operates
agnostically to how these constraints and patterns happen to be im-
posed in a particular program, finding a solution that preserves the
encoded constraints regardless of how many parameters need to be
adjusted. Patterns, such as the vertical stripes at the bottom right
of the dresser (6b) or the crenelations on the castle towers (6d),
maintain their structure through arbitrary parameter changes. Our
method allows both painless editing of patterns and preservation of
desirable invariants, both common challenges in CAD modeling.

Secondly, designed objects can have semantic properties that
cannot be encoded purely in their geometry — for example, a lamp
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must be stable and upright. It is also difficult to construct a program
that limits the space of possible designs to exactly those that will
be stable. Instead, optimizations such as Center of Mass (Figure 6¢)
can proxy the desired property and stay in the range of stable so-
lutions without the user ever having to specify exactly how such
limits are implemented.

5.2. Workflows

Figure 7 illustrates how a user might edit a free-form slipper design
to better match a specific target shape they have in mind. In the first
manipulation (1), the user wants to raise the heel and thicken the
sole. To indicate this, she raises a few vertices on the heel of the
shoe. But, the edit is ambiguous — geometrically, the edit could be
achieved by either raising the heel, thickening the sole, or both; our
objectives converge to two options that either increase a combina-
tion of both heel height and sole thickness (2a); or raise the heel
alone (2b). Since the user desires to increase both of these aspects,
they choose the first option.

The user then wants to extend the toe, and indicates this by drag-
ging a few vertices out. Our system converges to two options that
lengthen the sole (3a) or lengthen the toe (3b) respectively. Since
the model happens to expose toeLength explicitly as a parame-
ter, the user chooses the option minimizing parameter energy (3b)
which matches their edit and focuses change on the toeLength
parameter, accomplishing their goal.

In the final step, our user wants to impose steeper curvature of the
sole from toe to heel. To accomplish this she makes a program edit,
changing the function controlling the curvature from a polynomial
basis to a logistic one, and adjusts the number of divisions sampled
to make the discretization finer.

A similar process occurs in Figure 8. We note that for this ex-
ample, previous work on editing man-made models fail to expose
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rodlen = 1.0
rodlen = 2.0
for i in range(l, const(nbulbs+1)):
Chain[i] = Cylinder(depth=i * rodlen,
Chain[i] = Cylinder(depth=(-sqrt((i-4)**2))+4)*rodlen,
location=(cosi[i], sini[i], ...), ...
UpperBulb[i] = Sphere(location=(...,Chain[i].z(1@)), ...)

radiusl: 2.0 —
rodCircleRatio: 0.7 —

nbulbs = £ix(5)
nbulbs = £ix(6)

‘bulbAmplitude: 1.0 —
bulbPeriod: 1.0 —

rl: 2.0

,,::,, ~
C=n=ail
Gk P

¢ K
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Figure 8: Chandelier workflow. A user explores design variations for a chandelier model. She performs a program manipulation on the
original, 5-bulb model (1) to achieve a variant with 6 bulbs (2), and scale out a ring of vertices around the top of the model to uniformly
widen the base (3) via the biharmonic energy. Another program change is performed to rearrange the bulb pattern (4), and a final geometric

edit widens a single bulb with the ARAP energy, resulting in all of the bulbs updating to match (5).

relationships between the radii of the three bases of the chan-
delier. In particular, iWires [GSMCO09] does not maintain a pro-
gram representation and does not find any wires for the bulbs,
which makes it impossible to achieve the last edit in the work-
flow, while [BWSK12] does not support rotational patterns. Nei-
ther method can generate a chandelier with more or less bulbs while
preserving the arrangement.

5.3. Initial User Feedback

We gathered preliminary qualitative feedback on our interface and
usability from domain experts. Four users with extensive back-
ground in CAD modeling across different domains (Engineering,
Architecture, and Visual Arts) were introduced to our tool for 15
minutes. Users were then asked to use our tool’s inverse editing fea-
tures alone to a) match a 3D model to a target geometry overlaid in
the interface; and b) manipulate a model to achieve a design varia-
tion, over three different models in 1.5 hours. We used a think-aloud
protocol and asked participants to say what they were thinking as
they worked with our tool. User testing highlighted the importance
of promoting diversity in our results, as this allows users to under-
stand how to adjust their manipulations even if the tool does not
provide any correct result.

We observed that users initially perform several geometric ed-
its when encountering a new model for the first time, intuiting a
sense of how a model varies. When precise dimensions are not of
concern, users quickly generate plausible design variations using
geometric edits that change tens of parameters, and rarely consider
more than two of the returned options. Informally, users preferred
the Vertex and Parameter energies, but there were also edits where
the Edge length and ARAP energies returned better results.

Users were critical about difficulty in predicting how a model
will change in response to an edit, and required a few test manipu-

lations on any given model before it could be productively edited.
Additionally, users occasionally encountered situations where the
model program was constructed in a way that made an attempted
edit infeasible. Users in this situation were usually uncertain what
had occurred, and would benefit significantly from some form of
automated explanation.

When browsing options generated in response to their edits,
users usually only go through more than two alternatives if neither
came close to satisfying their intent. Critically, if no alternatives
correspond to user intent, users are almost instantly able to identify
necessary changes to make to their edit to disambiguate by com-
paring the differences between results. Accordingly, users typically
perform several iterations of geometric edits to achieve the target
manipulations, changing tens of parameters in the process of doing
so. All users found inverse editing with our tool significantly easier
to use for creating design variations than the analogous CAD tools
or program edits.

In conclusion, our method exposes a trade-off between giving
users more options, and the time it takes to evaluate each option,
versus the user identifying the ambiguity adjusting the manipula-
tion to clarify intent. Interactive optimization performance is crit-
ical to bidirectional editing being useful, as users must be able to
iterate quickly and adjust their manipulations.

6. Limitations and Future Work

The primary limitation of our approach is that while topological
changes can be achieved by editing the program, our synchroniza-
tion step by definition always preserves mesh topology; as it re-
quires the function generating the mesh to be continuous, as well
differentiable on most of its domain for the technique to work well.
Michel et al [MB21] illustrate another path forward where the gra-
dient is not evaluated throughout the optimization and topologi-
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cal changes can be supported as long as UV coordinates are main-
tained. We see potential to merge such methods and accommodate
a greater class of operators with higher performance, and note that
the question of optimizing edits across topological change is un-
solved in general.

Particularly, integer parameters such as loop bounds—which
don’t contribute to the gradient of a vertex and whose variation
would create topologically different meshes—are always fixed in
our system (Section 3.1). Future work on optimizing through dis-
crete changes would enable us to expand our solution to include
arbitrary topological changes. Existing methods are beginning to
allow differentiation through such discontinuities [BMM*21] via
careful language design. One possible approach in this vein is to
extend our current language to define references, user edits, and ob-
jective functions on collections of high-level elements of variable
arity rather than explicitly over a fixed number of vertices.

We address ambiguity in a user manipulation by using heuristics
in the form of different objective functions and energies to allow
the user to manually disambiguate their intent if needed. This ap-
proach is not automatic, and when a given user intent is not within
the program’s output space, many objectives tend to converge to
similar results while still differing from a user’s intent. To address
this, future work can use existing approaches to refining discrete
parameter spaces, including design galleries [MAB*97; SFP*20]
and user-in-the loop optimization [KSG20], in combination with
program synthesis as a possible avenue for exploration. We suggest
an approach where users can select an area of interest and a system
can synthesize possible parameterizations that contain the desired
output, which can then be explored using bidirectional editing.

Finally, an exciting avenue of future work revolves around the
use of additional program information in geometry processing tech-
niques. Geometry processing has traditionally been focused around
polygonal meshes, and our method enables the augmentation of this
mesh with a wealth of additional information garnered from ana-
lyzing the generating program — we propose a sensitivity analysis
of vertices with respect to parameters, methods for geometric con-
straint inference and maintenance, and program-aided design opti-
mization integrated with the model editing process, to name a few.
This would not only allow geometry processing techniques to be
applied directly to CAD models, skipping often expensive trans-
lation steps, but also enable more powerful and versatile editing,
analysis and optimization.

7. Conclusion

3D CAD software is used by almost every designer in the world
to create most of the virtual and man-made physical models we
encounter. Moreover, direct editing of CAD programs is a chal-
lenge designers have been facing for multiple decades. This work
argues that a combination of geometry, optimization, and program-
ming languages methods can be intersected to devise new solutions
that significantly reduce the existing burdens around CAD edit-
ing, allowing easier design iteration and customization. As an ini-
tial step, we described an implementation of bidirectional editing,
where users leverage both programmatic expressivity as well as di-
rect geometric manipulation. This approach realizes a significant
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advancement over the current state of the art of editing in CAD
tools, ultimately allowing designers and engineers to work more
quickly on a wide range of 3D design tasks.
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Appendix A: Derivations

We describe how we compute the gradients aEAg;‘: (P)

for a parameter p;eP. Let E(P) = Ey,(P) = tr(D(P)T QD(P).
Then,

and

)

9Eu(P)
Ipi

o (D(P)TQD(P)
agl(:) = (op(P)+0"D(P)) (E),;i> _
(on(p) +0"D(P)) (0-+ 0" )D(P) a’gg’ )
Recall that D(P) = F(P)—F(F), and we compute ala);(f) =

agf) using forward-mode automatic differentiation.

Similarly, let E(P) = E4gap(P). We use the same alternat-
ing minimization strategy as in [SAOQ7]: for a given fixed set
of rigid transformations {R;}, we find parameters P’ that min-
imize E(P'). Then, we find the rigid transformations {R;} that
minimize E(P) for the given set of parameters P. {R;} is com-
puted using SVD (Equation (6) [SAO7]) of the covariance ma-
trix S; (Equation (5) [SA07]). Then, P’ is computed by solving
Equation (9) [SAO7], with the only difference that we compute
OE(P') __ 0E(P') aV,(P")

op;  — Vi(P") 9p;
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