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Figure 1: Examples of results of our method for semantic segmentation of artistic paintings in various styles – each color represents a class.
We use unsupervised domain adaptation on the DRAM (Diverse Realism in Art Movements) dataset we collected. DRAM contains figurative
paintings from the Realism, Impressionism, Post-Impressionism and Expressionism art movements (the first two rows). The third row shows
examples of segmentation of artistic styles which were unseen during training.

Abstract
Semantic segmentation is a difficult task even when trained in a supervised manner on photographs. In this paper, we tackle
the problem of semantic segmentation of artistic paintings, an even more challenging task because of a much larger diversity
in colors, textures, and shapes and because there are no ground truth annotations available for segmentation. We propose an
unsupervised method for semantic segmentation of paintings using domain adaptation. Our approach creates a training set of
pseudo-paintings in specific artistic styles by using style-transfer on the PASCAL VOC 2012 dataset, and then applies domain
confusion between PASCAL VOC 2012 and real paintings. These two steps build on a new dataset we gathered called DRAM
(Diverse Realism in Art Movements) composed of figurative art paintings from four movements, which are highly diverse in
pattern, color, and geometry. To segment new paintings, we present a composite multi-domain adaptation method that trains
on each sub-domain separately and composes their solutions during inference time. Our method provides better segmentation
results not only on the specific artistic movements of DRAM, but also on other, unseen ones. We compare our approach to
alternative methods and show applications of semantic segmentation in art paintings. The code and models for our approach
are publicly available at: https://github.com/Nadavc220/SemanticSegmentationInArtPaintings.

CCS Concepts
• Imaging and Video → Image Segmentation; Texture Synthesis; • Methods and Applications → Neural Net;
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1. Introduction

Semantic segmentation of photographs, where each pixel is as-
signed to one of a set of predefined classes is a difficult task even us-
ing today’s methods based on neural networks. Methods that train
with segmented photographic datasets with around 20 classes, such
as PASCAL VOC 2012 [EVW*12] achieve high mean-IOU results
[CBP*16; CZP*18; LWLW17; ZSQ*17]. Semantic segmentation
becomes even harder in the artistic domain. Artistic paintings have
a very different appearance compared to natural photographs, even
when concentrating only on figurative art (i.e. non-abstract). They
also have much larger diversity in terms of both colors and shapes
of objects, and backgrounds.

In this paper, we address the problem of semantic segmentation
of (figurative) artistic paintings (see Figure 1). Gathering and an-
notating an artistic painting dataset is a daunting task, as there are
numerous styles and genres within the artistic domain. Hence, our
work builds an unsupervised solution using domain adaptation that
not only provides a segmentation solution to paintings in some pre-
defined artistic styles, but also allows to segment paintings in un-
seen styles.

Our method uses two steps. The first step creates a pseudo
training-set in some predefined artistic styles (we used Realism,
Impressionism, Post-Impressionism and Expressionism) by us-
ing style-transfer methods on the existing photographic ground-
truth data of PASCAL VOC 2012. We call such datasets pseudo-
paintings and use them to train basic semantic segmentation net-
works for these styles. In the second step, we further refine these
networks by using a domain confusion technique using PASCAL
VOC 2012 as the segmented ground truth source domain and real
artistic paintings as the target domain. To segment a new painting,
not necessarily from the original domain styles, we first map it to
a style latent-space and then combine the segmentations produced
by our trained networks based on the similarity of the painting to
each domain.

Previous domain adaptation solutions for semantic segmenta-
tion mostly concentrate on adapting synthetic rendered images to
real photographs (e.g. using GTA5 computer game [RVRK16] to
CityScapes dataset [COR*16]). Our work requires the opposite di-
rection – adaptation of real photographs to synthetic, artistic data.
We show that simple use of existing domain adaptation techniques
does not provide much gain. Even using their original data, re-
versing the adaptation direction of these methods (i.e. adapting
CityScapes to GTA5) reduces the success rate considerably (see
supplemental material). This means that adaptation, in general, is
not symmetric in terms of domains, and there is a need for spe-
cialized solutions to adapt photographs to the synthetic domain of
paintings.

We see two main reasons for the difficulty of adapting the seg-
mentation of photographs to paintings. The first reason involves
the domain gap: there are large differences in the characteristics
of artistic paintings compared to real photographs. The second rea-
son is domain diversity: artistic paintings cannot be seen as a sin-
gle coherent domain for learning as they encompass a plethora of
styles and movements. Our proposed method tackles both chal-
lenges. To tackle the domain gap we use style transfer to create
pseudo-paintings for training in the first step. To tackle the domain

diversity, we separate the target artistic domain to sub-domains and
build a multi-domain adaptation solution by combining their re-
sults during inference.

To guide both the style transfer step and the domain confusion
step we use a new dataset we gathered called DRAM: Diverse Re-
alism in Art Movements. DRAM was intentionally created with
high variability and large domain gaps. It is comprised of figu-
rative paintings from four art movements: Realism, Impression-
ism, Post-Impressionism, and Expressionism. These art movements
have highly diverse pattern and geometric styles. The objects and
scenes painted do not always appear in their true colors and pat-
terns, and their geometric structure is often distorted (see Figure 1).
We use DRAM as the target data for adaptation. For our source
dataset we chose PASCAL VOC 2012 [EVW*12] as it contains a
significant number of classes which are more common in classic
artwork.

Figure 2 provides an overview of our approach. We first train a
style transfer network on the DRAM data, but use it separately for
each sub-domain to create pseudo-paintings of each artistic move-
ment, capturing its unique characteristics. Next, we train seman-
tic segmentation networks using these pseudo-paintings with their
original segmentation labels. Lastly, we apply adversarial domain
confusion to further refine the segmentation network of each sub-
domain using DRAM’s real paintings. During inference, given an
input painting, we first map it to a style feature-space using Gram
matrices [GEB15] as style descriptors. In this space, we find its k-
nearest neighbors from the mapped paintings of the DRAM dataset.
Based on the ratio of neighbors belonging to each sub-domain we
use a weighted combination of the sub-domains segmentation so-
lutions to segment the input painting (see Figure 6). Our experi-
ments show that using such multi-domain inference can be used to
segment paintings from unseen artistic domains, but surprisingly it
also improves the segmentation results of paintings from the origi-
nal sub-domains.

To summarize our contributions are:

• We present the first semantic segmentation solution for artistic
paintings.
• Our method combines multi-domain adaptation for the highly

diverse domain of art paintings.
• We present the DRAM dataset: a new artistic domain adaptation

benchmark with a fully segmented test set.

We present results of segmenting artistic paintings, experiments
of an ablation study, and show applications of our method. The
new DRAM artistic benchmark as well as our code will be released
for future research. We see their contribution not only for semantic
segmentation of art paintings, but also to domain adaptation devel-
opment in general, by challenging generalization in highly diverse
domains, and testing adaptation from the real domain to a synthetic
domain.

2. Related Work

Semantic Segmentation. The leading approach for semantic seg-
mentation of images uses CNNs [RPB15; WZH*19; HGDG17;
CBP*16; CZP*18; SZJ*19]. Given an input image, a neural net-
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Figure 2: Our proposed training flow: (a) we train a style transfer network using PASCAL VOC 2012 source data as content and DRAM
training set as style images; (b) we split DRAM into four sub-domains and create pseudo-paintings for each by augmenting the original
source dataset with each sub-domain as style images; (c) we train each of the domains separately in a supervised manner using DeepLabV2
[CBP*16] on the pseudo-paintings with their original labels from PASCAL VOC 2012; (d) we continue to refine the networks with a domain
confusion step based on FADA [WSZ*20] and pAdaIN [NBW20]. We train with PASCAL VOC 2012 as source (without augmentations) and
the DRAM sub domains as targets.

work outputs a label per pixel in the image. Current state-of-
the-art results on photographs of different datasets are achieved
with DeepLabV3+ [CZP*18]. DeepLabV3+ uses a classification
network as its encoder and up-samples the encoding output us-
ing atrous convolution layers followed by a simple convolutional
decoder. We follow current domain adaptation methods and use
DeepLabV2 [CBP*16] as the basic semantic segmentation net-
work. DeepLabV2 does not use a convolutional decoder to up-
sample its encodings. We compare our results to both DeepLabV2
and DeepLabV3+ as baselines. As recent papers such as [YCW19;
LLC*21] have shown promising improvement on semantic seg-
mentation by using modules based on self-attention transformers
[VSP*17; DBK*20] we use HRNet [SZJ*19] with OCR [YCW19]
as an additional baseline for comparison. As artistic paintings have
differences in color, textures and geometric structure of objects,
none of the three methods perform well in this domain when trained
on real-life photographs.

A previous attempt to improve segmentation results on artistic
paintings was made by Chatzistamatis et al. [CRT20] which focuses
on recoloring art paintings to overcome color loss caused by color
blindness by utilizing segmentation maps. To do so a pretrained
MaskRCNN [HGDG17] is fine-tuned using annotated art paintings
to output semantic maps which are used for the semantic recoloring
process. Unlike Chatzistamatis et al. our work focuses on semantic
segmentation of art in unrealistic challenging styles as well as over
unseen art styles. Additionally, we present a unique unsupervised
solution for semantic segmentation of art paintings and we compare
our results to other recent methods.

Domain Adaptation (DA). Domain adaptation works with two
datasets drawn from two different domains: a labeled dataset for the
source domain and an unlabeled dataset for the target domain. The
data of the target domain is the one we wish to optimize on a given

task. Initial frameworks of domain adaptation targeted the image
classification task and centered around adversarial domain confu-
sion [GL15; THSD17; CWZ*20]. Later classification frameworks
tackled more advanced challenged like multi-target domain adapta-
tion [CZLL19; GSR*18] and some used artistic datasets [PBX*19;
CWZ*20; GSR*18]. However, unlike our DRAM dataset the artis-
tic datasets explored by these papers focused on the difference be-
tween different type of arts such as clip art and sketches rather than
the subtle difference between fine art painting styles.

Initial semantic segmentation DA also used domain confu-
sion [THS*18] and added an image translation module to reduce
the gap between the source and target domains [HTP*18]. Later
solutions mainly rely on three techniques: data augmentation, do-
main confusion, and self-learning. Each method uses these three
techniques differently and may use only a subset of them. In the
following, we elaborate on the first two techniques, data augmen-
tation and domain confusion, as we do not use self-learning in our
method. Additionally, we discuss common DA datasets and prior
work related to our dataset challenges: target domain diversity and
a large domain gap.

Datasets. As research in artistic domains is mainly focused
around practical applications such as style transfer and art creation
[GEB15; HB17; YNS19] most artistic datasets [Wik21a; KTH*14]
do not come annotated for object identification or semantic seg-
mentation. Other, more perceptual applications include artist/genre
clustering [DTD*19] and art paintings classification [KTH*14].
Exceptions to this are [CZ14; PBX*19; LYSH17], but they include
annotations only for image classification and not for semantic seg-
mentation.

Current domain adaptation approaches focus on driving datasets
where the source domain is 3D computer renderings and the tar-
get domain is realistic photographs. The most commonly used
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are GTA5 [RVRK16] or Synthia [RSM*16] as the (synthetic)
source domain, and Cityscapes [COR*16], BDD100K [YCW*20],
or Cross-City [CCC*17] as the (realistic) target domain. In our pa-
per we focus on the opposite transition, from realistic to synthetic
domains, using artistic paintings as our target data. We created
the DRAM dataset which focuses on semantic segmentation and
presents a new and more general benchmark for the unsupervised
domain adaptation task.

Data Augmentation. Augmentation is used to reduce the do-
main gap between the source data and the target data. Beyond sim-
ple geometric transformations, different image-level augmentations
include CycleGAN [LYV19; YLSS20; HTP*18], Fourier-Domain
window exchange [YS20] and Style Transfer as used by Banar et al.
[BSG*21] to classify musical instruments in art paintings. Nuriel
et al. [NBW20] utilize an AdaIN layer [HB17] randomly on dif-
ferent latent features to exchange information between the target
and source data to reduce the pattern bias shown in [GRM*18] and
[GEB15]. Li et al. [LYV19] and Yang el al. [YLSS20] also opti-
mize the domain transformer between the framework learning steps
to improve transformations by using information from the learning
process.

Using CycleGAN [ZPIE17] as a transformation network from
PASCAL VOC 2012 to DRAM resulted in unsatisfying results. We
believe this may be due to the high complexity and diversity of the
artistic domain. The DRAM training set contains over 50 different
artists and we suspect that optimizing a single network for such a
diverse domain may be too complex. We use AdaIN style trans-
fer [HB17] for augmentation to reduce the domain gap between
the realistic photographic source data and our artistic target data,
by creating pseudo-paintings. We chose this method for its ability
to preserve the overall look of the source image and for its speed,
which enables augmenting large datasets relatively fast.

Domain Confusion. Domain Confusion is an adversarial
method which utilizes a domain discriminator. The discriminator
is used to train the semantic segmentation network’s encoder to
encode target and source samples to a joint domain, while opti-
mizing the network over the labeled source data in a supervised
fashion. In an effort to use the segmentation information extracted
from the network, Tsai et al. [THS*18] uses two discriminators,
one for encoder features and the other for output features. We fol-
low FADA [WSZ*20] and pAdaIn [NBW20] which use a discrim-
inator not only to distinguish between domains, but also to learn
the class structure of the trained model to encourage a class-level
alignment in the generated feature space.

Target Domain Diversity. Most domain adaptation methods as-
sume that the target data is homogeneous. The setting where there
are several different sub-domains comprising the target domain is
known as Multi-Target Domain Adaptation [LMP*20; CCC*17;
PWSK20; CZLL19; GSR*18; IJC*21]. In some, even the target do-
main labels are unknown [LMP*20; PWSK20; CZLL19]. We used
painting labels as many datasets classify artistic paintings to their
style based on expert knowledge [Wik21a]. In addition, we found
that utilizing clustering of paintings in some feature space led to
inferior segmentation results.

For Multi-Target Domain Adaptation, Liu et al. [LMP*20] use
a curriculum training procedure where target images are used for

training in order of their distance from the source domain. Park
et al. [PWSK20] train a single segmentation network, but use a
separate discriminator for each sub domain to separate their opti-
mization process. Additionally, they perform a unique image trans-
formation process for each sub-domain to better use the assumed
separation of the sub domains. Isobe et al. [IJC*21] trains an “ex-
pert” segmentation network using AdaptSegNet [THS*18] for each
sub domain and then trains another network using DA which uses
the information learned by the expert networks.

As discussed in [IJC*21], a solution for a multi-target domain
adaptation task, which on the one hand creates a single framework
for flexible predictions of each sub-domain, and on the other hand
achieves results that are as optimal as training with each domain
separately, creates a challenging trade off. Our approach trains a
separate segmentation network for each sub domain. Similarly to
Park et al. [PWSK20] we train a unique image transformation net-
work for each sub domain and apply it on our source data to reduce
the domain gap. To create a flexible multi-domain framework we
compose the networks predictions by the similarity of the input im-
age style to the training images style, using the style representation
presented by Gatys et al. [GEB15].

Domains Gap Domain Adaptation methods rely on a reason-
able gap between the source and target domains to achieve good
results. When the target domain is incoherent, reducing this gap
becomes a nontrivial task as each target sub-domain may require a
different approach. Current methods discussing this issue, such as
[CCC*17; LMP*20], focus on class-level alignment, which helps
align diverse sub-domains by class information rather than relying
solely on global domain information. Dai et al. [DST*20] creates
new “bridging” target domains which are trained on separate dis-
criminators and help the network optimize as they are closer to the
source domain, thus easing the large gap between the source and
the target domain. Our method also utilizes class information in
the domain confusion step. Furthermore, we show that for complex
domains, understanding the unique properties of each sub-domain
can help reduce the domain gap. As a result, we can achieve bet-
ter results for each sub-domain separately and for the entire target
dataset together, as well as for unseen artistic target domains.

3. DRAM Dataset

To our knowledge, the Diverse Realism in Art Movements
(DRAM) dataset, is the first semantic segmentation dataset which
uses artistic paintings as its target domain. The dataset is com-
posed of 5677 unsegmented training images and 718 segmented
test images of paintings of 152 different artists. The majority of
the dataset (including all training images and 583 test images) is
comprised of four diverse art movements: Realism, Impressionism,
Post-Impressionism, and Expressionism.

The DRAM dataset was gathered mainly from the WikiArt art
database [Wik21a] (5677 train images, 676 test images). The re-
maining images (42 test images) were gathered from Wikimedia
[Com21] and Wikioo [Wik21b] image databases. The images were
assigned to art movements using their original tags. To ensure we
are learning an artistic movement rather than the style of a specific
artist, no artist is shared between the training and the test sets of
each movement.
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Figure 3: The distribution of number of pixels per each class in PASCAL VOC 2012 training and validation sets compared to all movements
in the DRAM test set. For the background class, we show the percentage of pixels labeled "Background" from all pixels. For all other classes,
we present the percentage of pixels labeled per class excluding the background class to make the statistics more visible. Perfect equalization
is difficult as some classes are more scarce in art than in real life photos.

3.1. Domain Diversity

Four art movements were chosen for DRAM as they differ in terms
of texture, geometry, and color. Their respective sizes are 1074,
1538, 1462 and 1603 images for training and 150, and 150, 142,
141 images for testing.

Realism: Emerged in France around the 1848 revolution. It
sought to portray people from all classes of society in everyday
situations with as much truth and accuracy as possible, without
avoiding unpleasant aspects of life. For our purpose, this dataset is
considered realistic in texture, geometry, and color; we consider it
as the closest domain to our source dataset. To expand the Realism
training set we added images from the Romanticism art movement
as it shares realistic aspects with Realism in spite of it having more
dramatic motifs.

Impressionism: Emerged in France in the 19th century. Charac-
terized by thin yet visible brush strokes and an accurate depiction
of light. This art movement is highly diverse in texture but is mostly
realistic in geometry and color.

Post-Impressionism: Emerged in France roughly between 1886
and 1905 as a reaction against Impressionists’ concern for realis-
tic depiction of light and colors. Post-Impressionism emphasizes
more abstract qualities and symbolic content. It has mild texture
diversity, and is more diverse in geometry and colors.

Expressionism: Originated in Northern Europe around the be-
ginning of the 20th century. Expressionist artists sought to express
the meaning of emotional experience rather that physical reality.
Expressionist paintings are highly diverse, using radically distorted
geometry that represents a strong emotional effect. Expressionism
does not oblige to any realistic concepts and is highly diverse in
geometry and colors. It can also be diverse in texture, but not as
strong as Impressionism.

The remaining 135 test images were gathered from eight art
movements which do not appear in the training set: Art-Nouveau,
Baroque, Cubism, Divisionism, Fauvism, Chinese Ink and Wash,
Japonism and Rococo. As the training set does not include exam-
ples from these art movements, we consider these test images as
unseen data to demonstrate the ability of our method to predict seg-
mentation maps on data from unseen art movements that possibly
present a larger domain gap and diversity.

Another aspect causing diversity in art movements is the choice

of motifs. For example, the Baroque and Rococo movements are
both fairly realistic styles, but Baroque style depicts elements from
the Catholic Church with a strong religious atmosphere, while Ro-
coco depicts reality in a more theatrical sense. Both movements
appear in our unseen test set for validating generalization ability on
such artistic variations.

3.2. Domains Gap

We use PASCAL VOC 2012 [EVW*12] as our source dataset with
11 classes common in art: Bird, Boat, Bottle, Cat, Chair, Cow, Dog,
Horse, Sheep, Person, and Potted-Plant. The rest of the classes and
any other object not recognized in our task are considered back-
ground, which is used as the 12th class in our tests. The test data in
DRAM was manually segmented according to PASCAL VOC 2012
official guidelines with the only exception being labeling flower
vases as potted-plant to expand the number of classes available
(they share similar features and potted plants are scarce in most
art movements).

To reduce the domain gap in terms of content and ensure a fair
evaluation of our results, we took effort to equalize the class statis-
tics between DRAM and PASCAL VOC 2012 (see Figure 3). Oth-
erwise, any statistical measure could have been biased because of
lack of a specific class or domination of another. We used an iter-
ative process of adding paintings to the DRAM dataset while pre-
serving similar distribution of classes.

3.3. Style Feature Space

The seminal work of Gatys et al. [GEB15] introduced the con-
cept of Gram matrices, which are obtained by matrix multipli-
cation of VGG19 convolution layers, and serve as an expres-
sion of the artistic texture-style of a given painting. We use this
representation as a style feature space for our data. We con-
catenate the Gram representation of 5 pre-trained VGG19 lay-
ers: conv11,conv21,conv31,conv41 and conv51 as suggested by
[GEB15]. For efficiency purposes, we use Kernal-PCA [TF09] with
a cosine kernel to reduce the representation dimensions to 512, pre-
serving more than 99% of the data variability. Figure 4 shows a
TSNE plot [MH08] of the mapping of paintings from DRAM’s
four art movements compared to the mapping of PASCAL VOC
2012’s photographs. The gap between the domains in terms of style
is clear. To reduce this domain gap we use style transfer in the first
step of our method as described in the next section.
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Figure 4: TSNE plots of the style feature space of the four art movements in the DRAM dataset (green dots) compared to PASCAL VOC 2012
dataset (red dots) – the gap between each synthetic domain and the real domain is clear. From left to right we plot Realism, Impressionism,
Post-Impressionism, and Expressionism. We use style-transfer to create a set of pseudo-paintings in each movement (blue dots) that bridge
the gap between the domains, which are used for training in the first step of our method.

4. Method

Given a target domain Xt , an image sampled from the target domain
xt ∈ Xt and a finite set of classes C = {c1, ...c|C|} we wish to assign
the correct class to every pixel in xt using the output of a chosen
semantic segmentation network:

Px,y = argmax
ci∈C

φx,y(xt) (1)

where φ(·) is the semantic segmentation model trained with domain
adaptation and φx,y(xt) is the vector of size |C| taken from the (x,y)
pixel location of the segmentation model output P = φ(xt).

To train semantic segmentation on artistic paintings without ex-
cessive tagging we turn to an unsupervised domain adaptation
framework, where the source domain (PASCAL VOC 2012) in-
cludes real photographs with ground-truth segmentation, and the
target domain (DRAM) contains unsegmented paintings.

Most current domain adaptation methods also consider the target
dataset samples as drawn from a single coherent domain. However,
some image domains Xt may contain more than one sub-domain,
and training it as a single domain achieves sub-optimal results due
to the sub-domain differences. In our case, art paintings can differ
considerably by many factors such as texture, color, and geometry.
Treating many art movements as a single image domain produces a
highly diverse domain which hurts the adaptation results.

To compensate for the large diversity, we suggest training each
art movement as a single coherent sub-domain (see Figure 2). Do-
ing so enables the trained sub-models to learn specific features rel-
evant only to the specific art movement and prevents irrelevant fea-
tures from misguiding the optimization. During inference, we com-
bine these sub-models to segment not only paintings from the orig-
inal domains, but also paintings from other, unseen art movements.

4.1. Augmentation and Pseudo-Paintings

The first step of our method utilizes style-transfer to create a dataset
of segmented pseudo-paintings to use as a training set for a seg-
mentation network. This step bridges the gap between the source
and the target domain for training.

We first train a style transfer network using the style transfer
approach suggested by Huang et al. [HB17]. This approach intro-
duced the AdaIN layer that swaps statistics at the feature level from
a style image to a content image we wish to stylize (Figure 2 (a)).

One advantage of this method is that it can be trained on a collec-
tion of style images and then applied on arbitrary style and content
images. We use the entire DRAM training set as style images and
PASCAL VOC 2012 as content images (more details can be found
in the supplemental materials).

Rather then using a single augmented dataset as common in cur-
rent domain adaptation approaches, we augment the source dataset
separately for each sub-domain. We use the original classification
of the artwork and create four sub-domains in DRAM, namely:
Realism, Impressionism, Post-Impressionism, and Expressionism.
Each sub-domain is used separately as style images for augment-
ing the source domain and create a separate set of pseudo-paintings
in the four different artistic styles (Figure 2 (b)). Figure 4 clearly
shows how the new pseudo-painting datasets are closer in style fea-
ture space to the original paintings of each movement, and how
the pseudo-paintings bridge the gap between the photographic do-
main of PASCAL VOC 2012 and the actual paintings. Examples of
pseudo-paintings used for training our segmentation networks can
be observed in Figure 5.

Using the pseudo-paintings of each sub-domain we train a se-
mantic segmentation network for each sub-domain in a super-
vised fashion (Figure 2 (c)). As can be observed in Table 1,
this training with augmented pseudo-paintings alone (marked as
OurMethod\DC) improves the results of segmentation signifi-
cantly for all sub-domain compared to the baseline without adap-
tation (DeepLabV2, DeepLabV3+ and HRNet+OCR). This indi-
cates that our style transfer augmentation helps reduce the domain
gap between the source domain and each target sub-domain. How-
ever, we further adapt the segmentation networks using an addi-
tional domain confusion step as described next.

4.2. Domain Confusion

We chose to base our domain confusion step on FADA [WSZ*20]
with pAdaIN [NBW20], since it achieves better regularization
when trained on the source domain. This regularization is an im-
portant feature in the artistic domain because of its high diversity.

FADA is a domain adaptation framework which uses three train-
ing steps: supervised source training, domain confusion, and self-
supervised learning. The domain confusion step uses a fine-grained
domain discriminator which receives, in addition to the domain la-
bel, soft labels generated by the current network predictions. Doing
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Figure 5: Examples of pseudo-painting for the four art movements in the DRAM dataset from left to right: Realism, Impressionism, Post-
Impressionism, and Expressionism. Each example shows the original photo and the original painting (left) used to create the pseudo-painting
(right).

so, the discriminator learns class information and achieves a better
alignment between classes on the encoded latent domain. As dis-
cussed in section 2, this approach was found to be useful for highly
diverse domains.

pAdaIN uses the framework proposed by FADA and presents
a regularization term which reduces texture bias as presented by
Geirhos et al. [GRM*18]. The method suggests adding an AdaIN
layer [HB17] after every convolution layer in the ResNet encoder to
swap image statistics between images among a batch with random
probability of 0.01. The AdaIN layer swaps the image statistics
while leaving global characteristics such as color and overall struc-
ture intact. Note that in the first and third steps of FADA, pAdaIN
is used between random images inside a batch, where half of the
batch is used as style images which transfer their statistics to the
other half of the batch. In the second step, the target data batch is
used as style images to transfer its statistics to the source data in
the same fashion. More details regarding the training and networks
can be found in the supplemental materials.

We have found that using self-supervised learning based on
pseudo-labels (which is the third step of FADA) does not always
improve the segmentation results on paintings. We believe this is
due to the large diversity and gap between the photographic and
artistic domains. Instead, our approach turns to combine the indi-
vidual solutions of each sub-domain both for the known domains
of our DRAM set, as well as for new artistic domains, as described
next.

4.3. Multi-Domain Inference

Training each sub-domain separately introduces new challenges
during inference. Art movements are based on abstract concepts
rather than exact rules. It may be difficult to choose the correct sub-
domain for every artistic painting, and especially for new ones from
movements unseen during training. In addition, images tagged in
a certain art movement can be closer to a different movement. Im-
ages may include artistic features from more than one art movement
and can benefit from using the learned models of several art move-
ments. Therefore instead of applying each sub-model separately,
we combine them together using a method we term multi-domain
inference.

As mentioned before, we use Gram matrices to represent images
in style feature space. We pre-compute the Gram-representation of
all training data, map them to the 512-dimensions feature space and
store them. During inference, for each query image z, we search for
its k-nearest neighbors in the style feature space and use the ratio
of each sub domain as the weight for predictions of the different
sub-domains. We define the weight wi

z of each sub-domain i in the
inference process as the percent of representatives from this sub-
domain in the k-nearest neighbors of z:

wi
z =

1
k

k

∑
i=1

1i(θ
i
z) (2)

where 1i(·) is the indicator function for the i’th sub-domain, and θz
is the set of k-nearest neighbors of z.

If {φi(·)}n
i=1 are the semantic segmentation models trained on

the n sub-domains of Xt using domain adaptation, we use the

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

267



N. Cohen & Y. Newman & A. Shamir / Semantic Segmentation in Art Paintings

Segmentation
Network


DRAM

Gram Style
Descriptor

... ... ...

Gram Style Descriptors

KNN

Style
Weights


w1

w2

w3

w4

+

Input

Prediction

w

*

*

*

*

Figure 6: Multi-Domain Inference pipeline. The input image is pro-
cessed by each pre-trained art movement segmentation network.
Then, a weight vector is calculated based on similarities of the im-
age to the training set in Gram feature space and is used to combine
the networks outputs and create a final segmentation prediction.

weight vector wz to combine the outputs of {φi(·)}n
i=1 (see Fig-

ure 6). Thus, the flexible prediction of an unseen image z is defined
for each pixel (x,y) as:

Qx,y = argmax
c∈C

k

∑
i=1

wi
z ·φi

x,y(z) (3)

We use k = 500 for the KNN search. This k value allows greater
precision, while smaller values tend to be more sensitive to outliers
(e.g. using k = 10 results in a loss of up to 0.3% in accuracy).

Our experiments show that multi-domain inference can benefit
results not only for new unseen art movements, but also for images
of the original art movement sub-domains of the training set. This
indicates that paintings from one art movement can contain features
from more than one art movement.

5. Experiments

5.1. Implementation Details

Our experiments generally follow the hyper-parameters and aug-
mentations strategy suggested by Wang et al. [WSZ*20]. In the fol-
lowing subsection, we elaborate on specific details and additional
changes we made.

Datasets. As mentioned in Section 3, we use PASCAL VOC
2012 [EVW*12] as the source dataset and DRAM as our target
dataset for domain adaptation of semantic segmentation on artistic
paintings. PASCAL VOC 2012 is a semantic segmentation dataset
containing real images annotated with 20 object classes and one
background class. We use the dataset combined with the SBD
dataset [HAB*11] as suggested by Chen et al. [CZP*18]. As we
use only 12 classes of the original dataset, we filter out all images
which do not contain at least one class of our 11 object classes, re-
sulting in a total of 8362 source annotated images. To equalize the

image resolutions, we resize all images in DRAM to have 500 pix-
els in their largest dimension while keeping original aspect ratio,
similarly to PASCAL VOC 2012.

Style Transfer Augmentations. We train our style transfer net-
work using PASCAL VOC 2012 as content images and DRAM
train set as style images. We use this network to stylize PASCAL
VOC 2012 separately for each of DRAM’s four sub-domains train-
ing data. For each source image we use a single random style im-
age with content/style weight parameter of 0.5. The network was
trained on an Nvidia RTX2080Ti GPU for approximately 10 hours.

Domain Confusion Network. We use the FADA [WSZ*20]
domain confusion framework with the enhancement of permuted
AdaIN layers as presented by Nuriel et al. [NBW20]. Simi-
lar to previous domain adaptation methods, we use DeepLabV2
[CBP*16] with Resnet101 [HZRS16] backbone as the framework’s
semantic segmentation network. Since we do not use a validation
set, we use the same settings used in [WSZ*20; NBW20] for GTA5
-> Cityscapes to train our networks. The only differences are that
we use a batch size of 4 instead of 8 because of gpu memory lim-
itations, and we resize images to 513× 513 as suggested by Chen
et al. [CZP*18] when training on PASCAL VOC 2012 dataset. As
with our style transfer network, we trained the domain confusion
step on an Nvidia RTX2080Ti GPU for approximately 10 hours.

Baselines and Benchmarks. Similarly to previous domain
adaptation approaches, we use as baseline a DeepLabV2 net-
work trained on PASCAL VOC 2012 and evaluate the results
on our DRAM dataset. We also add the results of DeepLabV3+
and HRNet+OCR trained on PASCAL VOC 2012. We com-
pare our adaptation results to the more classic domain adaptation
framework AdaptSegNet [THS*18] and to three more recent do-
main adaptation frameworks: FDA [YS20], FADA [WSZ*20] and
FADA+pAdain [NBW20]. We evaluate their results when trained
with DRAM dataset as a unified target domain. Experimenting with
artistic segmentation using multi-domain adaptation frameworks
such as OCDA [LMP*20], and DHA [PWSK20] was more chal-
lenging as the implementation of these methods is missing. Instead,
we used our method with the C-Driving dataset they use and report
the results in the supplemental material. We use the mean intersec-
tion over union evaluation method (mIoU) for all experiments.

5.2. Results

Table 1 summarizes our results. As can be seen, over all sub-
domains, as well as on unseen art styles, our method outperforms
the alternative methods for semantic segmentation on artistic paint-
ings. Table 2 breaks down the semantic segmentation results in art
paintings by class and by artistic movement. As can be seen, the
availability of class data in a certain art movement can heavily ef-
fect the results on a specific class, which in turn can bias the aver-
age. For this reason we took care to equalize class distributions.

Some qualitative results are shown in Figure 7. These demon-
strate the improvement gained using our method for all four main
art movements and four challenging unseen art movements: Divi-
sionism, Fauvism, Ink & Wash and Rococo. More segmentation
examples can be found in Section 6 and in the supplemental mate-
rials.
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Method Realism Impressionism Post-Impressionism Expressionism Unseen DRAM

DeepLabV2 52.45 36.26 30.57 15.22 34.31 34.01
DeepLabV3+ 60.02 39.27 29.40 15.49 30.59 35.17
HRNet+OCR 52.47 36.50 40.77 20.01 34.56 36.84

AdaptSegNet 45.25 35.55 35.34 21.06 36.57 34.60
FDA 39.89 31.89 32.08 17.87 22.66 29.84
FADA 61.00 42.19 44.23 24.57 38.15 43.10
FADA + pAdain 62.85 44.47 45.02 23.92 37.58 42.92

Our Method \DC 58.83 42.26 42.35 24.59 39.20 41.65
Our Method \ST 62.74 43.99 44.44 24.36 41.44 43.87
Our Method 63.41 45.99 47.28 27.37 42.03 45.71

Table 1: Mean intersection over union (mIoU) for the test set of each sub-domain as well as for the whole DRAM dataset. We compare our
method to four semantic segmentation domain adaptation methods, and to our method without the domain confusion step (\DC) and without
style transfer (\ST). Please see details in Section 5.

Domain Background Bird Boat Bottle Cat Chair Cow Dog Horse Person P. Plant Sheep mIoU

DRAM 85.42 38.61 47.20 46.18 43.92 28.82 39.89 44.61 44.52 59.60 37.14 32.62 45.71

Realism 90.96 44.89 62.60 61.90 83.42 25.71 69.54 71.08 66.09 72.94 50.08 61.76 63.41
Impressionism 87.89 29.02 55.72 61.45 32.44 22.61 61.56 50.85 56.89 61.69 21.23 10.56 45.99

Post-Impressionism 84.26 36.69 46.81 57.95 44.24 41.47 21.00 52.51 52.76 67.94 46.80 14.92 47.28
Expressionism 77.93 28.45 20.70 29.63 10.55 16.38 15.10 17.08 32.91 43.05 26.23 10.49 27.37

Unseen 85.79 59.76 38.81 33.19 26.88 25.02 27.72 31.64 32.26 58.04 28.94 56.32 42.03

Table 2: A breakdown of the mIoU for each class and each movement using our method for semantic segmentation in art paintings. The
results can vary significantly also because of class occurrences in a specific movement.

5.3. Ablation Study

First, as can be seen in Table 1, comparing our method with and
without the style transfer components (see OurMethod\DC\ST)
shows clearly that augmentation helps close the domain gap. Sec-
ond, we can see that the domain confusion step improves the results
on all artistic movements as well as the unseen ones compared to
using only style-transfer augmentation (OurMethod\DC\ST).

We further study the effect of using our sub-domain training vs.
training on the full dataset, and using different style-transfer set-
tings for augmentation. We used style transfer with two settings:
Using the entire DRAM training set and using each of its sub-
domains separately to apply style transfer on the source data. We
evaluate the effect of such style transfer when training DRAM as a
single domain and when training sub-domain adaptation. The abla-
tion study results can be found in Table 3.

As can be observed, using a unique augmented source for train-
ing each sub-domain proves to be more beneficial than using a
single DRAM-augmented source. Specifically, using separate aug-
mented source datasets with multi-domain adaptation achieves the
highest improvement of 2.61% above previous approaches, 8.87%
above the highest baseline, and 11.7% above the DeepLabV2 base-
line for the entire DRAM test set. In addition, our approach im-
proves each sub-domain result by up to 2.8% and is especially
useful for the more challenging sub-domains. Another important
aspect is the superiority of our approach on unseen art styles. Our

results clearly show that our inference method achieves better adap-
tation for unseen art styles – all multi domain-inference results im-
prove on previous approaches. Our method improves unseen data
results by up to 3.88% above previous approaches, 7.47% above
the highest baseline, and 7.72% above the DeepLabV2 baseline.
This indicates that using style transfer and multi-domain adapta-
tion helps achieve a more general model with better understanding
of different art concepts and styles.

Another important aspect presented in Table 3 is that using the
entire DRAM training set for augmentation is not effective. For
both domain adaptation and multi-domain adaptation approaches
using the entire DRAM training set for stylizing the source dataset
causes a significant drop in the results. Because of the diversity of
the artistic domain represented by DRAM, enabling the network
to learn specific features for its different sub-domains results in a
significant improvement.

6. Applications

Semantic segmentation is a fundamental task for understanding and
using images in a wide range of applications. We demonstrate two
applications of semantic segmentation that can be applied on fine
art paintings. The first application focuses on analysis of artwork,
and the second on synthesis.
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Figure 7: Qualitative segmentation results on DRAM dataset. The leftmost image is the input image, and the rest (from left to right) present
outputs of DeepLabV2 (baseline), Our method\DC (only the first step), Our full method, and ground-truth. Each row corresponds to a
different art movement (from top to bottom): Realism, Impressionism, Post-Impressionism, and Expressionism. The last two rows showcase
results from the unseen test set. From upper left to bottom right: Divisionism, Fauvism, Ink & Wash, and Rococo.

Domains
Augemntation

Style Data
Realism Impressionism

Post
Impressionism

Expressionism Unseen DRAM

Single Domain
(DRAM)

No Augmentation 62.85 44.47 45.02 23.92 37.58 42.92

DRAM 63.31 43.29 43.42 21.86 32.69 40.94

Multi
Sub-Domains

No Augmentation 62.74 43.99 44.44 24.36 41.44 43.87

DRAM 60.49 42.64 43.24 24.87 39.06 42.55

Target Sub-Domain 63.41 45.99 47.28 27.37 42.03 45.71

Table 3: Ablation study for our method using standard segmentation mIoU for evaluations. Results presented on training DRAM as a
single domain (Single Domain) or training each sub-domain separately (Multi Sub-Domains). For each of those we evaluate training with
no augmentations, source data augmented randomly by DRAM and source data augmented by each sub-domain separately (Target Sub-
Domains).
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Figure 8: A collection of dog segments from DRAM test set using our method. Such collections allow comparative analysis of artworks.

6.1. Comparative Collections

To better understand and analyze artworks in a specific artistic
movement or of a specific artist, comparisons are often performed
between different paintings. Using semantic segmentation, such
comparisons can be done not only at the painting level but also
on specific objects or items. Using semantic segmentation one can
gather all occurrences of a certain class from a given set of paint-
ings, extract them from their original images and place them side-
by-side for comparison. Figure 8 shows an example of gathering
dogs from a set of paintings in the DRAM dataset. To create such
a collection, we simply apply our method per painting and create
the semantic maps. We then apply connected components labeling
[Hor86] over all semantic maps. Lastly, we search for images that
contain the specific class (Dog) and cut the relevant part out of the
original painting. Such collections can also be used to detect and
analyze segmentation errors. On a more abstract level, they depict
the perception of a specific concept (Dog) by the network. More
collections can be found in the supplemental materials.

6.2. Semantic Guided Style Transfer

Style-transfer, where a photograph is turned into a stylized image
based on a chosen stylistic image, has become popular since its in-
troduction in the work of Gatys et al. [GEB15]. Most style-transfer
methods apply stylization on the whole image (e.g. Gatys et al. op-
timize the style loss over the entire image). However, it may be de-

sirable to break the image to regions, recognize objects and apply a
different stylization based on the semantics of the image’s content.

Champandard [Cha16] presents a method for semantic style
transfer, which requires input of two images (style and content)
and two semantic maps (one for each image). The semantic style
transfer method encodes the given images to Gram matrices and
divides each Gram matrix into patches to find a nearest neighbor
style image patch for every content image patch as suggested by
Li et al. [LW16]. In addition Champandard uses semantic map en-
codings to add a semantic property to the nearest neighbors patch
matching. This encourages the network to use patches taken from
the corresponding semantic areas in the optimization process, re-
sulting in a more accurate stylization per specific regions or objects
(e.g. person->person, horse->horse, see Figure 9).

In its current form, the semantic style transfer method requires
manual semantic maps, which can be challenging to create. Using
our semantic segmentation method we automate the process and
create an end-to-end framework for semantic style transfer that re-
quires only the content/style pair of images. We use our method to
create the semantic segmentation map of the style image, and the
baseline method for the content image. These maps are used to find
common classes and automatically match regions for the semantic
style transfer method.

Figure 9 presents some example results. As can be observed, the
specific style for each common class creates more coherent results,
even when the semantic segmentation maps are not perfect.
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Figure 9: Semantic style transfer examples. The content images were taken from PASCAL VOC 2012 dataset and the style images from the
DRAM dataset. (a) shows the automatically segmented network inputs and their corresponding segmentation outputs. (b) shows the result of
semantic style transfer and (c) the results of Gatys et al. [GEB15]. A closer look at specific semantic regions is shown next: (d) is a specific
region in the stylized output and (e) is the corresponding semantic region in the style image. Comparison of (d) and (f) shows the same region
without semantic stylization.

Figure 10: Examples of results of the Cubism movement (unseen
dataset). Although there seems to be a hint of recognition (class
recognition on the left and object localization on the right) re-
sults are unsatisfactory. We believe that achieving artistic geomet-
ric comprehension holds the solution for such geometrically chal-
lenging art domains.

7. Discussion

Semantic segmentation is a difficult challenge in general, and more
so in the artistic domain. Although our approach provides state-of-
the-art results on artistic paintings, there is still a large gap to the
ground truth segmentation, and room for improvement in future
works. Note that a gap also exists in the results of segmentation of
real photographs, although it is smaller. In the artistic domain the
challenge is greater because of stylization. Our method addresses
this by using the Gram-matrices based style feature space. Still,
Gram-matrices have a bias towards color and texture. For exam-

ple, in Figure 9, columns (c) and (f), optimizing the Gram repre-
sentation of the image without semantic guidance results in output
regions which preserve color but fewer brush strokes.

Painting also involves geometric stylizations. In many art move-
ments such as Cubism, Expressionism, and Surrealism, the content
of the image may be presented in a geometrically distorted fash-
ion. Human perception can easily understand such paintings and
their geometric structure, but this remains a challenge for com-
puter algorithms. Previous methods such as Yaniv et al. [YNS19]
achieved better performance by applying geometric augmentation
(applying Affine transformations on the images). We experimented
with a variety of geometric augmentation techniques and found
that they can assist the results in more stylistic movements such
as Post-Impressionism and Expressionism (providing an mIoU of
48.0, 27.92 instead of 47.28, 27.37, respectively). However, since
we did not observe an absolute improvement in all artistic move-
ments we decided not to apply geometric stylization by default in
our method, and to leave this aspect for future work.

7.1. Limitations

Some of our segmentation outputs suffer from artifacts that ap-
pear as strokes of circles (see Figure 10). The reason for this ef-
fect is the up-sampling manner of the low dimensional predic-
tion output of DeepLabV2. This happens as small prediction mis-
takes are exaggerated in the up-sampling process. Another effect
caused by up-sampling is missing fine details around edges of ob-
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jects. Small details disappear when down-sampled in the network,
and are thus not considered for prediction. To solve these effects
one can use larger images, but these may not always be avail-
able. DeepLabV3+ [CZP*18] offers a decoder module which de-
creases such effects, and using it along with domain adaptation may
provide better results in the future. Additionally, as HRNet+OCR
[SZJ*19; YCW19] generalizes better than both DeepLab models
over DRAMs unrealistic movements when trained on PASCAL
VOC 2012, using it with domain adaptation may also provide an
improvement in future results.

Our method holds a few limitations which are derived from the
above discussions. Since we do not consider geometric aspects to
train our method, more abstract art movements have a smaller suc-
cess rate than realistic ones. For more abstract movements such as
Cubism, this can result in unsatisfactory results (Figure 10). Our
method is based on prior knowledge of the movements of the train-
ing images to split them to sub-domains. In reality, art data may
not hold such information. It may be possible in the future to use
style feature spaces to automatically divide an input dataset to sub-
domains.

Our dataset holds some limitation related to the complexity of
gathering and annotating an art paintings segmentation dataset. As
many art movements originated around the 19th century, they do
not include modern classes like vehicles and electronic devices
which are more common in photographs. This leads our dataset
to settle for a relatively small number of classes. Another limita-
tion resulting from annotation complexity is that our dataset lacks a
pre-defined validation set. In the future we hope to expand DRAM’s
class coverage and gather more data as validation.

7.2. Conclusion

We presented a first semantic segmentation solution for artistic
paintings. Our unsupervised approach for handling artistic domains
achieves state of the art results in comparison to baseline methods
for segmentation as well as alternative unsupervised domain adap-
tation methods. We presented the DRAM dataset that includes di-
verse examples of figurative art paintings and presents a new chal-
lenge for domain adaptation because of large domain gaps and large
target domain diversity. We also showed that current domain adap-
tation approaches that focus on synthetic to realistic driving bench-
marks, do not produce the same quality results when trained on
realistic to synthetic benchmarks such as ours.

We defined a composite domain adaptation method that com-
bines sub-domain solutions. We believe this flexible approach can
be applied to different kinds of data domains by using better suited
augmentation networks and by using different domain adaptation
components.

While art creation applications have developed vastly in recent
years, the field of art perception has been less explored. Our work
takes a small step towards assisting the art perception of comput-
ers. We believe that more abstract geometry comprehension is a
challenging aspect which may be the key for future advancement.
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Appendix A: Appendix - List of Paintings

Figure 1 from top left:
Printemps. Charles Jacque. Wikimedia. Public Domain.
Fishing Boats, Calm Sea. Claude-Monet. Wikiart. Public Domain.
Grazing Horses. Franz Marc. Wikiart. Public Domain.
The Scream. Edvard Munch. Wikiart. Public Domain.
Cows in the Field. Constant Troyon. Wikiart. Public Domain.
Dun, a Gordon Setter Belonging to Comte Alphonse de Toulouse Lautrec.
Henri de-Toulouse Lautrec. Wikiart. Public Domain.
At the Races. Henri de-Toulouse Lautrec. Wikiart. Public Domain.
Two Yellow Knots with Bunch of Flowers. Ernst Ludwig Kirchner. Wikiart.
Public Domain.
Simpkin at the Tailor’s Bedside. Beatrix Potter. Wikiart. Public domain.
The Green Line. Henri Matisse. Wikiart. Public Domain US.
Three Ducks. Xu Beihong. Wikiart. Public domain China.
Nature Morte Cubist. Louis Marcoussis. Wikiart. Public Domain.
Japanese. Vasily Vereshchagin. Wikiart. Public Domain.

Figure 2:
Realism Batch:
A Greenland, or Gyr Falcon. Archibald Thornburn. Wikiart. Public
Domain.
A bouquet of flowers. Ilya Repin. Wikiart. Public Domain.
A Fisher Girl. Ilya Repin. Wikiart. Public Domain.
The Return from the Mill. Rosa Bonheur. Wikiart. Public Domain.
Brizo, a Shepherd’s Dog. Rosa Bonheur. Wikiart. Public Domain.
Portrait of Lucy Langdon Williams Wilson. Thomas Eakins. Wikiart.
Public Domain.
Gloucester Harbor. Winslow Homer. Wikiart. Public Domain.
Sheep on the Downs. James Ward. Wikiart. Public Domain.
Impressionism Batch:
Berck: Low Tide. Eugene Boudin. Wikiart. Public Domain.
Harnessed Horses. Eugene Boudin. Wikiart. Public Domain.
Mother and Child. John Henry Twachtman. Wikiart. Public Domain.
The red blouse. Berthe Morisot. Wikiart. Public Domain.
The Cage. Berthe Morisot. Wikiart. Public Domain.
Julie Manet and her Greyhound Laerte. Berthe Morisot. Wikiart. Public
Domain.
On the Beach. Eduard Manet. Wikiart. Public Domain.
Lilac in a glass. Eduard-Manet. Wikiart. Public Domain.
Post-Impressionism Batch:
Head of Lorette with Curls. Henri Matisse. Wikiart. Public Domain.
Evening in a Russian Village. Konstantine Ivanovich Gorbatov. Wikiart.
Public Domain.

Woman with necklace of gems. Pablo Picasso. Wikiart. Public Domain.
The picador. Pablo Picasso. Wikiart. Public Domain.
Arearea I. Paul Gauguin. Wikiart. Public Domain.
Self Portrait with mandolin. Paul Gauguin. Wikiart. Public Domain.
Aspidistra. Samuel Peploe. Wikiart. Public Domain.
Vase of Flowers. Eduard Vuillard. Wikiart. Public Domain.
Expressionism Batch:
Green Eye Mask. Amadeo De-Souza Cardoso. Wikiart. Public Domain.
Portrait of Francisco Cardoso. Amadeo De-Souza Cardoso. Wikiart. Public
Domain.
The Greyhounds. Amadeo De-Souza Cardoso. Wikiart. Public Domain.
Girl. Sitting Female Nude. Max Pechstein. Wikiart. Public Domain.
The Masked Woman. Max Pechstein. Wikiart. Public Domain.
L’artiste et sa Femme. Gustave De-Smet. Wikiart. Public Domain.
La vie du Ferme. Gustave De-Smet. Wikiart. Public Domain.
Leopold Zborowski. Amedeo Modigliani. Wikiart. Public Domain.

Figure 5:
Girl with Flowers. Daughter of the Artist. Ilya Repin. Wikiart. Public
Domain.
Winter (aka Woman with a Muff). Berthe Morisot. Wikiart. Public Domain.
Boats by the River Bank. Konstantin Gorbatov. Wikiart. Public Domain.
The Pagans. Oskar Kokoschka. Wikiart. Public Domain US.
Martin, a Terrier. Rosa Bonheur. Wikiart. Public Domain.
The Bridge over the Toques at Deauville. Eugene-Boudin. Wikiart. Public
Domain.
Royan, Charente Inferieure. Samuel Peploe. Wikiart. Public Domain.
The Carnival. Paula Modersohn Becker. Wikiart. Public Domain.

Figure 6:
Cormorant. Xu Beihong. Wikiart. Public Domain China.

Figure 7
Fishing Boats on the Deauville Beach. Gustave Courbet. Wikiart. Public
Domain.
The Green Parrot. Vincent Van-Gogh. Wikiart. Public Domain.
Artilleryman Saddling His Horse. Henri De-Toulouse Lautrec. Wikiart.
Public Domain.
The Dog (Sketch of Touc). Henri De-Toulouse Lautrec. Wikiart. Public
Domain.
Still Life with Bottles, Roderic O’Conor. Wikiart. Public Domain.
Still Life, Tulips and apples. Paul Cezanne. Wikiart. Public Domain.
Female Artist. Ernst Ludwig Kirchner. Wikiart. Public Domain.
Shepherdess with Sheep. Franz Marc. Wikioo. Public Domain.
Spinning. Giovanni Segantini. Wikiart. Public Domain.
Nu (Nude). Jean Metzinger. Wikiart. Public Domain US.
Cat. Xu Beihong. Wikiart. Public Domain China.
Woman, Child and Dog on a Road. George Morland. Wikiart. Public
Domain.

Figure 9
Amazone. Henri De-Toulouse Lautrec. Wikiart. Public Domain.
Head of the Dog. Claude Monet. Wikiart. Public Domain.
Oleanders and Books. Vincent Van-Gogh, Wikiart. Public Domain.

Figure 10
Female nude (study). Pablo Picasso. Wikiart. Public Domain US.
The Tower of Blue Horses. Franz Marc. Wikiart. Public Domain.
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