
EUROGRAPHICS 2022 / R. Chaine and M. H. Kim
(Guest Editors)

Volume 41 (2022), Number 2

CAST: Character labeling in Animation
using Self-supervision by Tracking

Oron Nir1,2 , Gal Rapoport1 , and Ariel Shamir1

1Reichman University , Israel, 2Microsoft Corporation

Abstract
Cartoons and animation domain videos have very different characteristics compared to real-life images and videos. In addition,
this domain carries a large variability in styles. Current computer vision and deep-learning solutions often fail on animated
content because they were trained on natural images. In this paper we present a method to refine a semantic representation
suitable for specific animated content. We first train a neural network on a large-scale set of animation videos and use the
mapping to deep features as an embedding space. Next, we use self-supervision to refine the representation for any specific
animation style by gathering many examples of animated characters in this style, using a multi-object tracking. These examples
are used to define triplets for contrastive loss training. The refined semantic space allows better clustering of animated char-
acters even when they have diverse manifestations. Using this space we can build dictionaries of characters in an animation
videos, and define specialized classifiers for specific stylistic content (e.g., characters in a specific animation series) with very
little user effort. These classifiers are the basis for automatically labeling characters in animation videos. We present results on
a collection of characters in a variety of animation styles.
Code and resources are available at: https://github.com/oronnir/CAST.

CCS Concepts
• Imaging and Video → Video Summarization; • Methods and Applications → Artificial Intelligence; Computer Vision;
Neural Nets;

1. Introduction

Recognizing and labeling characters in a given video is an impor-
tant task for many applications. It can empower media companies
to search, analyze, and reuse content in videos. Many current solu-
tions for real-life videos are based on face detection or people de-
tection. However, in the animation and cartoon domain this task is
more challenging. First, there is a wide diversity of styles and gen-
res in animation such as Manga, hand-drawn and CGI movies that
can have significant differences in appearance. In addition, they are
all very different from real-life videos. Trying to build one semantic
representation for all animation styles or relying on representations
constructed for real-life videos is problematic. Second, characters
in animation videos could be anything from a person to an ani-
mal or even an object like a talking candelabra. Relying on face
or people detectors is insufficient. Third, the same character can
change color, texture, style, and shape, even in the very same scene
(see Figure 1). Such variability means that the semantic represen-
tation of a character cannot be based on appearance alone, cannot
use natural images learned representations and must include several
possible instance variations of the same character.

In this paper we suggest learning a semantic representation suit-
able for character identification and labeling specific to a given an-
imation style using self supervision. As a first step towards gen-

Figure 1: The same character in animation can change color, ap-
pearance and even shape. Our challenge is to build a representa-
tion that can maintain its semantics and map all visual depictions
to the same identity.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.14464

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-8443-5014
https://orcid.org/0000-0001-5196-422X
https://orcid.org/0000-0001-7082-7845
https://github.com/oronnir/CAST
https://doi.org/10.1111/cgf.14464


O. Nir, G.Rapoport, & A. Shamir / CAST: Character labeling in Animation using Self-supervision by Tracking

eralization, we label an animated video dataset in various styles
and leverage it to refine an object detector and to define a base
latent representation for animation by refining a classifier in a su-
pervised setup. This step is performed once to better capture the
characteristics of animated media as opposed to natural videos for
detection. On the other hand, character labeling demands precision
for identification, and therefore a more style-specific representa-
tion. To adapt the representation towards specific animation styles
and move different instances of the same character closer in the
semantic space we introduce a self-supervised learning method.
The method takes an input video (e.g., one episode of a series or
a full feature film), segments its shots, and runs the base object de-
tector on this video. A multi-object tracker (MOT) is later applied
per shot to follow all characters in the shot through changes in ap-
pearance and shape. Next, triplets of examples are sampled based
on the characters’ tracklets, and are leveraged to refine the learned
representation using contrastive loss. The underlying hypothesis is
that two detected characters within the same tracklet share identity
while two that appears in the same frame do not. This alters the
semantic space towards representing the specific animated style,
where distances convey the identity of characters and not simply
appearance differences.

To illustrate the effectiveness of the new representation space
we use clustering to build more coherent and meaningful clusters
of examples for each character. We demonstrate the application
of this space for long-tail dictionary building of characters in a
video, where many characters, even if they appear sparsely, pop-
ulate the dictionary. We also use this representation to define more
effective animated character classifiers, and demonstrate their use
for dense identification and labeling of characters on unseen test-
videos. Hence, we call our method CAST: Character labeling in
Animation using Self-supervision by Tracking.

2. Related Work

Recent advancements in deep neural networks applications for var-
ious computer vision tasks like object detection and facial recog-
nition have matured to solve problems at an industrial scale. How-
ever, specific domains with less available data, like animation and
art, many times require a different approach [OON∗18, YNS19,
TOYA18].

Animated character recognition has been addressed with ma-
chine learning models before. Yu et al. [YS11] have suggested a
fuzzy diffusion distance as a cartoon similarity metric for recog-
nition and clustering purposes achieving up-to 77% accuracy, us-
ing Kuhn-Munkres algorithm, on a proprietary dataset with 60
classes. Zhang et al. [ZHEL∗13] aimed at detecting IP viola-
tions and piracy with Scalable-Shape Context and Hough Voting.
Nguyen et al. [NRB17] suggested a convolutional neural network-
based (CNN) comic characters detector for a comic book recog-
nition problem. They focus on a binary task of character detec-
tion and have reported 92% precision. They have based their detec-
tor on the YOLO-V2 detector by Redmon & Farhadi [RF17]. Our
work identifies characters in video, that introduces higher charac-
ter variance compared to static comic books. Chu et al. [CL17]
have suggested a CNN based model for detecting Magna faces
in grey scale. They have addressed this challenge and taken the

approach of using a joint CNN for bounding box regression and
non/character classification on candidate regions extracted using
selective search. Their method reached 66% F1 score on the
MAGNA109 dataset [FOY∗16]. Ogawa et al. [OON∗18] have used
an SSD300 architecture for the same detection problem on this
dataset and reached an average precision of 67% and 79% on face
and body, respectively.

Landmark detection in art was also addressed by [YNS19,
JAA18] and emotion recognition in animation by [Sta18, YZL19].
Caricature recognition was benchmarked by Huo et al. [HLS∗17]
suggesting that the artistic aspects embedded in a caricature chal-
lenges the approach of augmenting real-life images as they impose
a significant domain difference.

Human character identification that works on realistic videos
usually rely on detection and clustering of faces or hu-
mans [ZXLH09,ACT16,AWS∗18,CZD∗19]. Naming of characters
is usually done by searching the web or using social media. Since
animation resources and datasets are less common, the only manual
part in our method is naming characters for identification.

Clustering of real-life faces is yet another well researched field.
Zhu et al. [ZWS11] have suggested a rank order distance to group
similar instances of the same person. Schroff et al. [SKP15] have
introduced FaceNet and the triplet-loss for projecting images onto a
latent space that quantifies similarity in a supervised-learning man-
ner. Recently, Somandepalli et al. [SHN21] used tracking of faces
in a photo-realistic video, followed by clustering and verification
using MvCorr [SKJ∗19] and Improved Triplet [ZGW16] to adapt
available face representation data to perform better on racially di-
verse images following [STSS19]. Aneja et al. [ACF∗16] have sug-
gested DeepExpr model for facial expression recognition for mul-
tiple styles. Tsubota et al. [TOYA18] have used the MANGA109
dataset for manga face clustering. The approach they took for gen-
eralization of deep embeddings adaptation on the inferred manga
comics was based on deep metric learning (DML) inspired by the
work of Zhang et al. [ZLLT16]. They reached a normalized mu-
tual information (NMI) of 71% and accuracy of 64% based on
manga domain specific priors e.g., co-occurrence per comic scene.
The ‘k’ number of characters was assumed to be given and was
not estimated. The underlying CNN architecture was ResNet50
[HZRS16]. An ablation study suggested that without the page in-
formation the NMI drops to 67% and the accuracy to 58%. This
indicates the importance of a temporal analysis in our challenge.
Shen et al. [SEA19] have addressed a similar problem, discover-
ing visual patterns in art collections with spatially consistent feature
learning also known as ArtMiner. They have suggested a similar-
ity metric based on ResNet18 for artwork elements to automati-
cally recognize copied pieces of work created in different styles
e.g., oil, pastel, water-color, etc. They have reported 88.5% ac-
curacy on LTLL [FTT15] and 85.7% mAP on Oxford5k [Phi07].
Recently, [ZZR∗20] have published iCartoonFace dataset for face
detection and identification in animated images. While anthropo-
morphized faces tend to have the same facial features people have,
an animated character’s body shares less common attributes and
perhaps makes the generalization a more challenging task.

The closest prior work to ours is [SKGN18] who built a sys-
tem that aims at finding the main cast of a given movie which

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

136



O. Nir, G.Rapoport, & A. Shamir / CAST: Character labeling in Animation using Self-supervision by Tracking

Figure 2: CAST self-supervised representation learning pipeline includes: automatic shot segmentation, detection, multi-object tracking, and
contrastive-based refinement to define the unique semantic embedding for an animation style.

is termed ‘unsupervised discovery of character dictionaries’ . Our
work not only builds the dictionary but allows to create classifiers
that can recognize and index characters at frame-level and gener-
alize to additional episodes of a given series. Their work applied
the MultiBox detector on uniformly sampled frames followed by
an object tracker, ImageNet FC7 layer for embeddings and Afin-
ity Propagation for clustering. Their overall dictionary F1-Score is
72% and 70% cluster purity on a dataset of eight videos of SAIL
AMCD. To evaluate the over/under clustering performance they’ve
measured the median number of clusters per character which was
3. We consider this paper as our baseline for dictionary building
and compare our results. Kim et al. [KLS∗20] have addressed the
same task. Their main contribution was a character detector that
adapts the animation style with a region-based Faster R-CNN fol-
lowing the work of [WCGV19]. The rest of their algorithm aligns
with [SKGN18]. However, since their ABCD data set is propri-
etary and they do not report cluster purity and median clusters per
character it was difficult to compare to.

3. Representation Learning

An overview of the CAST representation pipeline is represented in
Figure 2. First, the video is segmented to shots according to the
method of Hua et al. [HLZ04]. Next, frames are sampled consis-
tently on which our character detector is applied, providing charac-
ter bounding box proposals. These proposals are then tracked while
those who share a tracklet should appear closer in the embedding
space than other proposals in the same shot for they belong to dif-
ferent characters. A set of triplets examples are then sampled and
used to further refine the basic mapping network for the specific
style of animation. This representation is later used for clustering,
dictionary discovery and classifier definition of characters in this
animation style.

3.1. Data Acquisition

Building a CNN-based semantic representation must address both
the scale and diversity of the data in the domain. Thus, we gathered
data sets of cartoon and animated content from various sources such
as media companies and the web. For the basic TRAINING dataset,

we collected 174 videos in 61 different styles including Anime,
CGI, 2D cartoons, and more (see supplemental material). Exam-
ples of series collections in this dataset are: Blender (3D CGI),
legacy Looney-toons videos published under public domain (2D
hand drawn in color as well as gray-scale), Manga of various styles,
Indian/Korean animated films, and more. From these videos more
than 118K frames were extracted and annotated manually. Charac-
ters in each frame were marked with a bounding-box and named
(using Microsoft’s UHRS - like [FCH∗19]). This resulted in more
than 250K ground-truth bounding-box instances of 549 distinct
characters.

We used this basic TRAINING dataset to define two neural net-
works: the first was trained to detect basic proposals for animated
characters in animation videos while the second was trained as
the basic mapping of proposals into a semantic embedding space,
which is later refined using self-supervision for each specific ani-
mation style representation.

For testing the domain-adapted detector and selecting a clus-
tering algorithm, we used a second TEST data set. This set con-
tained 50 videos with a total length of 24 hours and 681 characters.
This dataset was collected from YouTube with various styles e.g.
Gaming, amateur and professional productions content, and vari-
ous other genres.

For evaluating the dense character identification application, pre-
sented later, we collected a third, EVALUATION, dataset from seven
different cartoon series, two episodes each. One episode was used
to guide the self-supervision and train classifiers, and the other
was manually labeled and used for testing the classification results
based on the first episode. This data set is 11 hours long and in-
cludes 49 characters. More details on the three sets can be found in
Table 1. Note that the three datasets do not contain any overlap i.e.,
no character, episode or series appears in more than one dataset.
We plan to publish a labeled dataset for future work comparison.

We also used the SAIL AMCD dataset [SKGN18] to evalu-
ate CAST for unsupervised discovery of character dictionaries and
compare our results to [SKGN18]. This set contains eight evalua-
tion videos that are full-length feature films of different animation

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

137



O. Nir, G.Rapoport, & A. Shamir / CAST: Character labeling in Animation using Self-supervision by Tracking

DATASET ROLE STYLES[#] VIDEOS[#] KEYFRAMES[#] HOURS CHARACTERS[#] BOXES[#]
TRAINING 61 174 118,751 65.6 549 257,706
TEST 50 50 38,821 24.1 681 90,325
EVALUATION 7 14 17,583 11.0 49 50,300

Table 1: Statistics for the TRAINING, TEST, and EVALUATION CAST datasets.

styles. The videos were trans-coded to standard HD and sampled at
4 FPS.

3.2. Basic Animated Character Detection

Due to the high variance in characters’ appearance, and the fact that
animated characters are not necessarily humans, a simple person
detector for character proposals will not suffice. Our base detec-
tor is the YOLO V2 generic object-detector architecture [RF17]
which was originally trained on ImageNet [DDS∗09] with millions
of images. We use our TRAINING set to fine-tune YOLO’s Per-
son class for 20 epochs and use it as a binary classifier, character
vs. non-character. The person detector was chosen as many anima-
tion characters still tend to have a human-like attributes. Data aug-
mentation methods were applied to avoid overfitting randomizing
both vertical and horizontal flip as well as resize with factor range
[0.5,2.0]. We also tried to fine-tune a different architecture based
on Faster-RCNN [RHGS15], which is a two-pass CNN. However,
we found our architecture, based on YOLO’s fast low compute one-
pass detector, to be faster and produced higher average precision.
We compare this detector to the following alternatives: using the
YOLO V2 single class person detector, and using all combinations
of the classes: Person, Animal, Mammal, and Toy as a detector. The
detectors’ effectiveness was evaluated in terms of Average Preci-
sion (AP) at a 50% Intersection over Union (IoU) using the TEST

dataset. Our basic character detector has reached an AP of 61% sig-
nificantly outperforming the YOLO V2 person detector (AP=50%)
and the combined classes version (AP=50%) in a wide range of
animation styles.

3.3. Base Embedding Network

Feature maps in deep layers of networks such as VGG [SZ15] and
ResNet18 [HZRS16] have been shown to represent high-level se-
mantic meaning in many previous works. However, such models
were trained mostly on natural images, therefore could misinter-
pret animated content. Similar to the above approaches, to learn a
representation suited for our domain, we use our TRAINING dataset
to fine-tune classification networks and use the feature map of its
deepest hidden layer as the representation of the base embedding
space. The TRAINING set containing 549 different characters was
heavily long tailed: 40% of the characters have less than 50 sam-
ples. Therefore, we have balanced the dataset during training by
repeating rare characters’ images, such that per epoch, each charac-
ter has at least 50 samples. To avoid overfitting, data augmentation
transformations have been applied on the training data at random
using the following methods: crop resize, Affine transform, color
jitter, and horizontal flip.

We compared different configurations of three different ar-

Figure 3: RoC curve per basic semantic embedding backbone
architecture: ResNet18, ResNet50, ArtMiner, SEResNeXt22k (the
original network), our network fine-tuned for 40 epochs as well as
a further trained version to illustrate the convergence.

chitectures: ResNet18 [HZRS16], SEResNeXt [HSS18] and Art-
Miner [SEA19]. SEResNeXt was found to perform best and there-
fore the last average pooling layer was used (20th squeeze and exci-
tation block). Yielding vectors of size 2,048, as the basic semantic
representation for animation characters bounding boxes.

To evaluate this representation, we measured how well this rep-
resentation conveys semantic similarity. We built a test-set by cre-
ating a balanced dataset of 600k pairs of similar and dis-similar im-
ages of characters from the TEST dataset. We defined a similarity
measure for such pairs to be the cosine similarity of our embed-
dings of the extracted boxes. The pairs were ordered according to
their similarity and addressed in a binary classification design with
a RoC curve. In Figure 3 we plot the curves of the various tested al-
ternative representations. Our representation, using an SEResNeXt
back-bone, has outperformed all alternatives on the test data. We
further found that training the network for more than 40 epochs
does not provide much gain.

3.4. Self-Supervision

Similar to previous works, e.g. [KLS∗20], we strive to refine the
semantic space for each specific animation style. Given a specific
animation style (for instance, an episode of an animation series),
we fine-tune the base embedding network towards this style, using a
novel self-supervised approach which combines multi-object track-
ing with contrastive learning (triplet margin loss [SKP15,BRPM16]

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

138



O. Nir, G.Rapoport, & A. Shamir / CAST: Character labeling in Animation using Self-supervision by Tracking

Figure 4: Triplets examples illustrates the Positive, Anchor, and
Negative triplets. The method aims for trivial and non-trivial ex-
amples while it is still resilient for erroneous and non-character
examples.

with margin=1.0). Our main hypothesis is that two samples from a
single tracklet can be used as positive and anchor examples (com-
ing from the same character but in different frames), while another
character proposal from the anchor’s frame can be used as a nega-
tive example (coming from the same frame but different character).

We sample 10k triplets and refine the base embedding network
for 10 epochs using AdamW [LH19] (LR= 2 ·10−5, batch size=20,
λ = 10−4, γ = 0.1, m̂t = 0.9). This setup applies for any specific
animation style in PyTorch [PGC∗17]. Tracking is performed with
a classic multi-object tracking (MOT) approach of max-flow-min-
weight algorithm inspired by the works of Zheng et al. [ZLN08]
and Wang et al. [WWW∗19]. A sparse network based on detection
is constructed, Next, an optimization algorithm finds the optimal
flow in the graph that maximizes its MAP representation. Lastly,
the tracks are derived from the flow function using a greedy shortest
weighted path algorithm as described next.

To construct the network we include an artificial source and
sink nodes, and each detected bounding box is considered as two
nodes (‘in’ and ‘out’) with a linking edge weighted by its detec-
tion confidence. Skip connections are added every FPS frames to
overcome temporary occlusions. The edge weight between detec-
tions of neighbor (or skip) frames is weighted by the following six
factors: (1) Time gap proximity w.r.t. the sample FPS, (2) PIoU =
0.5(IoU+1) so disjoint boxes could potentially be linked, (3) Scale
difference ratio, (4) Euclidean distance in pixels of their centers, (5)
semantic similarity using the original embeddings, and (6) scale-
weighted center distance as characters which are closer to the cam-
era may have higher relative angular velocity. The six factors above
are aggregated together using a geometric weighted average into a
match likelihood measure. Their corresponding weights are (1.0,
1.5, 1.5, 2.0, 3.5, 4.5). Each edge in this network is considered
as a unit capacity network and solved with the interior-point algo-
rithm as a Linear Programming (LP) representation [AA00]. Since
the constraints matrix is totally unimodular the LP solution is also

Figure 5: Visualizing the first two principal components projec-
tion of our semantic embedding space before and after the Self-
Supervision. We demonstrate the effectiveness of our method as a
representation learning technique.

a valid integer programming solution [ZLN08]. Each tracklet so-
lution per shot is greedily derived from the flow function using a
weighted DAG shortest path algorithm and its MAP tracklet prob-
ability is considered to be its significance. Tracks significance filter
threshold per shot is defined to be 10% of the shot’s most signifi-
cant tracklet.

The triplets gathering is performed by sampling a shot with at
least two tracklets, out of which a frame is picked, with at least two
proposals (bounding boxes). The first is used as an anchor while
the second is used as the negative example. Then, from the an-
chor’s tracklet, a third proposal is randomly picked as the positive
example. Figure 4 illustrates the some triplets types. Many standard
triplets are gathered using this method where a character preserves
its appearance in the positive pair and contrasted with a different
character. However, this method also captures non-trivial examples
in which the character itself changes its appearance or shape. The
two right columns in Figure 4 illustrate erroneous triplets that can
also be gathered using our method: the first is the results of errors
in tracking causing a wrong positive pair, and the second is an error
in the detector where non-characters (objects) are considered char-
acters. However, due to the large amount of triplets gathered our
mapping is resilience to such errors.

4. Semantic Clustering

A strong indicator for a meaningful representation is the ability to
cluster items in the semantic embedding space. Instances of the
same animated character, even visually different, should all map to
a relatively close position in the embedding space, while instances
of different animated characters, even if they are visually similar,
should be placed further away in the embedding space. Therefore,
if we cluster the bounding boxes in the embedding space, the results
should be coherent clusters of characters.

First, we demonstrate the effectiveness of our base embedding
network. We conducted an experiment, where we split the TEST

dataset to six subsets of various characters and used k-means clus-
tering in the embedding space. We use cluster purity [MRS08] as
our measure as opposed to clustering evaluation measures like NMI

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

139



O. Nir, G.Rapoport, & A. Shamir / CAST: Character labeling in Animation using Self-supervision by Tracking

Self- Clusters Pure Characters Labeled boxes
Supervision [#]↓ [%]↑ per video[#]↑ per video[#]↑
Before 28.7 70 7.0 396.2
After 20.0 90 13.1 599.3

Table 2: Clustering ablation study on our EVALUATION dataset.
The better algorithm has less Clusters to label, higher Pure per-
centage, more Characters per video, and as many Labeled boxes
per video.

and F-score, and evaluate the performance of the clustering quality
as a function of the number of clusters. We compared our embed-
ding with SEResNeXt22, ResNet18, ResNet50, and ArtMiner for
different values of ‘k’. This comparison highlighted the superiority
of our base embedding over the alternatives as for every value of
‘k’, the purity of clusters in our base embedding was significantly
higher. The full details of this experiment can be found in the sup-
plemental materials.

Next, we compared several clustering algorithms, namely k-
means, mean-shift, modularity maximization, affinity propagation,
DBSCAN agglomerative clustering, and spectral clustering on our
TEST dataset. We use purity [MRS08] and K-metric, which is the
geometric mean of the class purity and the cluster purity over the
contingency matrix [PRNZ∗11]. The two best performing were
DBSCAN and agglomerative clustering. They yielded a median
cluster purity of 96% and K-metric of 40%. We selected DBSCAN
as the basic clustering algorithm as it handles noisy character pro-
posals filtering inherently. The hyper parameters that govern the
confidence score for filtering were determined by grid search using
the TEST dataset to be λ1 = 0.275,λ2 = 0.4. To optimize clusters
purity, we binary search for the ε parameter of DBSCAN so that
it maximizes the Silhouette times the non-noisy proposals in the
range 25≤ k≤ 60. This unsupervised criterion balances purity and
cluster size.

Since we optimized for recall during the proposal detection
stage, there are still many outliers that are non-characters among
the proposals. We remove outliers inside each cluster and remove
low-confidence clusters altogether. This filtering is based on a con-
fidence score that was calculated as a product of the detection’s
confidence and a squared exponential kernel of the sample’s dis-
tance to the cluster center:

kSE(x,µ) = exp

(
− (x−µ)2

λ2
1

)
where µ is the cluster’s median, x is the sample, and λ1 is a hyper
parameter. A sample is considered an outlier when its confidence
score is less than the cluster’s Q25−λ2 · IQR where Q25 is the 25th

percentile, IQR is the interquartile range and λ2 is another hyper
parameter. Finally, clusters with average centers that are up-to 0.7
cosine-similarity are merged back together.

Our combined MOT and contrastive-loss based self-supervision
allowed further representation enhancement. The performance
analysis using the EVALUATION dataset shows that 90% of clus-
ters created after the fine-tune stage were totally pure across all
styles, while each character has a median of 1.2 clusters (lower

is better). This demonstrates a significant improvement over the
base-embedding as the clustering algorithm has yielded 30% less
clusters for the same video i.e., lower over segmentation. These
clusters captures 13.1 characters per video instead of 7.0 i.e., 87%
better while these clusters have higher purity. (See Table 2 and an
illustrative example in Figure 5). As can be seen in Table 3, for
all different style of videos in our EVALUATION set, the cluster-
ing quality measured using silhouette increases as a result of our
self-supervision refinement.

5. Applications

5.1. Long-Tail Dictionary Construction

The first step towards automatic labeling of characters in anima-
tion movies is automatic characters cast discovery. In this task, the
goal is to build a dictionary of characters appearing in the movie.
For any given animation style, we first use our automatic method
to learn the refined mapping tuned to this style. Then, for each
new episode or movie in this style we use our detection pipeline
to gather character proposals and map them to the semantic space.
We then cluster and filter the proposals in this representation space.
This representation promotes purity so that each cluster will con-
tain proposals belonging to a single character and encourages only
a small number of clusters (preferably one) representing the same
character. Then, to build the dictionary we create an entry for each
significant cluster.

Proposals Creation: To reduce the chance of a miss-detection,
the character proposal detector is tuned to be recall oriented as
False-Positive detection is recoverable downstream while False-
Negative is not. Only bounding boxes with less than 20% confi-
dence or having a size smaller than 2.5% of the frame are filtered
out at this stage. This causes repetitions of semi-identical propos-
als, i.e., bounding boxes with highly similar content. Hence, we
apply a screening procedure to remove duplicate proposal. Each
proposal is represented by an Edge Directional Histogram (EDH)
feature vector of size 116 [WZM12]. The 64-dimensional color
and texture features ensures global similarity between two pro-
posal and the 4 · 13 EDH features ensures spatial similarity with
detailed constrains by edge. The EDH was computed using a Canny
edge detector with a 7× 7 Gaussian convolution kernel. Next,
the cosine-similarity was computed between all pairwise propos-
als, and an undirected graph was built with proposals as nodes
and cosine-similarity as edge weight. Edges of weight lower than
0.995 were pruned. Finally, cliques were found in this graph us-
ing [BK73, CK08], and each clique was aggregated into a single
proposal.

Characters Selection: To build the dictionary we first cluster all
candidate bounding boxes and filter them as described in Section 4.
Next, we select every cluster and compute the median vector of all
proposals in the cluster. We pick the proposal closest to the median
as the representative and insert it to the dictionary. We report the
performance of our algorithm for unsupervised discovery of char-
acter dictionaries both on our EVALUATION dataset and on SAIL-
AMCD, comparing our results to [SKGN18]. Although [KLS∗20]
reported similar results to ours, their dataset was not available and
they did not report the aggregated purity of their clusters.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

140



O. Nir, G.Rapoport, & A. Shamir / CAST: Character labeling in Animation using Self-supervision by Tracking

Self-Supervision #1 #2 #3 #4 #5 #6 #7 Avg.
Before 0.156 0.258 0.166 0.285 0.231 0.382 0.247 0.246
After 0.320 0.423 0.364 0.601 0.248 0.520 0.332 0.401
Silhouette gain↑ 0.164 0.166 0.199 0.317 0.017 0.137 0.085 0.155

Table 3: Self-Supervision introduces a significant gain of 0.155 (P-val=0.0047) to the Silhouette score on our EVALUATION dataset.

SAIL AMCD Video
/Method avg. score

Precision
[%]↑

Recall
[%]↑

F1
[%]↑

Purity
[%]↑

Med. exemplars
per character↓

Avg. exemplars
per character↓

Additional
characters [#]↑

Cars 2 76.9 75.0 75.9 98.1 1.00 1.286 13
Free Birds 100.0 90.0 94.7 98.6 1.00 1.360 15
Frozen 96.0 100.0 98.0 99.5 2.00 2.000 9
Dragon 2 95.0 91.7 93.3 94.7 1.00 1.444 6
Shrek Forever After 89.7 90.0 89.8 90.5 1.00 1.679 18
Tangled 86.4 77.8 81.8 84.2 1.00 1.714 5
The Lego Movie 85.2 100.0 92.0 95.0 1.00 1.522 11
Toy Story 3 93.5 77.8 84.9 99.8 1.00 1.483 11
CAST (ours) 90.3 87.8 88.8 95.1 1.125 1.561 11.0
Somandepalli et al. 81.0 65.2 72.2 70.3 3.00 N/A N/A

Table 4: Unsupervised Discovery of Character Dictionaries comparison on the SAIL AMCD test videos.

On our CAST EVALUATION dataset, yields 16.8 clusters per
video, when the average number of characters per video is 13. On
average the cluster purity was 98.5%. The precision, recall and F1-
score of these dictionaries are 91.8%, 83.1%, and 86.6%. A visual
illustration of the power of self-supervision refinement can be seen
in Figure 1. Not only that all the different manifestation of this char-
acter (including kid/toaster/cat/broccoli) were mapped to the same
cluster, but this cluster, including 94 bounding boxes, was 100%
pure.

Comparing CAST with the work of Somandepalli et
al. [SKGN18] on the SAIL AMCD test set (see Table 4).
CAST outperforms the state of the art in all metrics and indicates
16.6% improvement in F1 as well as 24.8% in purity. Moreover,
CAST allows to build a much larger dictionary containing twice as
many characters that were not chosen in the original evaluation as
lead characters (see examples of dictionaries in the supplemental
material).

5.2. Defining Classifiers for Characters

The second step towards automatic labeling of characters in ani-
mation movies is the construction of dedicated classifiers for each
character in the movies. The key idea is to gather enough examples
that are diverse enough for each character to build a training set for
effective learning. Using CAST, the dictionary is presented to the
user for naming. This allows us to use all the proposals in every
named cluster as training data for classifiers. This also allows us to
merge clusters when the same character is found more than once
in the dictionary. Lastly, this also allows us to filter noisy clusters,
where several characters appear in the cluster. We do this by pre-
senting a number of examples from each cluster to the user and
validating that they are all examples of the same character.

Using this method, a specialized training set for each character

can be constructed with minimal user effort. These training sets are
then used to train specialized classifiers as needed. Moreover, when
processing a new video, the user can choose to apply the existing
classifier model for automatic identification of some characters or
add additional new characters by further naming clusters of uniden-
tified characters.

Training Classifiers: All the named clusters are merged into
one training-set that allows training a multi-class image classifier
for the specific animation styles. In our experiments we fine-tune a
state-of-the-art CNN classifier SEResNeXt [HSS18] for 40 epochs
using typical augmentation operations such as rotations and mirror-
ing.

To best train a mutli-class classifier, it is important to introduce
an additional class of negative examples which comes from the
same animation style. Typically, these examples are cropped from
the background of processed images. Since our model is aimed at
working in the wild on new series and new animation styles, we
devised a method to create negative examples automatically per
animation style. The base detector that marks characters bounding
boxes on keyframes is biased for recall. Hence, our hypothesis is
that all other pixels can be considered background. The challenge
is to find large enough sub-frames that do not intersect with the
characters’ bounding boxes (examples available in the supplemen-
tal materials). Finding the largest empty rectangle (LER) is a known
problem [AF86]. In practice, we devised a recursive algorithm that
extracts more than a single empty rectangle per keyframe, not nec-
essarily the largest ones, but with some minimal width, height, and
area at a runtime of O(n2) where n is the number of proposals.
For the algorithm and the proof see supplemental materials. The
resulting classifier can then be used on other videos of the same
style (e.g., other episodes of the same animation series) to classify
known characters. Still, new characters can appear in such videos,
as well as some known characters with different appearances. In

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

141



O. Nir, G.Rapoport, & A. Shamir / CAST: Character labeling in Animation using Self-supervision by Tracking

Figure 6: ‘Bob the builder’ confusion matrix (normalized rows).

such cases, our method can be applied again with the same proce-
dure of clustering and naming but only on the unknown proposals
of any new video processed, to create new training examples and
re-train the classifier further.

Experiments: To evaluate the effectiveness of CAST to define
specialized classifiers for animated characters identification, we use
the EVALUATION set that combines two episodes of seven different
animation series. The animation styles include CGI, 2D, and Cutout
techniques, with characters including humans, animals, dinosaurs,
cars and tractors. For each series, we denote one training episode
to create the dataset and train a classifier using CAST, and one test-
episode, where several character proposals were manually selected
and named for evaluation.

Statistics on CAST results for the seven train-episodes can be
found in Table 5 and the supplemental material. As can be seen,
CAST allows defining classifiers for animation characters by nam-
ing (or discarding) just a few clusters from the dictionary instead
of manual labeling and filtering thousands of proposal bounding
boxes. Cluster Purity is reported both before and after the noisy
cluster filtering under ‘General Purity’ and ‘Relevant Purity’ re-
spectively. ‘Fireman Sam’, staring four firemen figures which wear
the same uniform sometimes clustered together and damage the
general purity.

The results on the test-episode of each animation style can be
found in Table 6. There are differences in the number of appear-
ances of the different characters in the seven test-episodes. We ran-
domly picked, on average, 22 instances of each character in the
test-episodes, creating 1,742 characters of ground-truth test data.
The total results yielded a mAP, F1-Score, and Accuracy of 92%,
88%, 89% respectively. The best performing image classifier was
created for the series ‘Bob the builder’ with Accuracy and F1-score
of 97.4% and 97.4% (see the confusion matrix in Figure 6, and the
matrices of all series in the supplemental materials). The least per-
forming image classifier was created for the series ‘The Land Be-

fore Time’, still achieving mAP and F1-score of 82.4% and 74.2%
on 8 characters.

We further tested two series by annotating all proposal bounding
boxes in the test-episodes of the series as ground truth. In this case,
many proposals do not contain one of the characters and are marked
as ‘unknown’. In the supplemental materials we show the confusion
matrices in these cases. The matrices show almost no confusion
among characters, but there are some mis-classification between
characters and non-characters. There are fewer false-positive exam-
ples where non-character proposals are classified as characters and
more false-negative examples. Error analysis on the false-negative
cases revealed that many of them contain character parts such as
hands, legs etc. These proposals were identified and annotated as
characters by the human annotator but are still a challenge for au-
tomatic classifiers. This may be an avenue of future research on
identifying partial and occluded animated characters.

We confirmed an underlying assumption that training a clas-
sifier on different animations, consist of different characteristics,
such as style, texture, colors, geometry as well as coarser and fine-
grained characteristics, would yield different classifiers. By allow-
ing a self-supervised training per animation, we demonstrated an
overall improvement. Introducing a novel animation specific clas-
sifier framework, has significantly improved the classifier’s quality
metrics (Purity, F1-Score, etc.). Moreover, it resulted a substantial
reduction of 56.6% in the number of clusters per character. That is,
significant reduction in the annotations process.

Class-per-cluster vs. Class-per-character: The method we
used above aggregates all clusters that share the same label into
a unified class for training. An alternative design can create a class
per cluster to train the multi-class classifier and consolidates the
class name results after the prediction. For instance, if the charac-
ter Bob from the series ‘Bob the builder’ has two dictionary entries,
then their clusters will be used separately in the classifier training
as Bob-1 and Bob-2, but both will be mapped to Bob after the pre-
diction. The hypothesis behind this alternative design is that the
feature space might not be connected in terms of the label distribu-
tion in the high dimensional space. Consolidating all labeled data
into the same class may introduce an unnecessary error. Alterna-
tively, the clusters themselves encode connected (or convex) sim-
ilarity regions that can represent the character in some particular
settings like wearing specific clothes. To test this hypothesis a two-
tail paired t-Test was conducted to compare the F1-score change
in the class-per-character baseline design vs. the class-per-cluster
alternative hypothesis. The unit of analysis was a character using
the EVALUATION dataset (N=49). We found that the our choice of
merging clusters performed 5.5% better (higher) than the alterna-
tive (P-value=3.4%). To conclude, our learned embedding-model
seemed to encode coherent regions in a way that a consolidated
class design would leverage better than separated classes per clus-
ter.

5.3. Dense Character Labeling and Statistical Analysis

Once classifiers are defined for a specific animation style (e.g., se-
ries), any new video with the same style can be densely annotated
using the classifiers on every frame. Some results showing these ex-
amples are shown in the supplemental video. Note that these were

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

142



O. Nir, G.Rapoport, & A. Shamir / CAST: Character labeling in Animation using Self-supervision by Tracking

Detected Clusters Number of Clusters per Boxes per Relevant General
Series (credit ©) proposals to name characters character character Purity[%] Purity[%]
1. Bob the builder (HIT) 2,648 20 10 1.7 26.3 95.5 95.5
2. Fairly odd parents (Nickelodeon) 4,215 17 18 1.0 44.3 99.1 99.1
3. Fireman Sam (HIT) 4,633 14 14 1.5 35.4 97.2 79.1
4. Floogals (Jellyfish Pic.) 4,163 4 4 1.0 92.8 99.2 99.2
5. Garfield (Mediatoon) 4,959 13 4 1.4 53.5 99.5 99.5
6. Southpark (Viacom) 5,639 25 21 1.0 16.6 100.0 93.8
7. Land before time (NBCU) 4,795 11 8 1.5 54.5 98.8 98.8

Table 5: Training videos statistics of seven different animation styles in our EVALUATION set that were used for building the classifiers.
CAST brings down user effort bounding boxes naming by two orders of magnitude, while still creating a sufficient training-set.

Series name Characters [#] Precision [%] Recall [%] Accuracy[%] F1 [%] Support [#]
1. Bob the builder 6 97.4 97.4 97.4 97.4 230
2. Fairly odd parents 6 93.8 92.3 92.3 91.9 246
3. Fireman Sam 14 73.1 66.6 70.1 66.7 490
4. Floogals 4 94.7 92.6 93.9 92.6 163
5. Garfield 4 93.7 87.3 87.3 88.0 165
6. Southpark 7 94.5 94.1 94.1 94.2 104
7. Land before time 8 92.2 91.3 91.3 91.3 344
Total 49 91.3 88.8 89.5 88.9 1742

Table 6: Results on test videos per style of our EVALUATION dataset.

created without temporal coherency for tracking - only running the
classifiers on every frame and automatically labeling each character
classified.

Using CAST, creative studios and media companies can benefit
from a service that can automatically index and expose information
both at a video and series level. Labeling each frame in the video
with the characters that appear allows to gather important statistics
on episodes as well as whole series. This can assist animation pro-
ductions in data management especially as more and more anima-
tion content is being created. For example, gender bias has become
an important topic which affects us daily. By knowing the charac-
ters’ gender and running a dense identification we can tell what is
the screen time of each character and indicate, for instance, that the
‘Cars 2’ movie introduces a gender bias of 78% Male screen time.

6. Discussion

We have presented a method to learn a style-specific seman-
tic representation more suitable for animated content using self-
supervision. The self-supervision is based on multi-object tracking
and building a dataset of triplets to refine a base mapping to the
specific style.

Using clustering in the semantic representation space allows us
to automatically build character dictionaries for animation movies,
to gather training sets for multi-class classifiers of characters, and
eventually to automatically perform dense labeling of characters
in animation videos. Such a solution allows users and media com-
panies to analyze, reuse, search, and monetize animation content
much more easily.

Limitations and Suggestions for Further Research: One lim-

Figure 7: Limitation in clustering characters that wear uniform.
The four firemen cause over 80% of the error.

itation of CAST is that it relies on the initial detector for proposals.
Although we tuned the detector for recall, if the detector fails to
mark the bounding box of a character as a proposal, the following
steps cannot correct this.

An underlying assumption of this research is that different an-
imated characters proposals could be distinguished in the embed-

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

143



O. Nir, G.Rapoport, & A. Shamir / CAST: Character labeling in Animation using Self-supervision by Tracking

ding space. However, since the network embedding still depends
on visual features, when a subset of characters share common vi-
sual features, the embedding may still confuse between them. As a
result, the classifiers can also be confused. An example can be seen
in ‘Fireman Sam’ series videos. 14 characters were recognized in
this series, while only four of them are responsible for over 80%
of the classification error. These characters are the firefighters, and
the obvious reason for confusion is their similar uniform (see the
confusion matrix in Figure 7).

Our final character labeling did not take advantage of the tempo-
ral coherency of the video, but rather treated each frame separately.
A more elaborate solution can be defined using smoothing and in-
ference along with tracking.

Style variation in animated content is still extremely large. We
refine our basic representation towards specific animation styles
using embedding. Another possibility would be to combine such
representation with domain adaptation techniques for specialized
types of animation (see e.g., Tsubota et al. [TOYA18] on manga
comics).

In terms of building the classifiers, our evaluation tested only
the two alternatives of class-per-character and class-per-cluster for
building the training set. There is a whole range of possibilities be-
tween these two extremes that can combine clusters based on some
cluster similarity measures to create the training set for characters.

Acknowledgements

This research was partly supported by the Israel Science Founda-
tion (grant No. 1390/19) and The Ministry of Innovation, Science
and Technology (grant number 16470-3). The authors would like
to thank Maria Zontak, Apar Singhal, Lei Zhang, and Ohad Jassin
(Microsoft) for their support of this research [NZB∗20b,NZB∗20a,
JLNZ17, NRJ∗18].

References

[AA00] ANDERSEN E. D., ANDERSEN K. D.: The mosek interior point
optimizer for linear programming: an implementation of the homoge-
neous algorithm. In High performance optimization. Springer, 2000,
pp. 197–232. 5

[ACF∗16] ANEJA D., COLBURN A., FAIGIN G., SHAPIRO L., MONES
B.: Modeling stylized character expressions via deep learning. In Asian
conference on computer vision (2016), Springer, pp. 136–153. 2

[ACT16] ALJUNDI R., CHAKRAVARTY P., TUYTELAARS T.: Who’s
that actor? automatic labelling of actors in tv series starting from imdb
images. In Proceedings of the Asian Conference on Computer Vision -
ACCV (2016), Lai S.-H., Lepetit V., Nishino K., Sato Y., (Eds.), pp. 467–
483. 2

[AF86] ATALLAH M. J., FREDERICKSON G. N.: A note on finding a
maximum empty rectangle. Discrete Applied Mathematics 13, 1 (1986),
87–91. 7

[AWS∗18] AZAB M., WANG M., SMITH M., KOJIMA N., DENG J.,
MIHALCEA R.: Speaker naming in movies. In Proceedings of the
2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (2018),
pp. 2206–2216. 2

[BK73] BRON C., KERBOSCH J.: Finding all cliques of an undirected
graph (algorithm 457). Commun. ACM 16, 9 (1973), 575–576. 6

[BRPM16] BALNTAS V., RIBA E., PONSA D., MIKOLAJCZYK K.:
Learning local feature descriptors with triplets and shallow convolutional
neural networks. In Bmvc (2016), vol. 1, p. 3. 4

[CK08] CAZALS F., KARANDE C.: A note on the problem of reporting
maximal cliques. Theoretical Computer Science 407, 1 (2008), 564–568.
doi:https://doi.org/10.1016/j.tcs.2008.05.010. 6

[CL17] CHU W.-T., LI W.-W.: Manga facenet: Face detection in manga
based on deep neural network. In Proceedings of the 2017 ACM on
International Conference on Multimedia Retrieval (2017), pp. 412–415.
2

[CZD∗19] CHEN Z., ZHANG W., DENG B., XIE H., GU X.: Name-face
association with web facial image supervision. Multimedia Systems 25
(2019), 1––20. 2

[DDS∗09] DENG J., DONG W., SOCHER R., LI L.-J., LI K., FEI-FEI
L.: Imagenet: A large-scale hierarchical image database. In 2009 IEEE
conference on computer vision and pattern recognition (2009), Ieee,
pp. 248–255. 4

[FCH∗19] FU D. Y., CRICHTON W., HONG J., YAO X., ZHANG H.,
TRUONG A., NARAYAN A., AGRAWALA M., RÉ C., FATAHALIAN K.:
Rekall: Specifying video events using compositions of spatiotemporal
labels. arXiv preprint arXiv:1910.02993 (2019). 3

[FOY∗16] FUJIMOTO A., OGAWA T., YAMAMOTO K., MATSUI Y., YA-
MASAKI T., AIZAWA K.: Manga109 dataset and creation of metadata.
In Proceedings of the 1st international workshop on comics analysis,
processing and understanding (2016), pp. 1–5. 2

[FTT15] FERNANDO B., TOMMASI T., TUYTELAARS T.: Location
recognition over large time lags. Computer Vision and Image Under-
standing 139 (2015), 21–28. 2

[HLS∗17] HUO J., LI W., SHI Y., GAO Y., YIN H.: Webcaricature: a
benchmark for caricature recognition. arXiv preprint arXiv:1703.03230
(2017). 2

[HLZ04] HUA X.-S., LU L., ZHANG H.-J.: Optimization-based auto-
mated home video editing system. IEEE Transactions on circuits and
systems for video technology 14, 5 (2004), 572–583. 3

[HSS18] HU J., SHEN L., SUN G.: Squeeze-and-excitation networks.
In Proceedings of the IEEE conference on computer vision and pattern
recognition (2018), pp. 7132–7141. 4, 7

[HZRS16] HE K., ZHANG X., REN S., SUN J.: Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition (2016), IEEE, pp. 770–778. 2,
4

[JAA18] JHA S., AGARWAL N., AGARWAL S.: Bringing cartoons to life:
Towards improved cartoon face detection and recognition systems. arXiv
preprint arXiv:1804.01753 (2018). 2

[JLNZ17] JASSIN O., LEVI A., NIR O., ZIV O.: Video segmentation
and searching by segmentation dimensions, Apr 2017. 10

[KLS∗20] KIM H., LEE E.-C., SEO Y., IM D., LEE I.-K.: Character
detection in animation movies using multi-style adaptation and visual
attention. IEEE Transactions on Multimedia (2020). 3, 4, 6

[LH19] LOSHCHILOV I., HUTTER F.: Decoupled weight decay regu-
larization. In International Conference on Learning Representations
(2019). 5

[MRS08] MANNING C. D., RAGHAVAN P., SCHÜTZE H.: Introduction
to information retrieval. Cambridge university press, 2008. 5, 6

[NRB17] NGUYEN N.-V., RIGAUD C., BURIE J.-C.: Comic characters
detection using deep learning. In 2017 14th IAPR international con-
ference on document analysis and recognition (ICDAR) (2017), vol. 3,
IEEE, pp. 41–46. 2

[NRJ∗18] NIR O., RONEN R., JASSIN O., GADA M. M., PIPEK M. G.:
Training set sufficiency for image analysis, May 2018. 10

[NZB∗20a] NIR O., ZONTAK M., BURNS T. C., SINGHAL A., ZHANG
L., LEVI A., SABO H., BAR-MENACHEM I., AMI E., BENTOV E.,

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

144

https://doi.org/https://doi.org/10.1016/j.tcs.2008.05.010


O. Nir, G.Rapoport, & A. Shamir / CAST: Character labeling in Animation using Self-supervision by Tracking

ZAMAN A.: Negative sampling algorithm for enhanced image classifi-
cation, Apr 2020. 10

[NZB∗20b] NIR O., ZONTAK M., BURNS T. C., SINGHAL A., ZHANG
L., LEVI A., SABO H., BAR-MENACHEM I., AMI E., BENTOV E.,
ZAMAN A.: Semi supervised animated character recognition in video,
Apr 2020. 10

[OON∗18] OGAWA T., OTSUBO A., NARITA R., MATSUI Y., YA-
MASAKI T., AIZAWA K.: Object detection for comics using manga109
annotations. arXiv preprint arXiv:1803.08670 (2018). 2

[PGC∗17] PASZKE A., GROSS S., CHINTALA S., CHANAN G., YANG
E., DEVITO Z., LIN Z., DESMAISON A., ANTIGA L., LERER A.: Au-
tomatic differentiation in pytorch. In NIPS-W (2017). 5

[Phi07] PHILBIN J.: Oxford buildings dataset. http://www. robots. ox. ac.
uk/˜ vgg/data/oxbuildings/ (2007). 2

[PRNZ∗11] PEREIRA D. A., RIBEIRO-NETO B., ZIVIANI N., LAEN-
DER A. H., GONÇALVES M. A.: A generic web-based entity resolution
framework. Journal of the American Society for Information Science and
Technology 62, 5 (2011), 919–932. 6

[RF17] REDMON J., FARHADI A.: Yolo9000: better, faster, stronger.
In Proceedings of the IEEE conference on computer vision and pattern
recognition (2017), pp. 7263–7271. 2, 4

[RHGS15] REN S., HE K., GIRSHICK R., SUN J.: Faster r-cnn: Towards
real-time object detection with region proposal networks. In Advances
in neural information processing systems (2015), pp. 91–99. 4

[SEA19] SHEN X., EFROS A. A., AUBRY M.: Discovering visual pat-
terns in art collections with spatially-consistent feature learning. In
Proceedings IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR) (2019), pp. 9278–9287. 2, 4

[SHN21] SOMANDEPALLI K., HEBBAR R., NARAYANAN S.: Robust
character labeling in movie videos: Data resources and self-supervised
feature adaptation. IEEE Transactions on Multimedia (2021). 2

[SKGN18] SOMANDEPALLI K., KUMAR N., GUHA T., NARAYANAN
S. S.: Unsupervised discovery of character dictionaries in animation
movies. IEEE Transactions on Multimedia 20, 3 (2018), 539–551. 2, 3,
6, 7

[SKJ∗19] SOMANDEPALLI K., KUMAR N., JATI A., GEORGIOU P. G.,
NARAYANAN S.: Multiview shared subspace learning across speakers
and speech commands. In INTERSPEECH (2019), pp. 2320–2324. 2

[SKP15] SCHROFF F., KALENICHENKO D., PHILBIN J.: Facenet: A uni-
fied embedding for face recognition and clustering. In Proceedings of
the IEEE conference on computer vision and pattern recognition (2015),
pp. 815–823. 2, 4

[Sta18] STARK L.: Facial recognition, emotion and race in animated so-
cial media. First Monday 23, 9 (2018). 2

[STSS19] SHARMA V., TAPASWI M., SARFRAZ M. S., STIEFELHAGEN
R.: Self-supervised learning of face representations for video face clus-
tering. In 2019 14th IEEE International Conference on Automatic Face
& Gesture Recognition (FG 2019) (2019), IEEE, pp. 1–8. 2

[SZ15] SIMONYAN K., ZISSERMAN A.: Very deep convolutional net-
works for large-scale image recognition. In International Conference on
Learning Representations (2015). 4

[TOYA18] TSUBOTA K., OGAWA T., YAMASAKI T., AIZAWA K.:
Adaptation of manga face representation for accurate clustering. In SIG-
GRAPH Asia 2018 Posters. Association for Computing Machinery New
York NY United States, 2018, pp. 1–2. 2, 10

[WCGV19] WANG X., CAI Z., GAO D., VASCONCELOS N.: Towards
universal object detection by domain attention. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2019), pp. 7289–7298. 3

[WWW∗19] WANG C., WANG Y., WANG Y., WU C.-T., YU G.: mussp:
Efficient min-cost flow algorithm for multi-object tracking. Advances in
Neural Information Processing Systems 32 (2019), 425–434. 5

[WZM12] WANG X.-J., ZHANG L., MA W.-Y.: Duplicate-search-based
image annotation using web-scale data. Proceedings of the IEEE 100, 9
(2012), 2705–2721. 6

[YNS19] YANIV J., NEWMAN Y., SHAMIR A.: The face of art: land-
mark detection and geometric style in portraits. ACM Transactions on
Graphics (TOG) 38, 4 (2019), 1–15. 2

[YS11] YU J., SEAH H.-S.: Fuzzy diffusion distance learning for cartoon
similarity estimation. Journal of computer science and technology 26, 2
(2011), 203–216. 2

[YZL19] YANG Z., ZHANG Y., LUO J.: Human-centered emotion recog-
nition in animated gifs. In 2019 IEEE International Conference on Mul-
timedia and Expo (ICME) (2019), IEEE, pp. 1090–1095. 2

[ZGW16] ZHANG S., GONG Y., WANG J.: Deep metric learning with
improved triplet loss for face clustering in videos. In Pacific Rim Con-
ference on Multimedia (2016), Springer, pp. 497–508. 2

[ZHEL∗13] ZHANG T., HAN Q., EL-LATIF A. A. A., BAI X., NIU
X.: 2-d cartoon character detection based on scalable-shape context and
hough voting. Inf Technol J 12, 12 (2013), 2342–2349. 2

[ZLLT16] ZHANG Z., LUO P., LOY C. C., TANG X.: Joint face repre-
sentation adaptation and clustering in videos. In European conference
on computer vision (2016), Springer, pp. 236–251. 2

[ZLN08] ZHANG L., LI Y., NEVATIA R.: Global data association for
multi-object tracking using network flows. In 2008 IEEE Conference on
Computer Vision and Pattern Recognition (2008), IEEE, pp. 1–8. 5

[ZWS11] ZHU C., WEN F., SUN J.: A rank-order distance based clus-
tering algorithm for face tagging. In CVPR 2011 (2011), IEEE, pp. 481–
488. 2

[ZXLH09] ZHANG Y., XU C., LU H., HUANG Y.: Character identifi-
cation in feature-length films using global face-name matching. IEEE
Transactions on Multimedia 11, 7 (2009), 1276–1288. 2

[ZZR∗20] ZHENG Y., ZHAO Y., REN M., YAN H., LU X., LIU J., LI J.:
Cartoon face recognition: A benchmark dataset. In Proceedings of the
28th ACM International Conference on Multimedia (2020), pp. 2264–
2272. 2

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

145


