
Pacific Graphics 2021
E. Eisemann, K. Singh, and F.-L Zhang
(Guest Editors)

Volume 40 (2021), Number 7

Manhattan-world urban building reconstruction by fitting cubes

Zhenbang He1,2 Yunhai Wang3 † Zhanglin Cheng1,2 †

1Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences
2University of Chinese Academy of Sciences

3Shandong University

Input Sparse point cloud and line cloud Our reconstruction

Figure 1: Reconstruction results on an urban scene. The point cloud and line cloud are first recovered from an image sequence. Then
lightweight models are reconstructed by extracting corners from the line cloud and fitting cubes to the point cloud. By fitting cubes from
corners, our method can reconstruct buildings even when their back faces are severely lost (see red box). Experiments on various datasets
show that our approach is quite competitive in both speed and quality.

Abstract
The Manhattan-world building is a kind of dominant scene in urban areas. Many existing methods for reconstructing such
scenes are either vulnerable to noisy and incomplete data or suffer from high computational complexity. In this paper, we
present a novel approach to quickly reconstruct lightweight Manhattan-world urban building models from images. Our key
idea is to reconstruct buildings through the salient feature - corners. Given a set of urban building images, Structure-from-
Motion and 3D line reconstruction operations are applied first to recover camera poses, sparse point clouds, and line clouds.
Then we use orthogonal planes detected from the line cloud to generate corners, which indicate a part of possible buildings.
Starting from the corners, we fit cubes to point clouds by optimizing corner parameters and obtain cube representations of
corresponding buildings. Finally, a registration step is performed on cube representations to generate more accurate models.
Experiment results show that our approach can handle some nasty cases containing noisy and incomplete data, meanwhile,
output lightweight polygonal building models with a low time-consuming.

CCS Concepts
• Computing methodologies → Shape modeling; Reconstruction;

† Z. Cheng and Y. Wang are joint corresponding authors.
Email:{zb.he, zl.cheng}@siat.ac.cn, cloudseawang@gmail.com

1. Introduction

Recently, there has been an emerging interest in urban building
modeling due to the increasing demand for 3D urban data in multi-

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.14421

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-3360-2679
https://doi.org/10.1111/cgf.14421

Z. He, Y. Wang, Z. Cheng / Manhattan-world urban building reconstruction by fitting cubes

ple application fields, e.g., virtual reality, GIS, BIM, and live map.
As a kind of most common architecture, Manhattan-world build-
ings have been vital modeling objects in the urban building re-
construction. In many applications, the fine details of the building
models are not necessary due to the large scale of nowadays cities
and the relatively simple geometry of most buildings, especially
for Manhattan-world buildings. Lightweight models are more pre-
ferred in many applications over highly detailed models containing
millions of triangles owing to their superiorities in rendering, data
transfer, and storage.

Typical photogrammetry-based reconstruction pipelines for
lightweight models rely on Structure-from-Motion(SfM) [SSS06]
and Multi-View-Stereo(MVS) [FP09] techniques to obtain the
point cloud of urban scenes. Then a surface reconstruction [KH13,
KBH06, ABCO∗03, KSO04, BMR∗99] step is applied to the point
cloud to obtain a polygonal mesh model. Lastly, mesh simplifi-
cation [LN21, ZG02, LT98, GH97] algorithm is performed on the
complex model to get the final lightweight model. Though SfM is
efficient even for large datasets, the MVS step consumes a large
amount of time and requires dedicated graphic cards to accelerate.
When it comes to large-scale urban datasets, the MVS step eas-
ily takes days even weeks. Besides, many expensive computations
spent on details are discarded and wasted on the mesh simplifi-
cation step. A natural idea is skipping the MVS step and recon-
structing lightweight models directly from the point cloud gener-
ated by the SfM step. However, these reconstructed point clouds
tend to be pretty sparse owing to the sparsity of feature points ex-
tracted from images, which could be worse when facing man-made
environments that contain many less textured surfaces and repet-
itive structures. Although it is impractical to reconstruct surfaces
directly from the sparse point cloud, sparse point clouds still reveal
the overall shape and existence of buildings. In our work, we seek
an efficient solution to reconstruct lightweight models from sparse
point clouds by leveraging this information.

Recently, 3D line reconstruction techniques provide a new way
to recover buildings from images. Sophisticated 3D line recon-
struction techniques extract line segments features that are com-
mon in the man-made world to generate 3D line models, a.k.a. line
clouds. Line clouds provide more structural information of build-
ings (e.g., sharp edges, planes) which are difficult to extract from
point clouds. However, reconstructing polygonal surface models
from line clouds remains an open problem. In our work, we lever-
age the structural information from line clouds to help reconstruct
buildings from the sparse point clouds.

Another core difficulty of urban building reconstruction is the
poor quality of obtained data. For example, urban images captured
no matter from the air or land usually contain large amounts of
occlusions due to the high density of urban buildings. Also, un-
like in an indoor environment, laser scanners or cameras can not
scan or capture large-scale cities at arbitrary angles. All these facts
make the obtained data usually incomplete, noisy, and nonuni-
form. Reconstructing urban buildings from these low-quality data
is an ill-posed problem. Therefore, recent reconstruction algorithms
have been advanced from merely using low-level information (e.g.,
neighbor points) to combining with high-level information (e.g.,
semantic segmentation, prior assumptions [FCSS09,LWN16], user

interactions [NSZ∗10], data-driven learning [XZZ∗14], etc.). In our
work, we reconstruct urban buildings under the Manhattan-world
assumption and use corners (i.e., the sharp conjunction where 3
planes converge) to locate and fit buildings. This is based on an
observation that the corners of buildings are salient even when
the data is sparse or partially missing, which is especially true for
Manhattan-world buildings. Besides, we use images to perform an
additional registration, thus generating more accurate results.

In this paper, we present a novel approach to quickly recon-
struct lightweight Manhattan-world building models from images.
In brief, We first obtain a point cloud and a line cloud from images
and then extract corners using planes detected from the line cloud.
Next, we fit cubes from corners to nearby points. The buildings
are reconstructed as a group of cubes and a registration step is ap-
plied to refine the models. The intuition of our method is based on
a key observation that many Manhattan-world buildings are com-
posed of an assembly of basic primitive shapes, especially cubes.
The main advantage of our method is that it can efficiently recover
cuboid-shaped buildings even when parts of their planes are miss-
ing. As a kind of robust feature, corners are salient to detect and
easy to extract even in incomplete and noisy data. The position of
a potential building can be quickly located by extracting corners.
By fitting cubes from corners, cuboid-shaped buildings can be re-
constructed even if there are only three planes. Besides, buildings
can be encoded as cube representations or exported as lightweight
models with approximate shapes, thus facilitating efficient storage
and transmission.

In summary, the main contributions of this work are as following:

• a framework for the fast and lightweight reconstruction of
Manhattan-world buildings from sparse and incomplete data.
• a novel method for detecting planes and corners of buildings

from a line cloud.
• a numerical optimization formulation for fitting cubes from a

sparse point cloud.
• a novel method for registering cube models of urban buildings

with the corresponding images.

2. Related work

3D point and line reconstruction. As a kind of dominated
method in 3D reconstruction, typical 3D point reconstruction meth-
ods known as Structure-from-Motion (SfM) [SSS06] use distinc-
tive feature points extracted from images to estimate camera pose
and generate point clouds by solving epipolar geometry. Due to the
limited number of feature points, generated point clouds are usu-
ally sparse. Multi-View Stereo(MVS) [FP09] can generate dense
point cloud by performing depth map estimation and depth fusion.
Current the state of art reconstruction systems [SF16, SZPF16] al-
low non-expert users to generate accurate point clouds from an un-
ordered image sequence. These tools have shown impressive results
on richly textured surfaces, but they often failed in reconstructing
objects that lack texture details, e.g., buildings. Another problem
is that though SfM step is efficient, running MVS usually takes
hours even days on personal computers due to its high computa-
tional complexity. Since 3D point reconstruction methods describe
shapes using point clouds, a complex scene may easily contain mil-

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

290

Z. He, Y. Wang, Z. Cheng / Manhattan-world urban building reconstruction by fitting cubes

Input (1) Preprocessing (2) Plane detection &
corner generation

(3) Cube fitting (4) Registration Output

…
line cloud

point cloud planes

corners

fitted cubes registered cubes mesh with texture

images

Figure 2: An overview of our approach for lightweight Manhattan-world urban building reconstruction.

lions of points, which makes viewing and processing dense point
clouds troublesome.

Similar to 3D point reconstruction, 3D line reconstruction uses
line segments to recover 3D line structures from images. One key
issue is matching lines between different images. Some methods
achieve it through line feature descriptors [BENV06], point-wise
correspondences between lines [BS05] or coplanarity constraint
[SMM17]. Some methods solve it by exploring the lines’ global
connectivity [JKTS10], or using weak matching [HMB17], thus
bypassing the search for explicit correspondences. Some meth-
ods [SMM17, ZK14, KM14, SKD06, BS05] try to solve camera
pose estimation and 3D line reconstruction simultaneously, oth-
ers [HMB17, JKTS10] only solve 3D line reconstruction based on
camera poses that provided by SfM. In contrast to 3D point recon-
struction, 3D line reconstruction is particularly suitable for urban
scenes that contain a large number of line structures. Though 3D
line reconstruction leaves impressive results on man-made scenes,
further reconstruction for mesh models is still a problem. In our
work, we use line clouds to detect building planes and fit cubes to
point clouds.

Surface reconstruction from point and line cloud. The state-
of-the-art 3D reconstruction methods can generate point clouds
and line clouds robustly. However, point clouds and line clouds
are not suitable for many applications. Thus a surface reconstruc-
tion step is needed to generate polygonal meshes. Surface recon-
struction from point clouds has been extensively studied. Some
of the early methods are mainly based on combinatorial struc-
tures, such as Delaunay triangulations [KSO04, BMR∗99]. Other
methods [KH13,KBH06,ABCO∗03] try to reconstruct an approxi-
mate implicit surface under surface smoothness assumption. How-
ever obtained point clouds are usually incomplete and noisy, and
the aforementioned methods may lead to terrible results. There-
fore, methods that use prior knowledge to perform reconstruction
in a learning [XZZ∗14] or data-driven way [KMYG12, SFCH12]
have recently emerged. Many methods often produce jagged re-
sults on noisy data, hence some methods align surfaces with lines
detected from images [HFB16], or planes detected from point
clouds [HOP∗17] and line clouds [HMFB18] to yield more vi-
sually appealing results. Some methods [FL20, ZSGH18, NW17,
BdLGM14] attempt to reconstruct a lightweight model ignoring the
details instead. Surprisingly, surface reconstruction from line cloud
has rarely been explored. Sugiura et al [STO15] proposed a method

to efficiently reconstruct 3D surfaces as triangular meshes by in-
tegrating line clouds with the point clouds. Bay et al [BENV06]
used line clouds reconstructed from 2 poorly-textured, uncalibrated
images to reconstruct planar indoor scenes. Recently Langlois et
al [LBM19] present a pipeline that uses only line clouds to recon-
struct watertight piecewise-planar models.

Manhattan-world reconstruction. The aforementioned gen-
eral reconstruction techniques usually do not yield desirable re-
sults on urban buildings. Therefore, many efforts have been made
to explore dedicated algorithms to reconstruct facades, buildings,
and architectures. We refer the reader to the survey by Musial-
ski et al [MWA∗13] for an overview of urban reconstruction, and
here we only focus on previous works most closely related to
ours, i.e., Manhattan-world reconstruction. The Manhattan-world
assumption was first proposed by Coughlan and Yuille [CY99]
in their work that estimates the viewer orientation from a sin-
gle image. Matei et al [MSS∗08] segmented massive aerial Li-
DAR point clouds under the Manhattan-world assumption. Venegas
et al [VAB10] reconstructed buildings by extracting Manhattan-
world grammars from aerial images and generating correspond-
ing models. Li et al [LNL16, LWN16] proposed a fully auto-
matic approach for reconstructing Manhattan-world buildings from
point clouds by partitioning the space and selecting boxes that
fit point clouds best. The Manhattan-world assumption is also
useful in indoor scenes reconstruction. Lee et al [LHK09] pro-
posed a framework to recover indoor scene structure from a sin-
gle image. Furukawa et al [FCSS09] and Ikehata et al [IYF15]
reconstructed indoor scenes by fitting planes with MVS point
clouds in orthogonal directions. Li et al [LWC∗11] and Aron et
al [MMBM15] refined primitive extraction results by discovering
regularized relations. Recently, many deep-learning-based methods
have been proposed to reconstruct Manhattan-world structures like
wireframes [HWZ∗18, ZQZ∗19]. In our work, we focus on recon-
structing urban buildings under the Manhattan-world assumption
by combining the point cloud, line cloud, and images.

3. Methodology

The goal of our work is to reconstruct lightweight Manhattan-world
urban building models from images. Our framework takes an image
sequence of urban buildings as input and outputs polygonal surface
models. Figure 2 shows an overview of our method, which has 4

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

291

Z. He, Y. Wang, Z. Cheng / Manhattan-world urban building reconstruction by fitting cubes

main steps: preprocessing, plane detection and corner generation,
cube fitting, and cube registration.

3.1. Preprocessing

Firstly, we input images into the SfM system COLMAP [SF16,
SZPF16] to recover camera poses and generate a sparse point
cloud P0. Then camera poses and images are inputted into the
Line3D++ [HMB17] system to generate a line cloud L0.

Line clustering. The line cloud generated by Line3D++ is pretty
noisy and broken. Using the raw line cloud L0 to detect planes may
lead to the generation of many virtual planes and duplicate detec-
tions of the same plane with a tiny displacement, which introduces
large errors and unnecessary computation. We perform a line clus-
tering before the plane detection to get a less noisy and more con-
sistent line cloud L.

Sample points. Since the point cloud P0 is relatively sparse, we
sample points from the clustered line cloud L to generate more
points and merge them with point cloud P0. We use notation P to
denote this new point cloud. One good property of Line3D++ is
that it shares the same coordinate with COLMAP, so no additional
registration step is required when merging point clouds.

3.2. Plane detection and corner generation

In this section, we detect planes from line cloud L and generate
corners from detected planes. An intuitive idea is to obtain a corner
by detecting 2 or 3 mutually perpendicular lines of which endpoints
are close. However, the absence of any line that constitutes a cor-
ner will lead to corner detection failure. So we use a more robust
method to generate corners – generating corners by planes inter-
secting. Compared to a line, a plane is less likely to be utterly miss-
ing since a plane is supported by multiple lines. In addition, some
cuboid-shaped buildings may not have a salient orthogonal corner,
e.g., round corner. In this case, generating corners from planes still
works.

Plane detection. Methods for extracting planes from point
clouds usually rely on the estimated point normals [SWK07]. How-
ever, the point cloud P is usually too sparse and nonuniform to per-
form a reliable normal estimation, which often leads to poor plane
detection results. Therefore we detect planes using the line cloud
L since line segments provide more structural information of ur-
ban scenes and facilitate robust plane detections. We adopt the idea
from Langlois et al [LBM19] and Bay et al [BENV06] that a line
can support two planes at most. Each line is tagged with a state:
free line or textural line or structural line. Lines that don’t sup-
port any plane are free lines. Lines that support only one plane are
textural lines, which are usually located within a plane. Lines that
support two planes are structural lines, which are at the intersection
edge of two planes. Unlike the RANSAC method [LBM19] that ex-
tracts planes by randomly picking lines, we only extract planes that
are supported by mutually parallel or perpendicular lines. This is
derived from an important observation that many lines that form
Manhattan-world planes are regularized. This constraint may be
strict but very efficient and practical in terms of urban scenes.

seed 3

seed 2

seed 1

select seed expand cluster

!

"#$"(!)

Figure 3: Main steps of plane detection. Firstly, for a given line li
(red line shown in the figure), the seed plane with the highest con-
fidence (tightly wrapped by the bounding box, e.g., seed 3 shown
in the figure) is selected from candidate seed planes. Then the seed
plane is expanded by adding more coplanar lines. Lastly, a clus-
tering operation is performed to break the plane into several sub-
planes.

Figure 3 illustrates the main steps of plane detection. We iter-
atively search for a candidate plane formed by two coplanar par-
allel or perpendicular lines. The candidate plane is expanded by
adding more coplanar parallel or perpendicular lines and then di-
vided into several sub-planes via line clustering. The above steps
are performed iteratively until no more planes are generated. We
describe the technical details below. Initially, the set of detected
planes S is set to empty and all lines are initialized as free lines. For
each non-structural line (i.e., free line or textural line) li in L, we
iteratively search for another non-structural line l j that is parallel or
perpendicular meanwhile coplanar to li. Then li and l j form a seed
plane Pli,l j . To avoid the duplicate detection of existing planes, if the
seed plane Pli,l j is nearly parallel and close to an existing plane in
S, then this seed plane is considered as a duplicate plane and is dis-
carded. Next, we calculate 2 main directions for this seed plane as
d1(Pli,l j) = normalize(li) and d2(Pli,l j) = normalize(li×N), where
N is the plane normal. Then we calculate the bounding boxes of
these 2 seed lines whose axes are aligned with the 2 main di-
rections. We also calculate the confidence for this seed plane as
min(|l|/edge(l)), l ∈ {li, l j}, where edge(l) denotes the length of
the bounding box edge in the direction that is parallel to l (see Fig-
ure 3). We find all eligible seed planes for li and select the one with
the highest confidence as the candidate plane. High confidence in-
dicates these 2 lines are tightly wrapped by the bounding box and
are empirically likely to form a reasonable plane, e.g., a window or
a wall, rather than an accidentally coplanar one. Once a candidate
plane is selected, we expand the plane by adding more coplanar
non-structural lines that are parallel or perpendicular to the 2 main
directions.

Lines in the expanded candidate plane may be pretty scattered.
Thus a DBSCAN-like line clustering is applied to break Pli,lk into
several more compact meanwhile meaningful sub-planes. Com-
pared to the original DBSCAN algorithm, the clustering targets are
changed from points to lines, and the distance of 2 points is re-
placed by the minimal distance of 2 lines. We define the score of a
plane P as the sum of the lengths of all lines supporting the plane.
Planes with scores below a threshold Tp, i.e., planes supported by
very few and small lines, are removed. In our implementation, Tp is
set to 0.05 times the average score of all current planes S. Finally,
the remaining sub-planes are added to plane set S and states (i.e.,
free line, textural line, or structural line) of lines that support these

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

292

Z. He, Y. Wang, Z. Cheng / Manhattan-world urban building reconstruction by fitting cubes

(a) (b)

(

#!

#"

$!

$"

%!

%"

Figure 4: Corner generation from an intersection point. We first
determine valid individual directions (a), then choose all combina-
tions of valid orthogonal directions to form corners (b).

sub-planes are updated. We continue to add planes for each li until
it’s already a structural line or there is no candidate plane available.

Lastly, we set the boundary for each plane in S by calculating
the minimal and maximal projections of all lines supporting the
plane in 2 main directions. Hence each plane gets a rectangular
boundary. Moreover, we expand the boundary of each plane a little
bit by adding a margin around it to facilitate the following corner
generation step.

Corner generation. Once planes S are obtained from the line
cloud L, we calculate intersection points of all three mutually or-
thogonal planes. These intersection points are the potential cor-
ner origins. Only intersection points within all the boundaries of
three planes are counted as valid points since the plane’s bound-
ary represents the physical range of the corresponding plane in the
real world, and intersection points outside any boundary tend to be
nonexistent. Three orthogonal planes intersect and generate three
intersecting lines. Let intersection point be the origin and three in-
tersecting lines be the axes, we have a coordinate with six extending
directions. By choosing three orthogonal directions from these six
directions, a corner can be formed. We first determine which di-
rections are valid or not. If a direction is valid, this means we can
explore the rest parts of a cube along that direction. As shown in
Figure 4(a), to check whether a direction d is valid, let P1 and P2
be the two neighboring planes of d, we calculate the confidence
of this direction d as p(d) = ∑i∈{1,2}min(max(li

Li
, li

λ
),1), where li

is the distance from the origin to the boundary of Pi along direc-
tion d, Li is the width of Pi in direction d, and λ is a good enough
length that we are likely to accept d immediately when li > λ,
which indicates that the direction d points to a fairly large plane
area and is a promising exploration direction. A direction with a
confidence larger than a threshold Tc = 0.8 is accepted as a valid
axis direction and assigned with an initial axis length (l1 + l2)/2.
As shown in Fig 4(b), all possible combinations of three mutually
orthogonal directions are picked from valid axis directions to gen-
erate corners along with origin, and these corners are appended to
corner set C, where each ci ∈ C consists of one origin position oi,
three axis directions d1

i ,d
2
i ,d

3
i and their corresponding initial axis

lengths l1
i , l

2
i , l

3
i . Figure 5 shows the result of corner generation.

3.3. Cube fitting

In this part, we fit cubes to point cloud P to obtain cube repre-
sentations of buildings. A cube representation ri is a cube shape

(a) (b) (c)

Figure 5: The result of corner generation. (a) is the scene image,
(b) is the planes detected from the line cloud, and (c) is the gener-
ated corners.

parameterized by a fixed corner which contains one origin position
oi and three axis directions d1

i ,d
2
i ,d

3
i and their corresponding fixed

axis lengths l1
i , l

2
i , l

3
i . The inputs of this step are point cloud P and

corners C generated in the previous step. The output is cube repre-
sentations of buildingsR.

Since corners are weak evidence of cubes’ presence, we fit cubes
to point cloud P to search for more supports. By changing the pa-
rameter of a corner, i.e., lengths of axes, origin, and axis direc-
tions, cubes in different sizes and positions can be generated. Note
that we also optimize the origin position and axis directions of a
corner during the cube fitting because these parameters obtained
in the previous corner generation step may not be accurate. The
goal of the fitting process is to find the optimal parameters of a
corner so that generated cube fits the nearby points best. We for-
mulate the fitting process as a non-linear least-square optimization
problem, i.e., given a corner ci ∈ C, finding the optimal parame-
ters (oi,d1

i ,d
2
i ,d

3
i , l

1
i , l

2
i , l

3
i) that minimizes the following objective

function

E(ci) = Ecover(ci)+Eregul(ci)+Econst(ci), (1)

which contains three terms: a coverage term Ecover(ci) that encour-
ages a cube to fit nearby points as many as possible, a regularization
term Eregul(ci) that penalizes the over-extension of axes and over-
shift of origin and axis directions, a constraint term Econst(ci) that
forces three axis directions of a corner to keep mutually perpendic-
ular and maintain an almost cuboid shape.

Coverage term. This term rewards points that roughly lie on the
cube’s surfaces and penalizes points inside the cube, thus encour-
ages axes to prolong to find more points on the cube, or shrink at
a reasonable cube size. The smaller this term is, the better the cube
fits point cloud. The coverage term is defined as

Ecover(ci) = φ
2

(
∑

p∈P
fl(d(p,ci))

)
, (2)

where d(p,ci) is the nearest distance from point p to the cube de-
termined by ci. d(p,ci) is negative when p is inside the cube and
positive when p is outside. The loss function fl(x) is defined as

fl(x) =


0 ,x > ξ

0.5 · (cos(π·x
ξ
)+1) ,−ξ≤ x≤ ξ

η · (exp(− (x+ξ)2

2σ2)−1) ,x <−ξ

, (3)

where if the distance from a point to certain plane is within thresh-

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

293

Z. He, Y. Wang, Z. Cheng / Manhattan-world urban building reconstruction by fitting cubes

'#

projected distance of '#
to the endpoint

""

(a) (b)

)$(+)

+-−-

Figure 6: (a) The overall shape of loss function fl(x). Points that
roughly lie on the cube surfaces get a reward (green line). Points
inside the cube get a punishment (red line). Others make no contri-
butions (blue line). (b) An example of the calculation of π(dj,N) in
regularization term where N = 4, the blue points are the N points
used to calculate projected distance.

old ξ, we accept this point as a part of the plane. η and σ con-
trol the punishment. Here, a small punishment is preferred for the
sparse and noisy data and a larger one is suitable for the dense point
clouds. The overall shape of fl(x) is depicted in Figure 6(a). The
design of fl(x) is based on an observation that most buildings are
solid which means the building interior shouldn’t contain points ex-
cept outliers. The more outliers close to the center, the heavier pun-
ishments of these points are. We also set a convergent limit for the
punishment to avoid good cube assumptions are rejected by a large
punishment caused by outliers that accidentally lie on the cube cen-
ter. A point that perfectly lies on the cube surfaces is counted as
ONE support and thus gets a reward score of 1. The more a point
away from the cube, the fewer reward it gets. Points that are away
from the cube with a distance more than threshold ξ are considered
neutral points that neither support nor deny the cube. Since we for-
mulate the fitting process as a non-linear least-square optimization
problem, a higher score should correspond with a smaller loss. A
mapping function φ(x) is used to map scores from [−∞,+∞] to
[0,+∞] which is defined as

φ(x) = e−s·x, (4)

where s controls convergence speed and is set to 0.4.

Regularization term. This term prevents the axes of a corner
from excessive prolonging and limits the shift of origin and axis
directions from their initial poses. To calculate this term, we firstly
project all the points that have positive reward (i.e., points whose
distance to the cube is within ξ) on each axis dj and select N points
with the shortest projected distances to the axis endpoint to calcu-
late the average projected distance π(dj,N) (Figure 6(b)). Here a
small N is recommended for a dense point cloud while a larger one
(e.g., N = 10) for noisy data. The regularization term is defined as

Eregul(ci) =
3

∑
j=1

fr2(π(dj
i ,N))+ fd

2(ci,ci0), (5)

where fr(x) is a loss function that penalizes excessive axis prolong-
ing and is defined as

fr(x) = γ · (et·x−1), (6)

where γ denotes the regularization term punishment and t is set to

(a) (b)

Figure 7: An example of a virtual cube generated in the cube fitting
step. (a) is the corner and (b) is the fitted cube that doesn’t exist in
the real world.

0.2 by default. fr(x) has a tolerance for small excessive prolong-
ing and significant punishment for a large one. γ controls the over-
all punishment strength on the excessive axis prolonging. Large γ

leads to more compact cubes but also limits the exploration in the
axis direction. fd(ci,ci0) describes the difference between current
parameter ci and initial parameter ci0 and is defined as

fd(ci,ci0) = |oi−oi0|+
3

∑
j=1
|dj

i −dj
i0|. (7)

fd(ci,ci0) keeps the fitted cube not shift too much away from the
original corner.

Constraint term. This term maintains the constraint that three
axis directions are approximately mutually perpendicular and is
simply defined as

Econst(ci) = k · ((d1
i ·d

2
i)

2 +(d1
i ·d

3
i)

2 +(d2
i ·d

3
i)

2), (8)

where k is a factor that balances the influence of this term and is set
to 0.02 in our implementation.

Virtual cube removal. In the aforementioned steps we don’t ap-
ply any visibility examination, some corners that don’t belong to
any actual building can be generated and their corresponding fitted
cubes are virtual, as illustrated in Figure 7. In this step, these vir-
tual cubes are removed. For each surface s j

i of corresponding cube
of each ri ∈R, we count the numbers of points that roughly lie on
s j
i , denoted by Np(s

j
i), and the number of cameras that are able to

see s j
i , denoted by Nc(s

j
i). Then surfaces are sorted in descending

twice according to Np(s
j
i) and Nc(s

j
i) respectively while the ranks

are recorded as Rp(s
j
i) and Rc(s

j
i). Lastly we calculate a rank dif-

ference sum D(ri) = ∑
6
j=1 |Rp(s

j
i)− Rc(s

j
i)| for each ri ∈ R. ri

that holds condition D(ri) > Nt (Nt = 8 by default) is classified as
a virtual cube and removed from R. The intuition of this step is
that if a cube is real then the surface seen by more cameras tends
to have more points. Virtual cubes usually have more points on the
back faces that are seen less by the cameras and have a large rank
difference.

3.4. Cube registration

Due to the data missing and outliers in the point cloud, not all cubes
are fitted in the proper size, i.e., the axis lengths are not converged
to the proper length. In contrast, the estimation of a corner’s origin
and axis directions is accurate in most cases. In this section, we
apply a registration step to ensure all cubes are in the correct sizes.

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

294

Z. He, Y. Wang, Z. Cheng / Manhattan-world urban building reconstruction by fitting cubes

(a) (b)

(c) (d) 0

1

Figure 8: The registration step. (a) the original image. (b) the de-
tected edge. (c) an illustration of the calculated guiding vectors.
(d) the calculated step map, where red denotes larger steps and
blue denotes smaller steps.

Since the point cloud is already incomplete, we seek more hints
from images. For each cube, an image that sees it most is picked to
perform registration.

Guiding vector map and step map. To properly guide cubes
to desirable sizes, we introduce the guiding vector map and the
step map to assist cubes in aligning their 2D projections with cor-
responding visible edges on the images. The guiding vector map in-
dicates the search direction of each pixel on the image, along which
a salient edge can be found. To generate the guiding vector map of
an image, we use structured forests [DZ13] to obtain an edge map
where each pixel pi is assigned with a response value si ∈ [0,1],
indicating the probability of being an edge pixel. For each pixel pi,
we calculate its guiding vector as

gi = (∑
p j∈N(pi,r)

w ji · s j ·
pjpi
|pjpi|

)/(∑
p j∈N(pi,r)

w ji), (9)

where w ji = exp(−|pjpi|) and N(pi,r) denotes edge pixels inside
the circle with a center pi and radius r. The step map indicates the
moving step that each pixel should advance to approach a salient
edge. The closer the pixel to the edge, the smaller the step is. This
property helps pixels to approach a salient edge gradually rather
than oscillating around it. The moving step of each pixel pi is cal-
culated as

hi =

1− (∑
p j∈N(pi,r)

w ji · s j)/(∑
p j∈N(pi,r)

w ji)

c

. (10)

Here the constant parameter c is set to c = 4 by default.

Correspondence search. To find the correspondence of an edge
e on the edge map, we project e to the image I and sample points
along it to obtain projected point set V = {v1, ...,vn}. Then we find
corresponding points on the edge map of I for all points in V . The
correspondence search is performed in an iterative way. Starting
from a point vi ∈V , we evaluate the moving step of vi as step(vi) =
∆ ·hi, if step(vi)<∆0 holds we stop moving and set current point as
the stopping point. Here ∆ and ∆0 are set according to image size,
and we set ∆= 6 and ∆0 = 2 by default. Otherwise, we move to next
point vi + gi · step(vi) and repeat until a stopping point is found.
Once reached a stopping point, we search for the corresponding

(a) (b) (c)

Figure 9: Searching for corresponding points of free edges. (a) is
a cube that not converged to proper size due to data missing, red
arrow is the axis direction d and blue lines represent free edges of
d. (b) shows the sampled points on free edges and corresponding
points searched. (c) is the newly re-estimated cube size.

point p j of vi near the stopping point that makes following score
reach maximum.

S(vi, p j)=
s j

a

|vipj|b
·exp(−

(1−|ti · tj|)2 +(1−|vivi−1|/|pipi−1|)2

2σ2)

(11)
Here, ti is the edge orientation at vi and is calculated as ti =
normalize(vivi−1), tj is the edge orientation at p j and is obtained in
edge detection step using structured forests [DZ13]. The positions
of pixels used for calculating vector vipj are normalized into [0,1].
The parameters are set to a = 0.7, b = 0.5 and σ = 0.3. The match-
ing score term is inspired by the work of Huang et al [HXM∗18]
and takes distance continuity, orientation consistency, edge saliency
into consideration for desirable correspondence search. We use no-
tation m(vi) to denote the matched corresponding point p j.

Estimating new length. We call edge e a free edge of axis di-
rection d when e is on the perpendicular cube face that d points
to, that is to say, the position of e is affected by the axis length on
axis direction d, as an example shown in Figure 9(a). To estimate
a new length for axis direction d, we find all free edges of d that
are visible on image I and sample points uniformly on these free
edges to obtain the point set V f , as shown in Figure 9(b). Then we
calculate the axis length offset δ(I,d) which indicates how much
the axis length should adjust to make the free edges of d align with
matched edges on I. The offset δ(I,d) is calculated as

δ(I,d) =
∑v∈V f

(vm(v) ·d′)
|V f |

· l
l′
, (12)

where d′ is the normalized projection of d on the image I, l is the
axis length of d and l′ is the projected length of l on image I. The
new length of the axis on direction d is estimated as l = l+δ(I,d).
We repeat correspondence search and new length estimating until
the axis length on d converges. We apply the steps mentioned above
for all axes of all cube representations, thus ensure all cubes are
in the correct sizes. Lastly, we convert all cube representations to
polygonal surface models.

4. Experiments and discussion

Dataset. We tested our framework in both real and synthetic
datasets. The real datasets are captured by drone. The synthetic
datasets are obtained by rendering polygonal models in different
views using photorealistic renderers. These datasets contain vari-
ous scenes from single buildings to large-scale urban scenes that

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

295

Z. He, Y. Wang, Z. Cheng / Manhattan-world urban building reconstruction by fitting cubes

contain multiple buildings. All the buildings in the datasets are in
different styles and shapes.

Implementation detail. We implemented our approach using
C++. In the cube fitting step (Section 3.3), we solve the optimiza-
tion problem using Google Ceres solver [AMO10]. After fitting
cubes for all corners, only results with a score below a threshold
are considered valid ones and are appended to set R. Cubes that
overlap significantly with others are removed to avoid redundancy.
After generating polygonal models, we assign textures for each tri-
angle from the input images to yield better visual effects.

Reconstruction results. Our approach is designed to reconstruct
Manhattan-world buildings. We have tested our approach on the
aforementioned datasets. The reconstruction results are shown in
Figure 11. Datasets (a)-(g) are captured from the real world and
datasets (f)-(g) are captured from synthetic scenes. In Table 1 we
list some statistics on the tested datasets. Due to the complexity
of real-world scenes, the reconstructed point clouds are relatively
sparse and both line clouds and point clouds contain significant
amounts of outliers. Our method still roughly reconstructed these
buildings and yielded good approximations by leveraging the struc-
tural information from line clouds and the range information from
point clouds. In Figure 11(e), we reconstructed an office building
that consists of multiple cubes. Though the small cube shapes of
the building are barely recognizable in the sparse point cloud, our
approach still recovered all the cube details thanks to structural in-
formation from the line cloud. In Figure 12, we show the details of
our reconstructed results. In the nasty cases shown in the top view
Figure 12 a(1), the building highlighted in the red box, whose back
faces are entirely missing, still got reconstructed. In the dataset IT
lab, though the building (Figure 12 a(2)) is not in a cuboid shape
in the strict sense, our approach still reconstructed it using an as-
sembly of several cubes. In the dataset metropolis, while cuboid
shape buildings can be reconstructed easily (Figure 12 a(3)), our
approach failed in handling non-Manhattan-world buildings in Fig-
ure 12 a(4), where 2 cylinder shape buildings are completely miss-
ing. In Table 1, we show the statistics of our reconstruction results.
Our reconstruction results have low face numbers while preserving
the shape features of buildings, which is very suitable for large-
scale urban reconstruction.

Plane detection. Figure 10 shows the results of various plane de-
tection methods. Due to the sparsity of the points, only a few planes
are detected from the point cloud and some planes are completely
missing (Figure 10(b)). By using line cloud as input, the RANSAC
method is able to detect more planes (Figure 10(c)). However, these
unbound planes are unrecognizable and may intersect and gener-
ate a significantly large number of meaningless corners. Our plane
clustering step limits the boundaries of the planes and fits planes
to their actual sizes thus reduces the generation of redundant cor-
ners (Figure 10(d)). Besides, the Manhattan-world regularization
constraint introduced in our method, i.e., only parallel or perpen-
dicular lines are selected to support planes, can reduce the detec-
tion of insignificant and virtual planes (Figure 10(e)). While planes
that contain many lines can be easily detected using the random
seed plane picking mechanism, planes supported by a few lines are
always missing in the RANSAC way. Our confidence-based seed

(a) (b) (c)

(d) (e) (f)

Figure 10: Plane detection results of different methods. (a) The
input line cloud. (b) planes detected by RANSAC from the point
cloud. (c) planes detected by RANSAC. (d) planes detected by
RANSAC with plane clustering. (e) planes detected by RANSAC
with plane clustering and Manhattan-world regularization con-
straint. (f) planes detected by our method.

plane selection strategy ensures even the small planes can be de-
tected efficiently (Figure 10(f)).

Robustness of cube fitting. The critical step of our approach is
cube fitting, and the outputs of this step largely dominate the result
of reconstruction. We commit several experiments on how effec-
tive and robust our cube fitting step is. As shown in Figure 11, most
cubes are fitted to the correct size in most cases. For a given cor-
ner, our objective function encourages the corner to explore the rest
part and prevent over-extending at the same time. Recall that in the
corner generation step (Section 3.2) each axis direction is assigned
with an initial length according to the distance from the corner ori-
gin to the neighbor plane boundary. Since the plane’s boundary in-
dicates the actual size of the real plane in some ways, this initial
value usually sits around the optimal point, which makes the opti-
mization algorithm easily converge at the desired position, not local
optima. Solvers like Ceres normally use gradient-based methods to
solve optimization problems, a corner’s optimal parameter can be
solved efficiently within few iterations. Though our method does
not require the point cloud to be dense, the points shall depict the
overall shape of the building’s planes. When the plane is severely
missing, the fitting step usually fails to converge at a desirable size.

Effect of registration. In most cases, our registration step can
adjust cubes into the proper size. Since our registration algorithm is
running in a greedy strategy, cubes might be aligned to close but in-
correct edges. Another factor that impacts registration results is the
radius used to compute the guiding vector and the step. A larger ra-
dius leads to a larger searching range and more robust correspond-
ing searching, meanwhile, the computation time also increases.

Performance. We tested our approach on a personal laptop with
a 2.7GHz dual-core CPU and 8GB memory. Performing a recon-
struction usually takes few minutes. Table 1 illustrates the com-
putation times on various datasets. The most time-consuming part
of our approach is cube fitting (Section 3.3) which mostly takes
about 70% of total running time. The fitting time is linearly related

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

296

Z. He, Y. Wang, Z. Cheng / Manhattan-world urban building reconstruction by fitting cubes

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 11: Reconstruction results on various datasets. From left to right: reference image, point cloud, line cloud, fitted cubes, fitted cubes
with textures, fitted cubes overlaid with the point cloud.

to the number of corners. The number of corners increases signif-
icantly with the size and number of planes. Larger plane boundary
and plane clustering radius often lead to more corners, thus more
cubes can be fitted, i.e., better reconstruction result. However, in
our test most fitted cubes are removed in the virtual cube removal
step and many computations are wasted. Smaller plane boundary
and clustering radius lead to fewer corners and thus fewer cubes
and shorter running time got in return. So it requires users to ad-
just parameters according to the dataset to strike a balance between
quality and speed. In the registration step, most time is spent on the
edge detection and computation for guiding vector and step map.
The corresponding search and estimating new length are relatively
fast since the cubes tend to converge to proper size within 3-5 iter-
ations. The aforementioned time does not take preprocessing time
into account, which usually takes from a few minutes to several
hours depending on the number of images.

Comparison with other methods. Figure 13 shows the com-

parison results with 6 mainstream methods on several datasets. We
first follow the typical photogrammetry pipeline using SfM tech-
nique to recover camera poses and sparse point cloud. Then we run
MVS to recover dense point cloud. Screened Poisson reconstruc-
tion [KH13] is applied to reconstruct surfaces from both the sparse
(Figure 13(a)) and the dense point cloud (Figure 13(b)). A mesh
simplification using quadric metric [Hop99] (Figure 13(c)) is per-
formed on the model reconstructed from the dense point cloud to
reduce face number to 0.01 times of original number. The sparse
point cloud is inputted to other two methods Polyfit [NW17] (Fig-
ure 13(d)) and Li et al [LWN16] (Figure 13(e)). The line cloud is
inputted to one line-based surface reconstruction method proposed
by Langlois et al [LBM19] (Figure 13(f)). The Screened Poisson
reconstruction on the sparse point cloud is pretty bumpy and lacks
details. Screened Poisson reconstruction on the dense point cloud
recovered significant details, and yet the models contain millions of
triangles and occupy large storage. While the simplified model con-

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

297

Z. He, Y. Wang, Z. Cheng / Manhattan-world urban building reconstruction by fitting cubes

b(1) c(1) d(1)

b(3) c(3) d(3)

b(2) c(2) d(2)

b(4) c(4) d(4)

a(1)
a(2)

a(3) a(4)

IT lab

metropolis

Figure 12: Reconstruction details on datasets IT lab and metropolis. The image in the middle of each row is the sparse point cloud and line
cloud. a(1-4) are the top view of the target buildings in the red boxes, b(1-4) are detected planes, c(1-4) are generated corners and d(1-4)
are reconstructed models.

tains fewer triangles, some features of buildings are severely lost.
Other lightweight reconstruction methods Polyfit [NW17] (Fig-
ure 13(d)) and Li et al [LWN16] (Figure 13(e)) that heavily rely
on plane detection results, failed to reconstruct faithful models due
to data missing and unreliable plane detection from point clouds.
Compare to methods merely using point cloud, line-based meth-
ods are more robust in the plane detection (Figure 13(f-g)). How-
ever, Langlois et al [LBM19] don’t take plane’s boundary into con-
sideration. These planes partition space into massive cells, which
not only takes a long time to process (usually takes over 30min)
but also produces artifact cells easily . Besides, this method is still
vulnerable to the missing of key planes (e.g., back faces of build-
ings). Thanks to fitting cubes from corners, our approach can re-
construct Manhattan-world buildings even when only a few planes
are available, as shown in Figure 13(f) on case ocean lab. Besides,
our method also shows the competitive results in face number and
running time, which has significant advantages on large-scale ur-
ban reconstruction. Statistics on face number and running time of
the results in Figure 13 are available in Table 2.

Limitation. The result of our approach may heavily rely on the
outputs of COLMAP and Line3D++ systems. Therefore, the qual-
ity of point clouds and line clouds is a crucial bottleneck of our ap-
proach. Another limitation is that our method assumes that build-
ings are cuboid-shaped and do not work for buildings with com-
plex structures (e.g., cylinder buildings in Figure 12a(4), wireframe
structures), limiting our approach’s applicability.

5. Conclusion and future work

We introduced a novel approach to address the challenging task that
reconstructing Manhattan-world buildings from low-quality data.
Our approach extracts planes from the line cloud and generates cor-
ners where we fit cubes to the point cloud. Lastly, lightweight mod-
els are generated after a registration step. Experiments on both real

Table 1: Statistics on the datasets in Figure 11

Dataset #img #line #point #face time

(a) apartment 24 1314 19385 192 16s
(b) institute 33 3375 28246 768 2m12
(c) IT lab 51 4024 57750 924 53s
(d) ocean lab 59 4554 43137 612 1m42s
(e) office 59 4751 46835 2280 3m32s
(f) restaurant 66 3032 49719 384 1m3s
(g) metropolis 88 11606 79070 7920 5m12s

and synthetic datasets show that our approach is robust and efficient
in reconstructing cuboid-shaped buildings from the incomplete and
sparse point clouds. Our approach breaks the limitation of the pre-
vious approaches that they are vulnerable to plane missing.

In future work, we would like to explore the possibility of fitting
more primitives and reconstructing buildings in arbitrary shapes.
Another possible extension is using more semantic information ob-
tained from images to improve the reconstruction results.

Acknowledgements

This work was partially supported by NSFC (61972388), Shenzhen
Basic Research Program (JCYJ20180507182222355), the Leading
Talents of Guangdong Program (00201509), and the CAS grant
(GJHZ1862).

References
[ABCO∗03] ALEXA M., BEHR J., COHEN-OR D., FLEISHMAN S.,

LEVIN D., SILVA C. T.: Computing and rendering point set surfaces.
IEEE Transactions on visualization and computer graphics 9, 1 (2003),
3–15.

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

298

Z. He, Y. Wang, Z. Cheng / Manhattan-world urban building reconstruction by fitting cubes

(d)(b) (c)(a) (e)Reference

in
st
itu

te
IT
la
b

oc
ea
n
la
b

of
fic
e

(g)

NO RESULT

(f)

Figure 13: Comparison with 6 methods on several datasets. (a) sparse point cloud + Screened Poisson [KH13]. (b) dense point cloud
+ Screened Poisson [KH13] then (c) simplified using quadric metric [Hop99]. (d) Polyfit [NW17]. (e) Li et al [LWN16]. (f) Langlois et
al [LBM19]. (g) ours.

Table 2: Face number and full running time of methods shown in Figure 13. (a) sparse point cloud + Screened Poisson [KH13]. (b) dense
point cloud + Screened Poisson [KH13] then (c) simplified using quadric metric [Hop99]. (d) Polyfit [NW17]. (e) Li et al [LWN16]. (f)
Langlois et al [LBM19]. (g) ours.

method
institute IT lab ocean lab office

#face time #face time #face time #face time
(a) 9K 3.5min 20K 5.4min 22K 6.6min 22K 9min
(b) 1.8M 150min 0.9M 96min 1.3M 155min 2.8M 181min
(c) 18K 151min 9K 96min 13K 156min 28K 182min
(d) 290 4min 192 5.5min 96 6.8min 152 9.2min
(e) 32 3.3min - - 12 6.2min 28 8.2min
(f) 9.2K 108min 8.8K 62min 10K 101min 9.9K 81min
(g) 768 5.5min 924 6.9min 612 9min 2.3K 13.5min

[AMO10] AGARWAL S., MIERLE K., OTHERS: Ceres solver. http:
//ceres-solver.org, 2010.

[BdLGM14] BOULCH A., DE LA GORCE M., MARLET R.: Piecewise-
planar 3d reconstruction with edge and corner regularization. In Com-
puter Graphics Forum (2014), vol. 33, Wiley Online Library, pp. 55–64.

[BENV06] BAY H., ESS A., NEUBECK A., VAN GOOL L.: 3d from line
segments in two poorly-textured, uncalibrated images. In Third Interna-
tional Symposium on 3D Data Processing, Visualization, and Transmis-
sion (3DPVT’06) (2006), pp. 496–503.

[BMR∗99] BERNARDINI F., MITTLEMAN J., RUSHMEIER H., SILVA
C., TAUBIN G.: The ball-pivoting algorithm for surface reconstruction.
IEEE transactions on visualization and computer graphics 5, 4 (1999),
349–359.

[BS05] BARTOLI A., STURM P.: Structure-from-motion using lines:
Representation, triangulation, and bundle adjustment. Computer Vision
and Image Understanding 100, 3 (2005), 416–441.

[CY99] COUGHLAN J. M., YUILLE A. L.: Manhattan world: Compass
direction from a single image by bayesian inference. In Proceedings of
the seventh IEEE international conference on computer vision (1999),
vol. 2, IEEE, pp. 941–947.

[DZ13] DOLLAR P., ZITNICK C. L.: Structured forests for fast edge de-

tection. In Proceedings of the IEEE International Conference on Com-
puter Vision (ICCV) (December 2013).

[FCSS09] FURUKAWA Y., CURLESS B., SEITZ S. M., SZELISKI R.:
Manhattan-world stereo. In 2009 IEEE Conference on Computer Vision
and Pattern Recognition (2009), pp. 1422–1429.

[FL20] FANG H., LAFARGE F.: Connect-and-slice: an hybrid approach
for reconstructing 3d objects. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (2020), pp. 13490–
13498.

[FP09] FURUKAWA Y., PONCE J.: Accurate, dense, and robust multi-
view stereopsis. IEEE transactions on pattern analysis and machine
intelligence 32, 8 (2009), 1362–1376.

[GH97] GARLAND M., HECKBERT P. S.: Surface simplification using
quadric error metrics. In Proceedings of the 24th annual conference on
Computer graphics and interactive techniques (1997), pp. 209–216.

[HFB16] HOLZMANN T., FRAUNDORFER F., BISCHOF H.: Regularized
3d modeling from noisy building reconstructions. In 2016 Fourth Inter-
national Conference on 3D Vision (3DV) (2016), IEEE, pp. 528–536.

[HMB17] HOFER M., MAURER M., BISCHOF H.: Efficient 3d scene
abstraction using line segments. Computer Vision and Image Under-
standing (2017), 167–178.

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

299

http://ceres-solver.org
http://ceres-solver.org

Z. He, Y. Wang, Z. Cheng / Manhattan-world urban building reconstruction by fitting cubes

[HMFB18] HOLZMANN T., MAURER M., FRAUNDORFER F., BISCHOF
H.: Semantically aware urban 3d reconstruction with plane-based reg-
ularization. In Proceedings of the European Conference on Computer
Vision (ECCV) (2018), pp. 468–483.

[Hop99] HOPPE H.: New quadric metric for simplifying meshes
with appearance attributes. In Proceedings Visualization ’99 (Cat.
No.99CB37067) (1999), pp. 59–510.

[HOP∗17] HOLZMANN T., OSWALD M. R., POLLEFEYS M., FRAUN-
DORFER F., BISCHOF H.: Plane-based surface regularization for urban
3d construction. In Proceedings 28th British Machine Vision Conference,
2017 (BMVC) (2017), pp. 1–9.

[HWZ∗18] HUANG K., WANG Y., ZHOU Z., DING T., GAO S., MA Y.:
Learning to parse wireframes in images of man-made environments. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (2018), pp. 626–635.

[HXM∗18] HUANG H., XIE K., MA L., LISCHINSKI D., GONG M.,
TONG X., COHEN-OR D.: Appearance modeling via proxy-to-image
alignment. ACM Transactions on Graphics (TOG) 37, 1 (2018), 1–15.

[IYF15] IKEHATA S., YANG H., FURUKAWA Y.: Structured indoor mod-
eling. In Proceedings of the IEEE International Conference on Computer
Vision (2015), pp. 1323–1331.

[JKTS10] JAIN A., KURZ C., THORMÄHLEN T., SEIDEL H.-P.: Ex-
ploiting global connectivity constraints for reconstruction of 3d line seg-
ments from images. In 2010 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (2010), IEEE, pp. 1586–1593.

[KBH06] KAZHDAN M., BOLITHO M., HOPPE H.: Poisson surface re-
construction. In Proceedings of the fourth Eurographics symposium on
Geometry processing (2006), vol. 7.

[KH13] KAZHDAN M., HOPPE H.: Screened poisson surface reconstruc-
tion. ACM Transactions on Graphics (ToG) 32, 3 (2013), 1–13.

[KM14] KIM C., MANDUCHI R.: Planar structures from line correspon-
dences in a manhattan world. In Asian Conference on Computer Vision
(2014), Springer, pp. 509–524.

[KMYG12] KIM Y. M., MITRA N. J., YAN D.-M., GUIBAS L.: Ac-
quiring 3d indoor environments with variability and repetition. ACM
Transactions on Graphics (TOG) 31, 6 (2012), 1–11.

[KSO04] KOLLURI R., SHEWCHUK J. R., O’BRIEN J. F.: Spectral
surface reconstruction from noisy point clouds. In Proceedings of the
2004 Eurographics/ACM SIGGRAPH symposium on Geometry process-
ing (2004), pp. 11–21.

[LBM19] LANGLOIS P., BOULCH A., MARLET R.: Surface reconstruc-
tion from 3d line segments. In 2019 International Conference on 3D
Vision (3DV) (Sep. 2019), pp. 553–563.

[LHK09] LEE D. C., HEBERT M., KANADE T.: Geometric reasoning for
single image structure recovery. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition (2009), IEEE, pp. 2136–2143.

[LN21] LI M., NAN L.: Feature-preserving 3d mesh simplification for
urban buildings. ISPRS Journal of Photogrammetry and Remote Sensing
173 (2021), 135–150.

[LNL16] LI M., NAN L., LIU S.: Fitting boxes to manhattan scenes
using linear integer programming. International journal of digital earth
9, 8 (2016), 806–817.

[LT98] LINDSTROM P., TURK G.: Fast and memory efficient polygonal
simplification. In Proceedings Visualization’98 (Cat. No. 98CB36276)
(1998), IEEE, pp. 279–286.

[LWC∗11] LI Y., WU X., CHRYSATHOU Y., SHARF A., COHEN-OR
D., MITRA N. J.: Globfit: Consistently fitting primitives by discovering
global relations. In ACM SIGGRAPH 2011 papers. 2011, pp. 1–12.

[LWN16] LI M., WONKA P., NAN L.: Manhattan-world urban recon-
struction from point clouds. In European Conference on Computer Vi-
sion (2016), Springer, pp. 54–69.

[MMBM15] MONSZPART A., MELLADO N., BROSTOW G. J., MITRA
N. J.: Rapter: rebuilding man-made scenes with regular arrangements of
planes. ACM Trans. Graph. 34, 4 (2015), 103–1.

[MSS∗08] MATEI B. C., SAWHNEY H. S., SAMARASEKERA S., KIM
J., KUMAR R.: Building segmentation for densely built urban regions
using aerial lidar data. In 2008 IEEE Conference on Computer Vision
and Pattern Recognition (2008), IEEE, pp. 1–8.

[MWA∗13] MUSIALSKI P., WONKA P., ALIAGA D. G., WIMMER M.,
VAN GOOL L., PURGATHOFER W.: A survey of urban reconstruc-
tion. In Computer graphics forum (2013), vol. 32, Wiley Online Library,
pp. 146–177.

[NSZ∗10] NAN L., SHARF A., ZHANG H., COHEN-OR D., CHEN B.:
Smartboxes for interactive urban reconstruction. In ACM SIGGRAPH
2010 papers. 2010, pp. 1–10.

[NW17] NAN L., WONKA P.: Polyfit: Polygonal surface reconstruction
from point clouds. In Proceedings of the IEEE International Conference
on Computer Vision (2017), pp. 2353–2361.

[SF16] SCHÖNBERGER J. L., FRAHM J.-M.: Structure-from-motion re-
visited. In Conference on Computer Vision and Pattern Recognition
(CVPR) (2016).

[SFCH12] SHEN C.-H., FU H., CHEN K., HU S.-M.: Structure recovery
by part assembly. ACM Transactions on Graphics (TOG) 31, 6 (2012),
1–11.

[SKD06] SCHINDLER G., KRISHNAMURTHY P., DELLAERT F.: Line-
based structure from motion for urban environments. In Third Interna-
tional Symposium on 3D Data Processing, Visualization, and Transmis-
sion (3DPVT’06) (2006), pp. 846–853.

[SMM17] SALAÜN Y., MARLET R., MONASSE P.: Line-based robust
sfm with little image overlap. In 2017 International Conference on 3D
Vision (3DV) (2017), IEEE, pp. 195–204.

[SSS06] SNAVELY N., SEITZ S. M., SZELISKI R.: Photo tourism: ex-
ploring photo collections in 3d. In ACM siggraph 2006 papers. 2006,
pp. 835–846.

[STO15] SUGIURA T., TORII A., OKUTOMI M.: 3d surface reconstruc-
tion from point-and-line cloud. In 2015 International Conference on 3D
Vision (2015), IEEE, pp. 264–272.

[SWK07] SCHNABEL R., WAHL R., KLEIN R.: Efficient ransac for
point-cloud shape detection. In Computer graphics forum (2007),
vol. 26, Wiley Online Library, pp. 214–226.

[SZPF16] SCHÖNBERGER J. L., ZHENG E., POLLEFEYS M., FRAHM
J.-M.: Pixelwise view selection for unstructured multi-view stereo. In
European Conference on Computer Vision (ECCV) (2016).

[VAB10] VANEGAS C. A., ALIAGA D. G., BENES B.: Building recon-
struction using manhattan-world grammars. In 2010 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (2010),
IEEE, pp. 358–365.

[XZZ∗14] XIONG S., ZHANG J., ZHENG J., CAI J., LIU L.: Robust
surface reconstruction via dictionary learning. ACM Transactions on
Graphics (TOG) 33, 6 (2014), 1–12.

[ZG02] ZELINKA S., GARLAND M.: Permission grids: Practical, error-
bounded simplification. ACM Transactions on Graphics (TOG) 21, 2
(2002), 207–229.

[ZK14] ZHANG L., KOCH R.: Structure and motion from line corre-
spondences: Representation, projection, initialization and sparse bundle
adjustment. Journal of Visual Communication and Image Representation
25, 5 (2014), 904–915.

[ZQZ∗19] ZHOU Y., QI H., ZHAI Y., SUN Q., CHEN Z., WEI L.-Y.,
MA Y.: Learning to reconstruct 3d manhattan wireframes from a single
image. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (2019), pp. 7698–7707.

[ZSGH18] ZHU L., SHEN S., GAO X., HU Z.: Large scale urban scene
modeling from mvs meshes. In Proceedings of the European Conference
on Computer Vision (ECCV) (2018), pp. 614–629.

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

300

