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Figure 1: Our method demodulates the BRDF pre-integration component from filtering and can be easily integrated into existing filtering
algorithms. By combining with our method, both SVGF and ReLAX are able to preserve the fine details from BRDF maps much better.

Abstract

Path tracing has been used for real-time renderings, thanks to the powerful GPU device. Unfortunately, path tracing produces
noisy rendered results, thus, filtering or denoising is often applied as a post-process to remove the noise. Previous works
produce high-quality denoised results, by accumulating the temporal samples. However, they cannot handle the details from
bidirectional reflectance distribution function (BRDF) maps (e.g. roughness map). In this paper, we introduce the BRDF pre-
integration factorization for denoising to better preserve the details from BRDF maps. More specifically, we reformulate the
rendering equation into two components: the BRDF pre-integration component and the weighted-lighting component. The
BRDF pre-integration component is noise-free, since it does not depend on the lighting. Another key observation is that the
weighted-lighting component tends to be smooth and low-frequency, which indicates that it is more suitable for denoising
than the final rendered image. Hence, the weighted-lighting component is denoised individually. Our BRDF pre-integration
demodulation approach is flexible for many real-time filtering methods. We have implemented it in spatio-temporal variance-
guided filtering (SVGF), ReLAX and ReBLUR. Compared to the original methods, our method manages to better preserve the
details from BRDF maps, while both the memory and time cost are negligible.

CCS Concepts
o Computing methodologies — Ray tracing;

1. Introduction

Path tracing has been widely used in movie production, since it is
physically-based and unbiased. Recently, path tracing has also been
t Corresponding author. beibei.wang @njust.edu.cn. exploited for real-time applications, thanks to the powerful GPU
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device. Unfortunately, path tracing produces noisy rendered results,
especially for real-time applications, due to the low ray budget.
Monte Carlo denoising or filtering is one way to reduce the noise.
Depending on the performance requirements (offline rendering and
real-time rendering), the denoising approaches are different. In this
paper, we focus on denoising for real-time renderings, which have
the following requirements: low ray budgets, high-performance de-
noising process and temporal stability.

A lot of efforts have been made on real-time Monte Carlo denois-
ing. Schied et al. [SKW*17] proposed a spatio-temporal variance-
guided filtering approach (SVGF) to filter noisy path traced images
rendered with 1 sample per pixel (spp). Their filter leverages prior
frames’ samples to preserve details and decouple sources of noise.
To preserve the high-frequency details from textures, they demodu-
late the diffuse albedo from the pixel color before filtering and mul-
tiply the diffuse albedo back after filtering. Recently, NVIDIA re-
leased two powerful denoisers: ReLAX and ReBLUR [Zhd], where
ReLAX is a variant of SVGF optimized for denoising raytraced
specular and diffuse signals and ReBLUR uses recurrent blurring
to improve the denoising quality and temporal stability, which is
about two times faster than SVGF. In ReBLUR, they guide the fil-
tering process with normal, surface roughness and other factors, to
avoid over-blurring when using roughness maps. It works well for
surfaces with small roughness, but fails for spatial-varying large
roughness. Furthermore, this guiding strategy introduces extra pa-
rameters for tweaking.

Another line of methods ( [CSS*17] and [MZV™*20]) leverage
neural networks for real-time denoising. Both of them are able to
produce high-quality denoised results, however, their performance
is much slower than SVGF, which prevents them from being used
directly in real-time applications.

In this paper, we present a BRDF pre-integration demodula-
tion filtering approach, which can preserve the fine details from
spatial-varying BRDF maps, like roughness maps, with negligi-
ble cost. Specifically, we reformulate the rendering equation into
two components: the BRDF pre-integration component and the
weighted-lighting component. The BRDF pre-integration compo-
nent is precomputed. The weighted-lighting component is evalu-
ated with Monte Carlo path tracing and is later denoised individ-
ually. Then the BRDF pre-integration is multiplied with the de-
noised weighted-lighting component to obtain the final result. Our
method is based on two key insights: the BRDF pre-integration
component is noise-free and the weighted-lighting component is
low-frequency. The noise-free BRDF pre-integration is capable of
preserving the BRDF map details and the low frequency of the
weighted-lighting components enables a better filtering. We imple-
ment our method in SVGF, ReLAX and ReBLUR, repectively. In
all these filtering algorithms, our method is able to preserve the de-
tails of BRDF maps much better, while both the memory and time
cost is negligible. As far as we know, our method is the first to
use BRDF pre-integration factorization for denoising. Our contri-
butions include:

e reformulating the rendering equation into a noise-free BRDF
pre-integration component and a low-frequency weighted-
lighting component, and

e introducing a BRDF pre-integration demodulation filtering ap-

proach, which enables preserve the material details for existing
filtering algorithms.

In the next section, we review some of the previous works on
Monte Carlo denoising and BRDF pre-integration. Then, we recap
the theoretical basis of our method in Section 3 and present our
method in Section 4. We present our results and analyze perfor-
mances in Section 5, and then conclude in Section 6.

2. Previous Work

In this section, we first briefly go over the offline Monte Carlo de-
noising methods, and then review the real-time denoising methods.

Offline Denoising. Image space-based approaches have achieved
impressive results at a reduced sampling rate [SZR*15]. They
treated denoising as a regression problem, and used different re-
gression models for filtering: zero-order linear regression model (
[SD12], [RMZ13], [MJL*13] and [ZRJ*15])), first-order or higher-
order models ( [MCY 14], [BRM*16] and [MMMG14]). The zero-
order models have less flexibility, due to the limitations of their
explicit filters.

Recently, deep learning-based methods ( [KBS15], [BVM*17],
[VRM*18], [YWY*19], [WW19], [LWWH20], and [XZW19])
have been successfully exploited for Monte Carlo denoising. They
are able to denoise images rendered with pretty high sampling rate.
Later, sample-based approaches ( [GLA*19] and [LWY*21]) fur-
ther improve the denoising quality for renderings with low sam-
pling rate, at the cost of both time and memory, which was later
improved by Munkberg et al. [MH20] via a layering embedding
approach.

All these methods are not applicable for real-time renderings,
due to either the high sampling rate requirement or the expensive
denoising cost.

Real-time Denoising. Different from the offline denoising, the
real-time denoising has strict requirements: low sample rate of the
input noisy image (1 spp), critical denoising performance and tem-
poral stability.

Bilateral filtering [TM98] was commonly used for real-time
rendering, which includes guided image filtering [BEM11] and
wavelet method [DSHL10] . All of these methods reuse the sam-
ples from the spatial domain. Since the input noisy image only has
1 spp, reusing samples from temporal domain allows to produce
cleaner images. Temporal anti-aliasing [Kar14] is widely used in
video games. Schied et al. [SKW™17] proposed spatio-temporal
variance guided filtering (SVGF), which greatly improves the tem-
poral stability. SVGF is able to preserve the details from diffuse
map, but fails fro the other maps, e.g. roughness map. Later, SVGF
was improved by Schied et al. [SPD18] and Zeng et al. [ZLY*21]
respectively, by utilizing temporal gradient to reduce lag and ghost-
ing, or correctly handling motion vectors of shadows, glossy reflec-
tions and occlusions. Mara et al. [MMBJ17] introduced a factored
approximation of a material-based Monte Carlo integrator and use
it for filtering. They separate the Fresnel term from the rendering
equation, which is also not helpful for the BRDF maps. Recently,
NVIDIA proposed two denoisers: ReLAX and ReBLUR [Zhd],
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where ReLAX is a variant of SVGF optimized for denoising ray-
traced specular and diffuse signals and ReBLUR uses recurrent
blurring to improve the denoising quality and the temporal stability,
which is about two times faster than SVGF. In ReBLUR, they guide
the filtering with normal, surface roughness, and other factors, to
avoid over-blurring. ReBLUR is suitable for surfaces with small
roughness, but fails for spatial-varying large roughness. Further-
more, this guiding strategy yields extra parameters for tweaking. In
this paper, we factorize the BRDF pre-integration from filtering to
better preserve the details from BRDF maps, which is simple and
does not require any tweaking.

Machine learning has also been used for real-time denoising.
Chaitanya et al. [CSS™17] proposed a recurrent neural network
(RNN) model to denoise under-sampled video renderings at inter-
active frame rate, which is also not suitable for real-time applica-
tions. Recently, Meng et al. [MZV*20] proposed a more efficient
network, using neural bilateral grid, which is faster than Chaitanya
etal. [CSS™17], but is still heavy (the simplest version is about two
times slower than SVGF). Our method could be integrated in these
methods, and we leave it for the further work.

BRDF Pre-integration. The radiance of a shading point is com-
puted as the integral of the multiplication of the lighting and the
BRDF over the incoming direction. Both lighting and BRDF are
functions of incoming direction, and they are not separable in the-
ory. Karis [KAR13] separates the lighting and the BRDF for envi-
ronment lighting as an approximation, and precomputes both the
BRDF and the lighting integration, which avoids the expensive
sampling at run-time, but leads to obvious difference with the ren-
dering equation. Wang et al. [WDH20] extended the BRDF pre-
integration to real-time glints rendering. Stachowiak [STA15] in-
troduced the ratio estimator to the rendering equation, by moving
the BRDF and the cosine term outside the integral and precomput-
ing them, resulting in less variance. Compared to their work, we use
a noise-free BRDF term rather than a simulated value, which yields
better filtering results. Heitz et al. [HHM 18] presented a shadow de-
noising approach with ratio estimator to reduce variance. However,
the BRDF pre-integration in their method requires an analytical so-
lution for the unshadowed direct illumination, which is feasible for
their application, but impossible for ours.

Inspired by these works, we also factorize a BRDF pre-
integration term by re-arranging the rendering equation, and then
we use this term for denoising. Compared to previous works, our
method is the first time, to our best knowledge, to use BRDF pre-
integration factorization in denoising for modern real-time render-
ing. The novelty has two folds. First, we use pre-integrated BRDF
factorizations to help with demodulation prior to denoising in low
sample rate real-time path tracers. Second, the derivation of BRDF
pre-integration is different from the previous ones.

3. Background and Motivation
3.1. The Rendering Equation

The outgoing radiance L (®,) of a shading point seen from a pixel
is computed with the Rendering Equation [Kaj86]:

L(wo) = /er (1, 00) L (0) cos B;de;, 1)
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where ®, and ®; represent the outgoing direction and the incoming
direction, respectively, and f(®;, ®,) represents the BRDF at the
shading point.

Monte Carlo based approaches (e.g. path tracing) are used to
solve Equation 1. In real-time rendering, low sampling rate (e.g.
1spp) is used, yielding noisy results.

Depending on the types of materials, f; (®;,®,) is usually cate-
gorized into diffuse and specular in real-time rendering. The diffuse
BRDF is independent of the angular domain, hence we have:

L(w,) = fiffuse / L (w;) cos 6;de;. )

Q
This formula enables a noise-free BRDF value f35¢ and makes
the separation of the material and lighting possible for denoising.

3.2. Monte Carlo Denoising

Monte Carlo denoising aims at finding a reasonable filter & and
corresponding parameters 0, given the input data x from a rendering
pipeline, to output a noise-free image ¢:

¢ =P(x:9), (3)

where x consists of the pixels’ radiance ¢ and the optional G-
buffers.

Instead of denoising the pixel’s radiance directly, the albedo
modulation is usually performed before filtering, by removing the
effects of diffuse map (using Equation 2), and then including them
back after filtering. The high-frequency details could be preserved
with this albedo demodulation.

3.3. Motivation

However, in practice, physically-based material models (e.g. the
Cook-Torrance model [CT82]) are usually preferred, with the fol-
lowing formula:

F (0, @) D(0p,) G(0;, 0)
4|y, - ;| @y, - @

fr (mi7(’)0) = ) (4)
where @y, is the half vector between ®; and ®,, F(®;,®y) is the
Fresnel term, D(®y,) is the normal distribution function (NDF) and
G(®;,0,) is the shadowing-masking function. The NDF has an im-
portance parameter — roughness, which mainly affects the material
appearance.

With the Cook-Torrance model as BRDF, the same solution as
the diffuse albedo demodulation does not hold, since the effect of
the roughness on the final radiance is not linear. It is not obvious to
derive a formula with the BRDF outside the integral, equivalent to
Equation 2.

Instead we propose a BRDF pre-integration factorization ap-
proach which separates the BRDF into an analytical component
and a numerical component. The analytical component is noise-
free and is able to preserve high-frequency details in BRDF maps.
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4. Our Method

In this section, we first reformulate the rendering equation, by in-
troducing a BRDF pre-integration term (Sec. 4.1), and then pro-
pose to demodulate the BRDF pre-integration term for filtering
(Sec. 4.2). Next, we implement our method in three existing fil-
tering approaches (SVGF, ReLAX and ReBLUR) to improve their
denoising quality (Sec. 4.3).

Fg (@) L (@0) L(wo)

Figure 2: Visualization of F|3, I:W and L. As shown in the insets, the
Lyw has less details than L.

4.1. BRDF Pre-Integration

‘We reformulate Equation 1 as:

L(‘Do):/er(wi,wa)L((o,-)coseidmi, 5)
_ Sr(@,00) L(0;) cos 6;dey;
= F(o) /Q Fi(@0) : (6)
where
Fﬁ(mo):/gfr (®;,®0,) cos 0;dw;. 7

Inspired by Karis [KAR13], Fﬁ(coo) can be precomputed as a
function of cos 6, and the surface roughness o, when the NDF is
isotropic and the Fresnel term is approximated with the Schlick
approximation, resulting in a 2D table. In our implementation, we
tabulate Fj (o) with a resolution of 256 x 256, where each pixel is
estimated by sampling ®; with 1024 samples. We will show how to
use Equation 6 for filtering in the next section.

4.2. BRDF Demodulation for Filtering

If the radiance L(,) in Equation 1 is filtered directly, the fine
details are blurred. Thus, previous works, such as [BVM*17] and
[SKW*17], demodulate the diffuse albedo before filtering and then
remodulate it with the filtered results, or remodulate the non-
visibility term ( [HHM18]) with the filtered shadows. Instead we
propose to demodulate the BRDF pre-integration term Fy (o).

Fg
&@0‘ I: — Denoising Iv
- ’{\“% w RD
Path "W i) Tone Temporal

Tracer j Pre-Integration —
i Remodulation

~ree; + -
% L,, — Denoising ]
Fp

Figure 3: Overview of the integration of our method into SVGFE.
Starting from the buffers Ly and Fg (direct lighting and indirect

Mapping | Antialiasing

lighting separately) produced by the path tracer, we denoise the Ly
buffers first and then multiply the denoised Ly with Fp to get the
denoised results. In the end, we perform tonemapping and temporal
antialiasing (TAA) in the post-process.

For clarity reasons, we rewrite Equation 6 into two compo-
nents: a BRDF pre-integration component F (@) and a weighted-
lighting component Ly (0o).

L(00) = Fg (00) Ly (o), (8)
where
. Sr (07, 00) cos 8;L (;) )
Lw(w) = [ ey o ©)

Ly (o) can be rewritten as
Ly (00) = | W(@o@)L(@)do, (10)

where W (o, ®;) = fr(®;,®0)cos6;/Fg(®o). Lw (@) is the inte-
gral of the incident lighting weighted by the BRDF value, called
weighted-lighting term. W(®,,®;) is the normalized BRDF and
here serves as a normalized filtering kernel for the lighting.

Now, the radiance of a pixel consists of two terms: F (o) and
Ly (). F (@) is precomputed with a 2D table and is noise-free.
Ly (0o) is evaluated with the Monte Carlo path tracing at run-time
and estimated with Ly (@,):

(k) (k)
N W(wo, ;) L(®;
Lo ~ (k>( :
k p(o;”)

where k is the samples per pixel and p(o;) is the probability density
function (PDF) for importance sampling. Both Ly (w,) and F (@)
are the outputs of renderings.

; an

After rendering, Ly (0,) is denoised individually and then mul-
tiplied with Fg () to get the final pixel color:

L(wo) ~ F3(0,)denoised[Ly (w,)]. (12)

Insights. In our approach, the key point is the demodulation and
remodulation of the BRDF pre-integration term Fg (o). There are
two insights behind this. First, Fg () is able to represent the
BRDF on the surface, which might include spatial-varying BRDF
maps, e.g. the roughness map. Thanks to the precomputation of
Fg, our method gets a noise-free estimation of the BRDF inte-
gration term, to better preserve the details in BRDF maps. Sec-
ond, Ly tends to be smoother than L, without the BRDF pre-
integration component. Actually, it is more reasonable to filter the
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(b) denoised|Ly (@,)]

low-frequency term Ly than L. In Figure 2, we show Ly and L
computed with high sampling rate, and it’s obvious that Ly has
less details than L.

Existing approaches ( [SKW™*17]) demodulate the diffuse albedo
before filtering and remodulate it back after filtering to preserve
the details from the diffuse map. This idea only works for dif-
fuse BRDF, and it’s not applicable for microfacet model with other
BRDF maps (e.g., the roughness map), while our method is suit-
able for any SVBRDF maps, including roughness maps, normal
maps and diffuse maps, which are commonly used in real-time ren-
dering.

4.3. Integrations to Existing Filtering Methods

Our BRDF pre-integration demodulation approach is flexible and
can be universally integrated for many real-time filtering meth-
ods. We implement our method for three existing filtering methods:
SVGF, ReLAX and ReBLUR. All these methods have achieved
higher quality, thanks to our method.

BRDF Demodulation for SVGF. We follow the main implemen-
tation of SVGEF, except for the following changes (see Figure 3):

o During rendering, the renderer produces the Ly and Fp as the
outputs for each frame.

e During reconstruction, the Ly buffers from the current frame and
the prior frames are filtered, resulting in the denoised Ly . Then,
the denoised Ly remodulate with the Fp to get the pixel color.

e If the shading point has a diffuse BRDF, we perform the same
operation as SVGF.

BRDF Demodulation for ReLAX and ReBLUR. Similar to
SVGEF, we also integrate our method into ReLAX and ReBLUR.
We treat the original methods as a black box, and only change the
inputs and the outputs of the filtering from the L buffer to the Ly
buffer and change the demodulation from the diffuse albedo to F.

(© 2021 The Author(s)
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Figure 4: With the noisy Ly, as the input (a), we denoise it first (b) and then remodulate with BRDF pre-integration to get the final result (c).
Compared to SVGF (d), our method preserves the details much better.

5. Results and Discussion

We implement our method in three existing filtering approaches:
SVGF, ReLAX and ReBLUR. For ReLAX and ReBLUR, we use
the sample code of NVIDIA Ray-tracing Denoiser (NRD) and
modify the original methods with our method. For SVGF, we im-
plemented the original version of SVGF [SKW*17] in the sample
renderer of NRD, for better comparison. All timings in this sec-
tion are measured on a RTX 3070 GPU. For all the comparisons,
the resolution of the images is set as 1920 x 1080. We use the re-
sults rendered with path tracing (4096 spp) as the reference. The
difference with the reference is measured with RMSE (Root Mean
Square Error) and SSIM (Structural SIMilarity). Regarding the mi-
crofacet models, we use GGX as the normal distribution function
and Schlick approximation for the Fresnel term.

Quality Validation. In Figures 1 and 5, we apply our method
to three existing methods, i.e., SVGF, ReLAX and ReBLUR, and
compare them with the original methods on five scenes. In Figure 4,
we show the intermediate buffers (Ly and denoised[Ly (03)]) in
our results for the ShaderBalls and Word scenes. All scenes have
roughness maps. Our method is able to preserve fine details from
BRDF maps and improves the filtering quality significantly, while
the details are missing in the original methods. The errors for all
these methods with the references are reported in Table 1. That
combining our method with the original methods improves the fil-
tering quality, while the error is subtle to the original methods.

In Figure 6, we compare our result (ours + ReBLUR) with Re-
BLUR on shadow areas. By comparison, our method produces sim-
ilar results as the original methods.

Performance Measurement. The run-time costs of both our
method and the original methods are reported in Table 1. Our run-
time cost is almost identical to the original methods. In the pre-
computation step, our method has a small overhead (1 seconds and
128KB), due to the precomputation of Fg, but Fg can be reused for
any isotropic microfacet model. Therefore, with only a small pre-
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Figure 5: Comparison among SVGF (ours), SVGE, ReLAX (ours), ReLAX and ReBLUR (ours) and ReBLUR.

ReBLUR

Ours+ReBLUR Reference

Figure 6: Comparison between our method and the original meth-
ods on the scenario with shadows and shadow edges.

computation time and storage cost, our method improves filtering
quality significantly.

Temporal Stability. In Figure 7, we compare the temporal stabil-
ity of our method and the original methods (SVGF and ReBLUR)

on the Bistrolnterior scene [Lum17], using static light, camera and
scene settings. The temporal error is measured by the average lu-
minance of the difference between consecutive frames. By com-
parison results our method has the same temporal stability as the
original methods. All these methods have large temporal errors at
the beginning due to the missing of the history information and then
they become stable.

Limitation and Discussion. Our method only handles isotropic
material for now, but it can be easily extended for anisotropic ma-
terials, by including one more dimension for BRDF pre-integration
term. Our method treats the original methods as a black box and
only changes their inputs and outputs. We believe that a deeper
coupling with the original methods will further improve the filter-
ing quality, e.g., using Fp to guide the filtering radius.

6. Conclusion

In this paper, we have proposed a BRDF pre-integration factoriza-
tion denoising approach, via reformulating the rendering equation

(© 2021 The Author(s)
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Table 1: RMSE and SSIM of our methods (combined with SVGF, ReLAX and ReBLUR) and the original methods for our test scenes. The
highest quality is shown in bold. For RMSE, a smaller value means higher quality; for SSIM, a larger value means higher quality.)

BistroExterior Bistrolnterior Dark ShaderBalls Sponza
RMSE SSIM T(ms) RMSE SSIM T(ms) RMSE SSIM T(ms) RMSE SSIM T(ms) RMSE SSIM T(ms)
SVGF(ours) 0.0311 09795 1731  0.0357 09719 13.00 0.0184 0.9932 1429 0.0166 0.9689 8.80 0.0217 09756  31.61
SVGF 0.0314  0.9791 17.15  0.0367 09710 12.87 0.0185 0.9931 1420  0.0166  0.9687 8.75 0.0217 09754  31.51
ReBLUR(ours)  0.0337 0.9760 1556  0.0355 0.9722 11.59 0.0249 0989 13.26  0.0208 0.9577 7.30 0.0260  0.9653 15.99
ReBLUR 0.0353 09738 1534  0.0366 0.9711 1129 0.0253 09896 13.03 0.0215 0.9574 7.16 0.0265 0.9637  15.70
ReLAX(ours) 0.0297 09813 1588 0.0397 09724 1155 0.0184 0.9932 13.48 0.0156 0.9726 7.37 0.0205 0.9780  30.18
ReLAX 0.0297 09813 1571  0.0400 09719 11.48 0.0186 0.9930 1331 0.0167 0.9683 7.32 0.0206  0.9779  29.96
) — SVGF+Ours —— ReBLUR+Ours linearly weighted first-order regression for denoising Monte Carlo ren-
107 SVGF \ ReBLUR derings. Computer Graphics Forum 35, 4 (2016), 107-117. 2
5 [BVM*17] BAKO S., VOGELS T., MCWILLIAMS B., MEYER M.,
[}] 5 \ NOVAK J., HARVILL A., SEN P., DEROSE T., ROUSSELLE F.: Kernel-
= 0x10° : predicting convolutional networks for denoising Monte Carlo renderings.
2 \ L ACM Transactions on Graphics (TOG) (Proceedings of SIGGRAPH
5 . \ \\ 2017) 36, 4 (July 2017). 2,4
\\A/\JJJM\/A A\ V-V [CSS*17] CHAITANYA C. R., S.KAPLANYAN A., SCHIED C., SALVI
3x1073 v oA M., LEFOHN A., NOWROUZEZAHRA D., AILA T.: Interactive recon-

0 10 20 30 40 50 600 10 20 30 40 50 60
Frame Index Frame Index

Figure 7: Temporal stability of various algorithms (SVGF (ours),
SVGE ReBLUR (ours) and ReBLUR), with temporal error, which is
computed as the average luminance of the per-pixel differences, for
a fixed view and lighting configuration. By comparison, combina-
tion of our method with these methods keeps the temporal stability.

into two components: the BRDF pre-integration component and
the weighted-lighting component. This new formula allows leaving
the low-frequency part for filtering, and avoids the noise-free high-
frequency part from over-blurring. It is easily integrated into any
existing filtering approaches (e.g. SVGF, ReLAX and ReBLUR),
and improves the filtering quality significantly, with negligible run-
time cost.

We have implemented our approach on top of three non-learning
filtering methods, and we believe that the learning-based denoising
methods can also benefit from our method.
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