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Figure 1: Our method can successfully transfer the blendshape weights of a source face model on the far left to target models from the second
to the last of different proportions, topology, and blendshape configurations.

Abstract
Traditional approaches to retarget existing facial blendshape animations to other characters rely heavily on manually paired
data including corresponding anchors, expressions, or semantic parametrizations to preserve the characteristics of the original
performance. In this paper, inspired by recent developments in face swapping and reenactment, we propose a novel unsuper-
vised learning method that reformulates the retargeting of 3D facial blendshape-based animations in the image domain. The
expressions of a source model is transferred to a target model via the rendered images of the source animation. For this purpose,
a reenactment network is trained with the rendered images of various expressions created by the source and target models in a
shared latent space. The use of shared latent space enable an automatic cross-mapping obviating the need for manual pairing.
Next, a blendshape prediction network is used to extract the blendshape weights from the translated image to complete the
retargeting of the animation onto a 3D target model. Our method allows for fully unsupervised retargeting of facial expressions
between models of different configurations, and once trained, is suitable for automatic real-time applications.

CCS Concepts
• Computing methodologies → Animation; Computer vision;

1. Introduction

With the growth of the movie and game industries, creating high-
quality facial animation remains important. A standard approach
to creating realistic 3D facial animation is to use blendshape-

based models driven by motion-captured data or laboriously crafted
keyframes by skilled artists. One reason for the popularity of the
blendshape approach is the possibility to create semantically equiv-
alent blendshape configurations for diverse characters of varying
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facial proportions. This parallel parametrization allows users to
easily drive or transfer the animation of various characters. How-
ever, even when following a standardized guide such as the Facial
Action Coding System (FACS) [FE78], obtaining fully semanti-
cally matching blendshapes remains challenging [SL14], and thus
a supervised tuning process is mandatory when aiming for high-
quality facial animation [SML16]. Moreover, it is also common
that different models will have different blendshape configurations
defining different expressions spaces.

Recent facial expression retargeting techniques aim to address
these issues and focus on preserving the semantic meaning of
the original source expressions. A common approach to retar-
geting is to define a cross-mapping between expression spaces
using a set of semantically matching expressions of the source
and target models [SCSN11, DCFN06]. Other approaches aim at
directly building semantically equivalent sets of target models
[NN01, SLS∗12, RZL∗17, SP04]. In this way, the facial animation
of a source model can be directly used on the generated target
blendshapes. One drawback of these methods is that they require
manual selection of correspondence data or paired parameters be-
tween the source and target models. To obviate the need for manual
specification of correspondences, recent studies have proposed the
use of autoencoders for deformation transfer [GYQ∗18, ZCZ20].
In this case, however, the retargeting depends on the coarse-level
features, which are unable to capture the subtle details of a facial
expression [GYQ∗18] or requires manually measured scores to be
trained [ZCZ20].

Face manipulation and expression prediction are related to our
work. In the field of face manipulation, applications such as face
reenactment and swapping have gained much attention these days.
There have been several studies focused on face reenactment
[TZN∗15, TZS∗16, KGT∗18, SLT∗19, SWR∗21] or face swapping
[TVRF∗20, TVRF∗20, PGC∗20, NHSW20, BCW∗18, NYM18a,
NYM18b, NKH19]. These methods achieve a quality of synthe-
sized facial images that is almost indistinguishable from real im-
ages, even to human eyes. Meanwhile, several studies have been
conducted on the topic of expression prediction [CWLZ13,CHZ14,
LKA∗17,TZB∗18,TBG∗19,TLL19,GZY∗20]. These methods suc-
cessfully predict the expression parameters of the face images.

Inspired by the recent success of these face manipulation and ex-
pression prediction approaches, we formulate blendshape retarget-
ing as an image-based face reenactment problem by rendering the
3D source and target models to images in an unsupervised man-
ner. In our retargeting framework, a reenactment network trans-
fers the expression of the source model image to a target model
image. Then, given the reenacted image, an expression prediction
network predicts the blendshape weights of the target model. Our
approach enables automatic retargeting of facial animations with-
out the tedious process of pairing facial expression data. In addi-
tion, the retargeting pipeline runs in real-time on a consumer level
GPU. Our retargeting framework is not limited to realistic human
characters but can also handle stylized human characters, as shown
in Figure 1. We compare our method to previous retargeting meth-
ods [SCSN11,RZL∗17] and show that the results from our method
are in quality visually similar or even superior to those from previ-
ous methods.

2. Related Work

2.1. Facial Retargeting

Facial retargeting is a process to transfer facial animation from
a source model to a target model while preserving the semantic
meaning of the facial expressions. Deng et al. [DCFN06] intro-
duced a semi-automatic technique to animate a face by mapping
the parameters for the motion captured data to blendshape weights
based on the Radial Basis Function (RBF). Song et al. [SCSN11]
suggested a retargeting method that preserves the style of the ani-
mation using RBF and kernel canonical correlation analysis based
regression. Seol et al. [SLS∗12] improved the smoothness and nat-
uralness of a retargeted animation by considering the velocity of
the points on the source and target face. Ribera et al. [RZL∗17]
further enhanced the quality of the retargeting by learning the man-
ifold of source and target expression spaces to create actor-specific
blendshapes and thereby accurately retarget the performance of an
actor to a target model. These methods require either a training set
of paired blendshape expressions [DCFN06,SCSN11] or manually
selected corresponding vertices between source and target mod-
els [SLS∗12, RZL∗17]. Different from these previous methods, we
solve the retargeting problem in an unpaired manner, in which the
user does not need to manually match blendshape expressions or
construct matching points between models.

Facial animation can be easily transferred with a parallel
parametrization of the facial rig sets. Therefore, many studies have
focused on building two semantically equivalent sets of facial rigs
that can be used for retargeting. Noh and Neumann [NN01] sug-
gested a method that clones per-vertex displacements of a source
mesh to the corresponding points on a target mesh. The animation
of a source mesh can be directly conveyed to a target mesh to enable
semantically equivalent facial expressions. Sumner and Popović
[SP04] proposed a method that can deform a target model using
the deformation gradients of a source model. These methods also
require manually constructed pairs of semantically equal shapes. To
solve this problem, recent studies have proposed unpaired deforma-
tion transfer based on an autoencoder structure [GYQ∗18,ZCZ20].
Unfortunately, they mostly rely on coarse-level features [GYQ∗18],
which makes it hard to capture the deformation details of 3D shapes
or requires manual evaluation from the user [ZCZ20]. In contrast,
our automatic method can generate comparable results preserving
subtle details without relying on human evaluation.

Similar to our approach, Aneja et al. [ACF∗16] trained two con-
volutional neural networks to learn the shared latent variables of
human and character expressions. Using the trained network, the
image of the facial expression of a 2D character can be found
using a geometry and perceptual model mapping. This approach
has been further improved to adapt it to 3D stylized character ex-
pression [ACC∗18]. Using an expression recognition network, this
method can generate the rig parameters that best match the human
facial expression with an input facial image. Theses approaches
also require a manually labeled dataset of facial expressions and
rig parameters.
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2.2. Face Reenactment and Swapping

Similar to facial retargeting, face reenactment refers to the task of
transferring facial expressions to a target face; albeit, this is gen-
erally in the image-domain. Thies et al. [TZN∗15, TZS∗16] used
a parametric model to reenact a target actor from a source actor.
Kim et al. [KGT∗18] enhanced the visual quality and the range of
head motion of a target actor by using convolutional neural net-
works as a photo-realistic rendering function. More recently, use of
a neural texture further improved the visual quality of results from
the previous method [TZN19]. Without any annotation, Siarohin et
al. [SLT∗19,SWR∗21] decoupled the appearance and motion infor-
mation so that each could be used for the face reenactment task.

The goal of face swapping is to replace the target face
with a source face. Recently with the introduction of DeepFake
[TVRF∗20], face swapping has gained much attention because of
the high quality results it produces. Several face swapping ap-
proaches [TVRF∗20, PGC∗20, NHSW20] used a shared encoder
and target specific decoders. The encoder maps the source and tar-
get identities to the same latent space and the decoders translate
the source latent code to target face identities. By jointly combin-
ing the encoder and decoder, transferring source facial expressions
to the target face becomes possible. Other approaches use gen-
erative adversarial networks (GAN) to generate high quality im-
ages [BCW∗18, NYM18a, NYM18b, NKH19]. We take advantage
of these recent developments of high quality facial reenactment and
swapping methods for 3D facial animation retargeting.

2.3. Expression Prediction

Expression prediction is the task of estimating facial expres-
sion parameters from a human face image. Cao et al. [CWLZ13,
CHZ14] suggested facial performance capture by training a re-
gressor that predicts blendshape parameters from a video stream
with a sequence of facial images and facial landmarks. Laine et
al. [LKA∗17] used a convolutional neural network to predict the
vertex positions of a facial mesh from the image of an actor.

Many studies have focused on using a parametric face model
[BV99] to predict facial expressions. Tewari et al. [TZB∗18,
TBG∗19] utilized a differentiable renderer that enabled unsuper-
vised end-to-end learning of semantic facial parameters includ-
ing expression and appearance. A method suggested by Tran et
al. [TLL19] achieved a high level of detail of reconstructed face
images by using a dual-pathway network architecture that con-
sists of one global pathway and a local pathway with multiple
sub-networks. To achieve speed and accuracy improvement, Guo
et al. [GZY∗20] suggested a meta-joint optimization strategy for a
network that predicts a small set of 3D morphable model parame-
ters from an image of a real human face. We train a neural network
that can predict blendshape weights given a rendered face image of
a virtual character.

3. Retargeting Method

We propose a retargeting approach that enables transfer of a source
3D blendshape-based animation to a target model without paired
data. Our key insight is to exploit 2D information by rendering

the 3D facial animation and perform the expression transfer in the
image-domain. The rendered images are input to a reenactment net-
work, ReenactNet (Sec. 3.4), which reenacts the target images from
the rendered source images. Then, a blendshape prediction net-
work, BPNet (Sec. 3.5), predicts the blendshape weights using the
generated target facial images. In the following, we will explain the
blendshape formulation used by the proposed method (Sec. 3.1),
the retargeting pipeline (Sec. 3.2), the training datasets for both
ReenactNet and BPNet (Sec. 3.3), and the training schemes (Sec.
3.4, 3.5).

3.1. Delta Blendshape Formulation

We follow the delta blendshape formulation proposed by Lewis et
al. [LAR∗14], in which neutral facial expression b0 is subtracted
from blendshapes bk to yield displacements. A new expression
V (w) is then obtained by applying a weighted sum of vertex dis-
placements to the neutral expression b0:

V (w) = b0 +
n

∑
k=1

wk(bk−b0). (1)

B = {b0, ...,bn} is a set of blendshapes, and w = {w0, ...,wn} are
the blendshape weights. In the proposed retargeting pipeline, we re-
fer to Vs(ws) and Vt(wt) as a source and target model, respectively.
Here and from this point on, subscripts s and t represent source and
target, respectively.

3.2. Retargeting Pipeline

As shown in Figure 2, we render the posed expression Vs corre-
sponding to the blendshape weights ws with rendering parameter
ps and source texture Ms. Figure 3 shows that the encoder maps
every source image Is into the shared latent space Z. Then, the tar-
get decoder Dt receives the source latent code z as input to reenact
the source facial expression into a target model image It . Given the
reenacted image, BPNet predicts the blendshapes weights wt of the
target model. Finally, the predicted weights are applied to the target
model. This procedure is performed for every frame of the source
animation.

3.3. Training Dataset

We construct a facial image dataset F consisting of images with
posed expressions from the source and target models in order to
train the networks. The image Is and It form the source and target
image spaces S ⊂ F and T ⊂ F are rendered using a differentiable
renderer R(·) [RRN∗20] to acquire the corresponding images. Be-
cause our purpose is to produce an intermediate image for the re-
targeting, instead of a realistic image, we chose to be time efficient
and therefore utilized the Phong reflection model [Pho75]. The ren-
dering process of the two models can be expressed as follows:

Is = R(Vs(ws),Ms, ps) ∈ S,

It = R(Vt(wt),Mt , pt) ∈ T,
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Figure 2: Overview of the proposed retargeting pipeline. Our retargeting pipeline receives model Vs(ws), a source rendering parameter ps,
and a source texture image Ms as input and renders a source facial image Is. Target image It is reenacted by ReenactNet Dt(E(Is)) given Is
as input. Then, It is fed to BPNet to predict blendshape weights wt . Through this pipeline, the blendshape weights ws of the source model
can be translated into the blenshape weights wt of the target model.

where p ∈ R19 are the rendering parameters consisting of cam-
era transformation matrix, model position, model scale, and point
light position. Note that the camera and light positions are shared
between the two models. Using existing blendshape animation se-
quences that cover a wide range of expressions of the source and
target models, we construct a paired dataset that associates the ren-
dered image with the blendshape weights. Detailed information
about the face models used in this study and dataset is described
in Sec. 4.1.

3.4. Facial Reenactment

Figure 3: Training of the autoencoder. The autoencoder consists
of a shared encoder E, which encodes an image into a latent code
z, and two separate decoders. The decoders Ds and Dt are trained
to reconstruct a source image Is and a target image It , respectively,
using Lrecon. ReenactNet consists of E and Dt in the autoencoder.

ReenactNet predicts an image It on the target image space T
from a given image of Is on the source image space S. To achieve
this, we employ an autoencoder consisting of a shared encoder and
two separate decoders. The shared encoder E : F → Z encodes in-
put images Is, It ∈ F into a common latent space Z. A source de-

coder Ds : Z→ S decodes a latent code z∈ Z into a predicted image
Is ∈ S, and a target decoder Dt : Z→ T decodes z into It . While S
and T reside in F , they are disjoint sets. Encoding the input images
with a common encoder E enables the network to learn shared fea-
tures such as facial expressions in Z. This property enables us to
use a different decoder at inference time for facial reenactment.

As shown in Figure 3, the autoencoder is trained to reconstruct
the original input image for both source and target in an unsuper-
vised manner. The reconstruction loss Lrecon is defined as follows:

Lrecon =
∥∥Is− Is

∥∥
1 +

∥∥It − It
∥∥

1 ,

where predicted source and target images are denoted as Is =
Ds(E(Is)) and It = Dt(E(It)), respectively. After the training, we
combine E and Dt to construct ReenactNet = Dt(E(·)). A reen-
acted target image can be acquired by It = ReenactNet(Is).

3.5. Blendshape Prediction

BPNet is trained to predict wt given It . To train BPNet, we use ex-
isting blendshape animations with weights wt for the target model
and the rendered images It , as explained in Sec. 3.3. For the loss
term Lw, we use an L1 loss on the error between the predicted wt
and the ground truth weights wt . Lw is defined as follows:

Lw = ‖wt −wt‖1 .

The prediction can be further improved by introducing a render-
ing loss Lr that accounts for the difference between input ground
truth image It and Ît , which is the image rendered with the pre-
dicted weights wt . Lr is defined as follows:

Lr =
∥∥It − Ît

∥∥
1 .

The image Ît is rendered using a differentiable renderer [RRN∗20]
with a model Vt(wt) and the same rendering parameters used to
render the target image dataset explained in Sec. 3.3. Figure 4 il-
lustrates an overview of the training process of BPNet. The total
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Figure 4: Training of BPNet. BPNet predicts blendshape weights wt from an input image It . The predicted weights wt are used to construct
a target model. The model is rendered using a differentiable renderer resulting in Ît . To train BPNet, we use two loss terms. Lw compares the
weight difference using wt and wt . Lr compares the pixel-level difference using It and Ît .

loss of BPNet is defined as follows:

Lb = λwLw +λrLr,

where λw and λr are the weights for Lw and Lr, respectively.

After the training is completed, BPNet can predict blendshape
weights from a target model image. Because reenacted image It and
It lie in the same target model image space T , BPNet can predict wt
from It . Therefore, using ReenactNet and BPNet, we can acquire
the corresponding wt given ws. Finally, applying wt to the target
model produces the retargeted facial expression.

4. Experiments

In this section, we first describe the implementation details of our
training settings. Then, we compare the visual results from our
method to those from existing methods. The results can also be
found in the accompanying video. Next, we perform an ablation
study to validate the effectiveness of our training scheme. Finally,
we evaluate the capacity of ReenactNet.

4.1. Implementation Details

For the experiments, we used six different 3D face models: Mery
(©meryproject.com), Victor (©Faceware Technologies, Inc.), Poly-
wink (©Polywink), Man A, Man B, and Man C. Numbers of blend-
shapes, training frames, and vertices are summarized in Table 1. We
also prepared 3300 frames of blendshape weights for the source
model as a validation set. These weights were never shown to the
networks in the training process. We rendered facial images of
the source and target models with the corresponding blendshape
weights. The image resolution was 128× 128× 3. The average
rendering time per image was approximately 10ms. These images
were used to train ReenactNet and BPNet.

We used the Adam optimizer [KB14] with a learning rate of
0.0003 to train ReenactNet for 16 epochs with a batch size of
16. BPNet was trained with pairs of target facial images and their
corresponding blendshape weights. We used the Adam optimizer
[KB14] with a learning rate 0.0003 to train BPNet for 8 epochs with

Table 1: The number of blendshapes, training frames, and vertices
for each model. Mery, Polywink, Man A, and Man B share semanti-
cally identical blendshapes. We train each model with a large set of
facial poses that cover a wide range of expressions such as squint-
ing, smiling, grimacing, speech, etc.

a batch size of 5. We set both λw and λr equal to one. Both networks
were trained and evaluated on a consumer-grade GPU (NVIDIA
RTX 2080 Ti). The training of ReenactNet and BPNet required ap-
proximately 40 minutes and 26 minutes, respectively. The inference
times of ReenactNet and BPNet were approximately 14 ms and 0.6
ms, respectively. For architecture details of ReenactNet and BPNet,
please refer to the supplementary material.

4.2. Results of Retargeting Pipeline

To show the capability of our retargeting pipeline, we set Victor
as the source model and the remaining five models as target mod-
els. As shown in Figure 5a, our method successfully transferred the
expression of the source model to target models that have differ-
ing number of vertices, style, and gender. Figure 5b shows that our
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(a) Results of retargeting to various models with different shape, gender, and style.

(b) Results of our method using different models as source and target.

Figure 5: Retargeting results of our method. The expressions of the source model are reproduced well on the target models as shown in both
(a) and (b). For better evaluation, we provide the results with and without texture.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

50



Kim et al. / Deep Learning-Based Unsupervised Human Facial Retargeting

method can handle retargeting with different models as source and
target. More results can be found in the supplementary material.

We evaluate the robustness of our method using a cyclic consis-
tency metric. For this, we try to recover the source model from a
retargeted target model. We first retargeted the 3976 frames of an-
imation of the source model to the rest of the models. Then, using
the retargeted results as input, we recovered the original expres-
sions and evaluated the error. In this experiment, we used Victor
as the source model and measured the distance between the ren-
dered images of the original animation and the rendered images of
the recovered animation. Figure 6 shows the close visual similarity
between the source and recovered images, regardless of the target
models used for the retargeting. Small pixel errors are observed
only in limited areas especially near openings of mouth and eyes.
Table 2 reports quantitative errors from the cyclic retargeting using
two metrics, Mean Absolute Error (MAE) and Structural Similar-
ity Index Measure (SSIM). The computed values are similar to the
ideal values indicating that the original animation and the recovered
animation have few differences.

Figure 6: Cyclic retargeting of source animation. A source expres-
sion is retargeted to different models. We then retarget the result-
ing expression back to the source model and measure the per-pixel
Euclidean distance in RGB (color channels in [0, 1]) between the
source and the recovered expressions.

4.3. Comparison

4.3.1. Retargeting Methods

In this section, we compare our method with two existing retarget-
ing methods: cross-mapping (CM) [SCSN11] and manifold align-
ment (MA) [RZL∗17]. We set Victor as the source model for this

Table 2: Evaluation results from cyclic retargeting. The values rep-
resent average errors between 3976 rendered images of source an-
imation and corresponding rendered images of recovered anima-
tion. When images are equal, MAE is 0.000 and SSIM is 1.000.

Model MAE↓ SSIM↑
Victor→Mery→ Victor 0.016 0.895
Victor→ Polywink→ Victor 0.016 0.892
Victor→Man A→ Victor 0.016 0.893
Victor→Man B→ Victor 0.016 0.894
Victor→Man C→ Victor 0.017 0.886
Ideal 0.000 1.000

experiment. Mery and Man C were used as target models. For CM,
we trained an RBF-based regressor that maps the source blend-
shape weights to the target blendshape weights using a manually
paired training dataset. The size of the paired datasets was set to
31 and 22 for Mery and Man C, respectively. For MA, we built the
blendshapes of the target faces using RBF with manually annotated
corresponding points between the source and target neutral models.
As shown in Figure 7, our method achieves comparable results as
can be verified by Man C model. In case of the stylized character
Mery, the results from MA tend to show exaggerated mouth expres-
sions while our method tries to preserve the meaning of the origi-
nal expression. In addition, as shown in the second and third rows,
MA occasionally fails to transfer the expressions associated with
the eyes. Also, our method outperforms CM in the mouth region as
can be clearly seen from Mery and Man C. Due to the utilization
of visual information in the form of a rendered image, our method
can transfer the expression of the source model to each target with
subtle details, as can be observed near the mouth or eye area. More
comparison results can be found in the accompanying video.

4.3.2. ReenactNet

We compared ReenactNet to UNIT [LBK17], an unsuper-
vised image-to-image translation method. We trained UNIT and
ReenactNet with 14,532 facial images of Victor as the source and
16,050 facial images of Man B as the target. The image resolution
was 128× 128× 3. We set all hyperparameters according to the
original setting of UNIT. The facial images of Victor translated to
the images of Man B are shown in Figure 8. Unlike UNIT which
focuses on generating realistic target facial images, our network fo-
cuses on precisely reproducing the expression of source images on
target images, as shown in the red boxes.

4.4. Ablation Study

We conducted an ablation study to analyze the effectiveness of
the loss design for BPNet. For the study, BPNet was trained with
three different settings: only Lw, only Lr, and Lw + Lr. To evalu-
ate the quality of the predicted blendshape weights, we rendered
images of the Man B model using the predicted weights and mea-
sured the similarity of the rendered images to the ground truth im-
ages using four image quality metrics: Peak Signal-to-Noise Ratio
(PSNR), SSIM, Learned Perceptual Image Patch Similarity(LPIPS)
[ZIE∗18] with AlexNet [KSH17] and VGG [SZ14]
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Figure 7: Comparison of retargeting results produced by our method (Ours), cross-mapping (CM), and manifold alignment (MA). In all
cases, our method generates superior or comparable results to those of the other methods.

Figure 8: Comparison of results from ReenactNet with those from
UNIT.

Table 3 shows the results of the quantitative evaluation of the
three different settings. When only using Lr, BPNet was trained in
an unsupervised manner. Without explicit supervision of the blend-
shape weights, the predicted results were not as good as the others.
Using Lw, BPNet was trained with supervision of the blendshape
weights, resulting in better metric values than when using Lr only.
Using both loss terms Lw and Lr leads to better quantitative results
than using the other settings do. Figure 9 shows that we obtained
the best result when both terms were used.

Table 3: Quantitative results from loss ablation test. The best result
in each metric is in bold.

Model PSNR↑ SSIM↑ LPIPS (Alex)↓ LPIPS (VGG)↓
only Lr 34.409 0.966 0.03200 0.0294
only Lw 37.661 0.973 0.00964 0.0163
Lw +Lr 38.650 0.977 0.00795 0.0144

5. Discussion

Although the proposed method can successfully retarget a source
expression to a target model, the method has some limitations. The
method mainly focuses on human characters. While we demon-
strate the flexibility of our method by experimenting with varying
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Figure 9: Influence of the adaptation of the rendering loss Lr to the
rendered image. The left image is the ground truth target image It .
The center column is the result rendered with the predicted weights
wt using BPNet. Three images from the top of the center column
are rendered with the result of BPNet, which was trained with Lw
and Lr, Lw, and Lr, respectively. The right column shows the errors
between the ground truth It and the rendered result Ît .

Figure 10: Reenactment results between source model and two
target models with significantly different textures. Observe that the
eyebrows of the character retargeted using the inverted texture went
down, failing to reproduce the source expression correctly. While
our method can handle texture variation to a certain degree, sig-
nificant difference in texture between source and target models can
result in semantically different expressions.

degrees of stylization and differing facial proportions, ReenactNet
may fail to generate facial images correctly in the extreme cases
where there is a significant difference in shape or texture between
the source and target models as shown in Figure 10.

A key element in the proposed method is to perform the expres-
sion translation in the 2D image domain. However, certain simi-
lar expressions such as lip rolling, kissing motion or puck motions
have subtle differences in the way the lips roll outwards or inwards.

While our tests indicate the solidity of our image domain approach
we plan to study reincorporating additional 2D information such as
normal maps or vector displacement maps, to partially reincorpo-
rate 3D information in order to improve the retargeting of challeng-
ing subtle expressions.

It should be noted that our method requires existing animation
data both for the source and target models. However, our method
does not require high quality animations and any animation should
serve the purpose as long as it can cover a wide expression space of
the models. Because the blendshape model itself is the generative
basis of the model’s expression space, one could consider prepar-
ing for a training dataset by randomly sampling from the expression
space. In this case, as not all weights combinations produce valid
faces, certain care is needed to ensure that a valid face is sampled.
For instance, we can test local smoothness of the sampled expres-
sions [RZL∗17].

The proposed method does not consider temporal smoothness
explicitly because we did not observe noticeable visual artifacts
without it in the current training setting. One way to incorporate
temporal smoothness would be to consider the approach proposed
in Seol et al. [SLS∗12].

6. Conclusion

We propose a retargeting method that transfers the blendshape
weights of a source model to a target model without paired train-
ing data or specification of corresponding vertices. Our retargeting
method consists of ReenactNet and BPNet. In the training stage,
ReenactNet is trained using rendered facial images of the source
and target models in an unsupervised manner. BPNet is trained
with images of the target model and paired weights. In the retar-
geting stage, ReenactNet generates reenacted images of the target
model from the rendered images of the source model using input
blendshape weights. BPNet receives the generated target images as
input and predicts the blendshape weights of the target images. We
showed that the proposed retargeting method can handle stylized
characters as well as human characters. The quality of produced
results is comparable to or better than the results of previous retar-
geting methods [SCSN11,RZL∗17]. For future work, we aim to ex-
pand our method to handle a wider range of models, including non-
human characters with largely different facial features; we also aim
to generalize the method to other types of facial rig parametriza-
tions.
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