
Pacific Graphics 2021

E. Eisemann, K. Singh, and F.-L Zhang

(Guest Editors)

Volume 40 (2021), Number 7

Modeling Visual Containment for Web Page Layout Optimization

— Supplemental Material —

1. Overview

In this supplemental material we include implementation details and additional results that were omitted from the main document for brevity.

This supplemental document is organized in roughly the same order as the main paper.

2. Dataset

2.1. Collection Issues

Fig. 1 shows some example of websites that were discarded from the dataset due to PHP errors, 404 errors, or domain sales. Despite focusing

on the most popular websites, a surprisingly number of domains have to be discarded during collection.

Figure 1: Downside of automatic collection of web pages.

2.2. Labels and Statistics

We choose six labels and design rules to determine the value for each element in each web page. An overview of those rules can be seen in

Table 1. We also summarize the key statistics of our dataset in Fig. 2.

Table 1: Labeling rule.

Label name Description

Text An element having inner texts and whose line height is positive.

Button An element whose class names contain "btn" or "button".

Input An element whose HTML tag is "input".

Image An element whose HTML tag is "img". / An element whose rendered image is filled with non-negative alpha values

and has higher variance in RGB values.

Container An element whose rendered image is filled with non-negative alpha values and has lower variance in RGB values.

Graphic None of the above.

submitted to Pacific Graphics (2021)

2 / Modeling Visual Containment for Web Page Layout Optimization— Supplemental Material —

0 20 40

Elements

0

200

400

600

Pa

ge
s

0 2 4

Depth of Layout Tree

0

0.5k

1.0k

1.5k

Pa

ge
s

Te
xt

Im
ag

e
Grap

hic
Co

nta
ine

r
Bu

tto
n

Inp
ut

Semantic Label

0

20k

40k

El

em
en

ts

0 10 20

Aspect Ratio

0

10k

20k

30k

40k

El

em
en

ts

Figure 2: Statistics of our dataset. From left to right, these show page-level frequencies of the number of elements and depth of layout trees,

and element-level frequencies of the semantic labels and aspect ratios.

3. Implementation Details

3.1. Layout Parameterization

The layout parameters are a vector of concatenated parameters for each element, including lx for left-coordinate, ly for top-coordinate, and

lH for height.

X =
Nn

i=1

[l
(i)
x , l

(i)
y , l

(i)
H]⊤ ∈ [0,1]3N

(1)

where
f

is the concatenation operator.

We restrict the parameter space to preserve the visual containment defined by a layout tree T. The height H and width W of an element

are computed as follows:

H = lH(Hub −Hlb)+Hlb , (2)

Hub = min(Ĥ,Ŵ/r,Hmax) , (3)

Hlb = max
Ȟlb,W̌lb

max(Ȟlb,W̌lb/r,Hmin) , (4)

W = rH , (5)

where r is the aspect ratio, Ĥ and Ŵ are the height and width of the parent element, and Ȟlb and W̌lb are the lower bound of height and lower

bound of width of the descendant element. Hmax and Hmin are hyperparameters for the maximum and minimum height, which we set to 2

and 0.5 times the height of the ground-truth, respectively, in the experiment.

The left-coordinate x of an element are computed as follows:

x = lx(xub − xlb)+ xlb , (6)

xlb = x̂ , (7)

xub = xlb +Ŵ −W , (8)

where x̂ is the left coordinate of the parent element. The top-coordinate y is defined similarly.

All the parameters have a value from 0 to 1 and have the upper bound and the lower bound. We use un-normalized values for computing

energy function values, while we use normalized values for the optimization.

3.2. Layout Tree

A complete list of element features that we used in the tree property estimators is shown in Table 2.

To evaluate the estimated layout tree against the ground-truth, we used three metrics: the F1 score for ancestors Fanc, siblings Fsib, and

submitted to Pacific Graphics (2021)

/ Modeling Visual Containment for Web Page Layout Optimization— Supplemental Material — 3

Table 2: Element features used to predict tree partial properties. In the case of predicting properties defined on two elements, the features of

both elements are concatenated together.

Name (Dim.) Description

isText (1) 1 if text element; 0 otherwise.

aspectRatio (1) element width divided by its height.

meanTrans (1) mean of transparency values.

meanRGB (3) mean of RGB values.

varRGB (3) variance of RGB values.

importance (5) one-hot vector of importance metadata.

leaves Fleaf. Let A∗ be the ancestor matrix for ground-truth tree, the F1 score for ancestors is defined as:

Panc(A,A
∗) =

(

1+
∑

N
i ∑

N
j Ai, j(1−A

∗
i, j)

∑
N
i ∑

N
j Ai, jA

∗
i, j

)−1

(9)

Ranc(A,A
∗) =

(

1+
∑

N
i ∑

N
j (1−Ai, j)A

∗
i, j

∑
N
i ∑

N
j Ai, jA

∗
i, j

)−1

(10)

Fanc(A,A
∗) =

2Panc(A,A
∗)Ranc(A,A

∗)

Panc(A,A∗)+Ranc(A,A∗)
(11)

Note that the F1 score cannot be defined for layouts where A
∗ is a zero matrix. We exclude such layouts when calculating the average over

the test set. We defined Fsib and Fleaf similarly.

3.3. Layout Energy Model

3.3.1. Alignment

We consider six possible alignment types for spatially adjacent sibling elements: Left (L), X-center (XC), Right (R), Top (T), Y-center (YC),

and Bottom (B). In the energy terms we will use the abbreviated forms of the alignment types to refer to them. We define energy terms that

encourage coarse alignment; using Left alignment as an example, which is calculated as follows:

EAlignL = 1−
1

N2

N

∑
i=1

N

∑
j=1

I[|cL
i − c

L
j |< θ] (12)

where cL
i is the left coordinate of i-th element, θ is the threshold parameter, and I[condition] is 1 when the condition satisfies, and 0 otherwise.

We also define EAlignXC, EAlignR, EAlignT, EAlignYC, EAlignB, similarly. We set θ = 0.02 in our experiment.

We penalize misalignment as follows:

EFineAlignX = 1−
1

θX
∑

align∈{L,XC,R}

N

∑
i=1

N

∑
j=1

I[|c
align
i − c

align
j |< θ](c

align
i − c

align
j)2

(13)

We also define EFineAlignY similarly. We set θX = 0.03 and θY = 0.01 in our experiment.

We define an alignment group as a set of consecutive aligned elements of the same alignment type. We encourage a larger alignment group,

i.e., a smaller number of alignment groups in a layout as follows:

EAlignGroup = min
align∈{L,XC,R,T,YC,B}

|Aalign|

N
(14)

where A is a set of alignment groups of a particular alignment type. The number of alignment groups can be efficiently calculated as the

number of components in a graph constructed with elements as nodes and the presence of alignment as edges.

We also consider the alignment between the parent element and its child elements. Using Left alignment as an example, the energy is

calculated as follows:

EParAlignL = 1−
1

N

N

∑
i=1

I[|cL
i − ĉ

L
i |< θ] (15)

where ĉL
i is the left coordinate of the parent element of i-th element. We also define EParAlignXC, EParAlignR, EParAlignT, EParAlignYC, EParAlignB,

similarly.

submitted to Pacific Graphics (2021)

4 / Modeling Visual Containment for Web Page Layout Optimization— Supplemental Material —

3.3.2. Symmetry

We evaluate the global trend for symmetry by flipping the depth mask Mdepth along an axis as follows:

ESymmX =
∑

H
m=1 ∑

W
n=1 min(M

depth
m,n ,M

depth
m,W−n+1)

∑
H
m=1 ∑

W
n=1 M

depth
m,n

(16)

We also evaluate asymmetry as EAsymmX = 1−ESymmX. ESymmY and EAsymmY are defined similarly.

3.3.3. Spacing

Our model evaluates the global white space as follows:

ESpace =
1

HW

H

∑
m=1

W

∑
n=1

max
i∈{i}N

i=1

M
i
m,n (17)

where Mi ∈ [0,1]H×W is the i-th element’s mask.

Our model also evaluates the white space with respect to visual containment as follows:

ETreeSpace =
1

|P| ∑
p∈P

∑
H
m=1 ∑

W
n=1 maxi∈chi(p) Mi

m,n

∑
H
m=1 ∑

W
n=1 M

p
m,n

(18)

where chi(·) is a function that returns a set of child elements and P =
{

i | chi(i) ̸=∅; i ∈ {1,2, . . . ,N}
}

.

Our model evaluates a layout where the main content is spread throughout. Assuming that the leaf elements are the main content, the

energy is calculated as:

ESpread =
1

|G| ∑
(x,y)∈G

min
i∈V

min
∗∈{L,XC,R}
⊛∈{T,YC,B}

∥

∥

∥

∥

[

x

y

]

−

[

c∗i
c⊛i

]∥

∥

∥

∥

2

(19)

where G is a set of coordinates for each crossing point of the K ×K grid, and V =
{

i | chi(i) = ∅; i ∈ {1,2, . . . ,N}
}

. We set K = 2 in our

experiment.

We encourage the larger spaces between leaf elements as follows:

d(i, j) = min
∗∈{L,XC,R} ∗̄∈{L,XC,R}
⊛∈{T,YC,B} ⊛̄∈{T,YC,B}

∥

∥

∥

∥

∥

[

c∗i
c⊛i

]

−

[

c∗̄j

c⊛̄j

]∥

∥

∥

∥

∥

2

(20)

EDist = 1−
1

|comb(V)| ∑
(i, j)∈comb(V)

d(i, j) (21)

where comb(·) is a function that returns a set of combinatorial pairs of elements in the given set.

The above energy terms facilitate a layout in which elements are spread throughout. Our model also evaluates the larger global margin

between the outermost elements and the canvas boundaries as follows:

f (b,B) =
4

∑
l=1

min
b′∈B

|bl −b
′
l | (22)

EMargin = 1−
1

H +W
f ([0,0,W,H]⊤,{bi}

N
i=1) (23)

Our model also evaluates the outermost margin with respect to visual containment as follows:

ETreeMargin =
1

|P| ∑
p∈P

(

1−
1

Hp +Wp
f (bp,{bi | i ∈ chi(p)})

)

(24)

Our model encourages the vertical spacing of adjacent text elements to be uniform.

EUniSpace = var({vi, j | (i, j) ∈ U}) (25)

where vi, j is a vertical space between i-th element and j-th element, U is a set of pairs of adjacent text elements, and var(·) is a function that

returns the variance of a given set.

submitted to Pacific Graphics (2021)

/ Modeling Visual Containment for Web Page Layout Optimization— Supplemental Material — 5

3.3.4. Scale

In general, the size of the element should be large enough to be seen, but not too large to be aesthetically unpleasant. Our model has per-label

energy terms that encourages the larger sizes of content elements. Using button label as an example, the energy is calculated as follows:

EEnlargeButton = 1−
1

|Ebutton|
∑

i∈Ebutton

si (26)

where si is the size of i-th element and is Hi/[#lines] when the label is text, and normalized area HiWi/(HW) otherwise. Ebutton is a set of leaf

elements labeled as button. EEnlargeText, EEnlargeInput, EEnlargeGraphic, EEnlargeImage, and EEnlargeContainer are defined similarly.

Our model also evaluate the variance of element sizes.

EVarButton = var({si | i ∈ Ebutton}) (27)

EVarText, EVarInput, EVarGraphic, EVarImage, and EVarContainer are defined similarly.

To manage the size ordering, our model encourages the element sizes to be correlated with the given importance metadata. This is equiva-

lent to a term called Emphasis in other research:

ECorrText =
1− corr({(si, śi) | i ∈ Etext})

2
(28)

We also defined ECorrNonText for non-text elements.

3.3.5. Position

Since web pages have complex layouts, it is difficult to reflect the tendency of the reference design with simple positional statistics for each

label. We represent the position of an element as a mask and evaluate its consistency with the mask in the reference design. The mask should

cover the reference mask without over or under coverage, so borrowing the concept of the F1 score, we designed the energy terms as follows:

P(M,Mref) =
∑

H
m ∑

H
n min(Mm,n,M

ref
m,n)

∑
H
m ∑

H
n Mm,n

(29)

R(M,Mref) =
∑

H
m ∑

H
n min(Mm,n,M

ref
m,n)

∑
H
m ∑

H
n Mref

m,n
(30)

F(M,Mref) =
2P(M,Mref)R(M,Mref)

P(M,Mref)+R(M,Mref)
(31)

EMatchLabel = 1−F(Mlabel,M
ref
label) (32)

EMatchDepth = 1−F(Mdepth,M
ref
depth) (33)

3.3.6. Overlap and Ordering

We assume that sibling elements do not overlap each other, and penalize overlap as follows:

S =
{

(i, j) | (i, j) ∈ comb
(

chi(p)
)

; p ∈ P
}

(34)

EOverlap =
1

|S| ∑
(i, j)∈S

äi j

min(ai,a j)
(35)

where ai is the area of i-th element, and äi j is the area of the intersection of i-th and j-th element.

To preserve the read-order of the elements, we use the following energy term, with the given read-order metadata.

O =
{

(i, j) | ói < ó j;(i, j) ∈ S
}

(36)

o(i, j) =











I[cXC
j < cXC

i] if ei and e j are overlapped along
the x-axis

I[cYC
j < cYC

i] if ei and e j are overlapped along
the y-axis

0 otherwise

(37)

EOrder =
1

|O| ∑
(i, j)∈O

o(i, j) (38)

3.4. Optimization

We use pycma for CMA-ES implementation. We set the initial standard deviation to 0.99, and the population size to five times the default

value.

submitted to Pacific Graphics (2021)

6 / Modeling Visual Containment for Web Page Layout Optimization— Supplemental Material —

4. Automatic Evaluation Details

4.1. Reference Search

For searching similar reference designs from ground-truth designs, we use an autoencoder trained with images of size (192,342) px. The

autoencoder we use has 6 convolutional layers followed by one fully connected layer in the encoder, and one fully connected layer followed

by 6 convolutional layers in the decoder. All layers use batch normalization and ReLU non-linear activation function, except for the last layer

of the decoder that does not use ReLU.

The output of the first convolutional layer in the encoder has 8 channels and uses a stride of 2. Every layer afterwards uses a kernel of size

(3,3) px, a stride of 2 px, and doubles the number of output channels. The fully connected layer outputs a 512 dimensional vector.

The decoder is a mirror image of the encoder. It starts with a fully connected layer that converts the 512 dimensional vector into a 4608

dimensional vector, that can be reshaped into a (3,6) px image with 256 channels. Afterwards, each convolutional layer uses a kernel of size

(3,3) px, a stride of 2 px, and halves the number of output channels. The final layer outputs an image of the same size as the input.

Training is done with the AdaDelta algorithm [Zei12] and a batch size of 256 layouts for 2000 epochs, and the 512 dimensional vector

output by the encoder is used for searching for similar layouts.

4.2. Evaluation Metrics

We evaluate generated layouts with the reconstructive correctness metrics: IoU (dIoU), position error (dpos), and scale error (dscale). The

metrics are defined as follows.

dIoU =
1

N

N

∑
i=1

∩(bi,b
t
i)

∪(bi,b
t
i)

(39)

dpos =
1

N

N

∑
i=1

∥

∥

∥

∥

∥

[

cXC
i

cYC
i

]

−

[

c
XC,t
i

c
YC,t
i

]∥

∥

∥

∥

∥

1

(40)

dscale =
1

N

N

∑
i=1

max(ai,a
t
i)

min(ai,a
t
i)

(41)

where bi, bt
i are the i-th element bounding box for the output layout and the target layout, respectively.

4.3. Ablation study

We investigate how our key components, the hierarchical parameterization via layout tree and the improved energy model, contribute to

the performance. The experimental results in various settings are summarized in Table 3, where the same reference designs are used for

training unless mentioned. We can see that dscale and dIoU are improved by using the estimated layout tree and the improved energy model,

respectively. These can be explained by the fact that the search space for the height parameters is greatly reduced by the layout tree, and

by introducing a new energy term that measures the matching with the reference layouts. We can also see that using the improved energy

model with the estimated tree instead of the flattened tree improves dpos significantly, which may be comes from the tree-aware energy terms,

especially the matching term of the depth mask.

The better results using oracle trees suggest that further improvements in layout estimation can be expected by improving our tree estima-

tion method. The significant improvements by the self-reference setting show that references play an important role in the performance of

our layout estimation. We believe that increasing the size of the dataset to pool more diverse references and an efficient interactive search are

important.

Table 3: An ablation study of automatic layout optimization.

Layout tree Energy model Self-
reference

Metrics

Method Flattened Estimated Oracle Base Improved dIoU ↑ dpos ↓ dscale ↓

LLSPGD ✓ ✓ 0.080 0.472 2.384

Ablation-1 ✓ ✓ 0.098 0.484 2.250

Ablation-2 ✓ ✓ 0.076 0.476 2.136

Ours ✓ ✓ 0.091 0.448 2.152

Ours (oracle w/o self-ref.) ✓ ✓ 0.117 0.346 2.098

Ours (oracle) ✓ ✓ ✓ 0.330 0.235 1.622

submitted to Pacific Graphics (2021)

/ Modeling Visual Containment for Web Page Layout Optimization— Supplemental Material — 7

4.4. Additional Results

We show some additional results comparing our method with LLSPGD in Figures 3 and 4.

5. Interactive Evaluation Details

5.1. Additional Energy Term

The additional local exploration term we used is defined as:

ELocal =
1

3N

N

∑
i=1

(cXC
i − c̄

XC
i)2 +(cYC

i − c̄
YC
i)2 +(Hi − H̄i)

2
(42)

where c̄ and H̄ represent the coordinate and the height of the current layout, respectively.

5.2. Questionnaires

The questionnaires are the five-point Likert scale (1: “strongly agree”, 5: “strongly disagree”), and include about the usability of the interface

- “The design interface is easy to use.”, and the suggestions - “The AI-generated suggestions are helpful.”. The workers who are assigned to

the proposed model were asked additional questionnaire about the usability of the treeview - “The tree view is useful.”.

The results of the questionnaire are summarized in Fig. 5. Our interface received favorable scores overall. The mean values were 2.00

for interface (ours), 2.06 for interface (baseline), 2.54 for suggestion (ours), 2.48 for suggestion (baseline), and 2.36 for suggestion (ours),

respectively. Ours got less positive answers than baseline about suggestions. We assume that this is due to LLSPGD having a poorer initial-

ization and thus the suggestions seem to be more useful than those provided by our approach. We note, however, that more users found the

suggestions by LLSPGD to be very unhelpful with respect to our approach.

We also asked 58 workers about their experience in professional user interface design: 27 workers had no experience, 7 workers had

less than 1 year, 12 workers had 1-3 years, 10 workers had 3-5 years, and 2 workers had more than 5 years. Additionally, we added two

qualification requirements when issuing tasks to weed out bad workers: "HIT Approval Rate (%) for all Requesters’ HITs greater than or

equal to 95" and "Number of HITs Approved greater than or equal to 50".

5.3. Feedback

We allowed users to freely input feedback comments about the task. Feedback on the interface was positive, highlighting that it was straight-

forward and easy to use. The main negative points about the interface were that more functionality would be useful, with customization like

commercial web design tools. The feedback regarding the suggestions was also positive, especially helpful during brainstorming. For the

approach of LLSPGD people complained about the inconsistency of the results and that it was necessary to lock many elements to obtain

good results. Finally, many users found the task to be enjoyable.

Some of the actual positive feedback is listed below.

• Interface

– (LLSPGD) Overall, the interface was very easy to use, though, and I enjoyed it very much.

– (Ours) The interface itself is easy to use, but I would have liked more choices. I think that’s the creative person in me.

– (Ours) I didn’t face any problem. It was easy to use.

• Suggestion

– (Ours) I thought some of the AI suggestions were actually really helpful as I moved through my own ideas.

– (Ours) Most part it was not useful but sometimes it was great giving good ideas about the size of the icons. The AI should automatically

resize the text which are beside it or near to it or in the same bar.

• Enjoyment

– (LLSPGD) Thanks for the opportunity, I found this to be rather fun and engaging.

– (LLSPGD) Interesting task.

– (LLSPGD) Enjoy while I doing this designing task.

– (LLSPGD) Happy to participate on this AI survey.

– (Ours) That was fun, thanks.

– (LLSPGD) Nice task and It is very easy.

Some of the actual negative feedback is listed below.

submitted to Pacific Graphics (2021)

8 / Modeling Visual Containment for Web Page Layout Optimization— Supplemental Material —

(a) LLSPGD (b) Ours

Figure 3: Additional results comparing LLSPGD (a) with our proposed approach (b).

submitted to Pacific Graphics (2021)

/ Modeling Visual Containment for Web Page Layout Optimization— Supplemental Material — 9

(a) LLSPGD (b) Ours

Figure 4: Additional results comparing LLSPGD (a) with our proposed approach (b).

submitted to Pacific Graphics (2021)

10 / Modeling Visual Containment for Web Page Layout Optimization— Supplemental Material —

The design interface is easy to use.

The AI-generated suggestions are helpful.

The tree view is useful.

Baseline Strongly agree Agree Neutral

Disagree

Strongly disagree

Ours

Baseline

Ours

Ours

Figure 5: Summary of questionnaire answers. The users responded favorably to all questions.

• Interface

– (LLSPGD) I found some of the controls difficult to use, but of course, I have no experience.

– (LLSPGD) The AI and interface were a little difficult to use. If they ran a little smoother, it would be more helpful.

– (Ours) I wish it was more customizable, something like wix.com

– (LLSPGD) More option required to customize the website design.

• Suggestion

– (LLSPGD) I felt I had to lock too many things for the AI to make any marginally helpful decisions – in other words, I had to make

nearly all of the decisions to get useful suggestions, which isn’t very helpful. I also felt it didn’t order the text well, and it seemed to just

throw it anywhere. I used it for vague ideas, but it wasn’t very helpful for that, either.

– (LLSPGD) I think the tool sometimes helped me find a suitable design quickly but other times seemed not to be effective.

5.4. User Behavior Analysis

We investigate how the participants used our design tools. The transition of user actions is shown in Fig. 6, in which the edges represent

the probability of taking a head action after a tail action. Action transitions with small probabilities are removed for simplicity. Most of

the actions were to move and scale elements. We can see that all actions tend to be taken consecutively. We also see a tendency to accept

suggestions right after the session starts. Since the initial layout is already the optimal solution for the energy model, this may indicate a

discrepancy between the user’s preferences and the energy model.

Accept Suggestion

0.51

Move / Scale

0.46

Finish

0.02
0.92

Lock / Unlock

0.04

Randomize

0.06

0.37

0.54

Edit Tree

0.03

Start

0.25

0.74

0.02

0.58

0.38

0.48

0.04

0.44

Edit Z-order

0.42

0.53

Figure 6: Graph of users’ action transition. The probably of each transition is shown on the edges.

submitted to Pacific Graphics (2021)

/ Modeling Visual Containment for Web Page Layout Optimization— Supplemental Material — 11

5.5. Evaluation of User-Generated Designs

We performed pairwise comparisons of user-generated designs with the methods in the same way as in the prior experiment for automatic

evaluation. We selected the first 100 designs for both models and collected five votes for each comparison. 65 workers participated in the

experiment. Using the Pearson’s chi-square test, we do not found a significant difference in the number of votes for both questions about

quality (p = 0.53) and similarity (p = 0.33), which is to be expected as the users are allowed to edit the web page until they are satisfied with

the results. We also observed some cases where the user found a good solution that was completely different from the original design.

Table 4: User voting result for user-generated designs with both our approach and LLSPGD.

Votes

Method Quality Similarity

LLSPGD 257 261

Ours 243 239

References

[Zei12] ZEILER M. D.: ADADELTA: an adaptive learning rate method. CoRR abs/1212.5701 (2012). 6

submitted to Pacific Graphics (2021)

