
Sampling from Quadric-Based CSG Surfaces
supplemental proofs and derivations

The quadric surface consists of all points that satisfy

Q(x) = xTAx− 2xT b+ c = 0, (1)

given a symmetric A ∈ R3×3, b ∈ R3, c ∈ R.

1 Intersection with a Line

Given a line p+ tv with p, v ∈ R3, t ∈ R, and ||v|| = 1, we solve Q(p+ tv) = 0 for t:

0 = Q(p+ tv)
⇔ 0 = (p+ tv)TA(p+ tv)− 2(p+ tv)T b+ c
⇔ 0 = vTAvT t2 + 2(vTAp− vT b)t+ (pTAp− 2pT b+ c) | (∗)
⇔ 0 = t2 − 2v

T b−vTAp
vTAvT

· t+ pTAp−2pT b+c
vTAvT

(2)

The step (∗) is only valid if vTAv 6= 0. In that case the solutions are

t1,2 =
vT b− vTAp

vTAv
±

√(
vT b− vTAp

vTAv

)2

− pTAp− 2pT b+ c

vTAv
. (3)

Otherwise, the equation becomes linear and the only solution is

t =
1

2
· p

TAp− 2pT b+ c

vT b− vTAp
. (4)

2 Heightfield Function

Consider three orthogonal eigenvectors ui, uj, uk ofA (with associated eigenvalues λi, λj, λk).
As eigenvectors, the following holds:
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uTi Aui = λi, uTj Auj = λj, uTkAuk = λk (5)

If p lies on a quadric sampling plane and d is orthogonal to it, Equation 3 simplifies
significantly. p can be represented as q + xui + yuj for quadric center q (satisfying
Aq − b = 0) and x, y ∈ R. d is uk. We simplify Equation 3 in two parts:

vT b−vTAp
vTAv

=
uTk b−u

T
kA(q+xui+yuj)

uTkAuk
| uTkAuk = λk

= 1
λk

[
uTk b− uTkA(q + xui + yuj)

]
= 1

λk

[
uTk (b− Aq)− uTk ui · x+ uTk uj · y)

]
| Aq − b = 0

= 1
λk

[
uTk ui · x+ uTk uj · y)

]
| uTk ui = 0, uTk uj = 0

= 0

(6)

Thus, the solutions to the line intersection are:

t1,2

= ±
√
−pTAp−2pT b+c

vTAv

= ±
√
− (q+xui+yuj)TA(q+xui+yuj)−2(q+xui+yuj)T b+c

uTkAuk

= ±
√
− 1
λk

[(q + xui + yuj)TA(q + xui + yuj)− 2(q + xui + yuj)T b+ c]

= ±
√
− 1
λk

[
x2uTi Aui + y2uTj Auj − qTAq + 2qTA(q + xui + yuj)− 2bT (q + xui + yuj) + c

]
= ±

√
− 1
λk

[λix2 + λjy2 − qTAq + 2(Aq − b)T (q + xui + yuj) + c]

= ±
√
− 1
λk

[λix2 + λjy2 − qTAq + c]

= ±
√
− 1
λk

[λix2 + λjy2 − qT b+ c]

= ±
√
αxx2 + αyy2 + αc

(7)

with αx = − λi
λk

, αy = − λj
λk

, and αc = qT b−c
λk

.

If λk = 0, we start with Equation 4:

t = 1
2
· pTAp−2pT b+c

vT b−vTAp

= 1
2
· (q+xui+yuj)

TA(q+xui+yuj)−2(q+xui+yuj)T b+c
uTk b−u

T
kA(q+xui+yuj)

= 1
2
· (q+xui+yuj)

TA(q+xui+yuj)−2(q+xui+yuj)T b+c
uTk b

| (∗)

= 1
2
· λix

2+λjy
2−qT b+c

uTk b

= βxx
2 + βyy

2 + βc

(8)
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with βx = − λi
2uTk b

, βy = − λj
2uTk b

, and βc = − qT b−c
2uTk b

. There is no intersection with the quadric

if uTk b = 0. This second version is mostly used for paraboloid quadrics.

3 Convergence of Conservative Distance Function

For quadrics, we derived the following bounds on the quadric value Q(x), given a reference
point x0:

Q(x0 + t · v) ≤ Q(x0) + t · 2||Ax0 − b||+ t2 ·maxλi (9)

Q(x0 + t · v) ≥ Q(x0)− t · 2||Ax0 − b||+ t2 ·minλi (10)

We use these bounds for a conservative distance-to-quadric-surface by solving for the
smallest positive t, where the bound is equal to zero.

Here, we briefly prove that not only the absolute error, but also the relative error goes
to zero close to the surface. Consider Equation 9. This equation is used when Q(x0)
is negative, i.e. x0 is inside the surface. For small t, the quadratic term t2 · maxλi can
be ignored and only the relative error of t · 2||Ax0 − b|| is important, which is our v-
independent approximation of 2 · t · (Ax0 − b)Tv. Thus, the relative error (for small t)
reduces to

η =
(Ax0 − b)Tv − ||Ax0 − b||

(Ax0 − b)Tv
, (11)

where v is the direction of the shortest distance to the quadric surface. Close to the
surface (and inside of it), v is converging to the direction of the gradient of Q(x0), which
is proportional to Ax0 − b. Therefore (Ax0 − b)Tv converges to ||Ax0 − b|| and thus η to
0.

Outside the surface, Equation 10 is used. Here, the error is between (Ax0 − b)Tv and
−||Ax0 − b||. However, if the surface is reached from outside, v points into negative
gradient direction and thus η converges to zero here as well.

4 Heightfield Distortion

Given the heightfield function h(x, y) =
√
αxx2 + αyy2 + αc, The surface normal n(x, y)

is proportional to (−∂h
∂x
,−∂h

∂y
, 1)T , which is

1√
αxx2 + αyy2 + αc

−αxx−αyy
1

 . (12)

We continue with the following (unnormalized) normal for ease-of-use:

n(x, y) =

 −αxx
−αyy√

αxx2 + αyy2 + αc

 . (13)
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The distortion from 2D to 3D can be measured by

δ(x, y) =

( n(x, y)

|n(x, y)|

)T 0
0
1

−1 , (14)

the inverted projection of the (normalized) normal onto the up vector. This unfolds to

δ(x, y) = |n(x,y)|
n(x,y)2

=

√
α2
xx

2+α2
yy

2+
√
αxx2+αyy2+αc

2

√
αxx2+αyy2+αc

=
√

(αx+α2
x)x

2+(αy+α2
y)y

2+αc

αxx2+αyy2+αc
.

(15)

We are only considering and evaluating the regions where the heightfield is defined,
i.e. where

√
αxx2 + αyy2 + αc is real. Thus, αxx

2 + αyy
2 + αc ≥ 0. As (αx + α2

x)x
2 +

(αy + α2
y)y

2 + αc ≥ αxx
2 + αyy

2 + αc (nominator is at least as large as denominator), we
have δ(x, y) ≥ 1.

During our adaptive sampling, we require an upper bound on the distortion for a given
basic region.

√
3 is a trivial bound, but we can exploit the monotony behavior of δ(x, y)

for better bounds.

The monotony of δ(x, y) in x direction is classified by the sign of ∂
∂x
δ(x, y). As δ(x, y)

is continuously differentiable, monotony in x can only change if ∂
∂x
δ(x, y) = 0. This can

only happen at a certain line:

0 = ∂
∂x
δ(x, y)

⇔ 0 = 1
2δ(x,y)

(
2(α2

x+αx)x
αxx2+αyy2+αc

− 2αxx((αx+α2
x)x

2+(αy+α2
y)y

2+αc)

(αxx2+αyy2+αc)2

)
⇔ 0 = 2(α2

x+αx)x
αxx2+αyy2+αc

− 2αxx((αx+α2
x)x

2+(αy+α2
y)y

2+αc)

(αxx2+αyy2+αc)2

⇔ 0 = 2(α2
x + αx)x(αxx

2 + αyy
2 + αc)− 2αxx((αx + α2

x)x
2 + (αy + α2

y)y
2 + αc)

⇔ 0 = x ·
[
(α2

x + αx)(αxx
2 + αyy

2 + αc)− αx((αx + α2
x)x

2 + (αy + α2
y)y

2 + αc)
]
(16)

Thus, the monotony in x can only change at x = 0 or if

(α2
x + αx)(αxx

2 + αyy
2 + αc) = αx((αx + α2

x)x
2 + (αy + α2

y)y
2 + αc)

⇔ (α2
x + αx)(αyy

2 + αc) = αx((αy + α2
y)y

2 + αc)

⇔ (α2
xαy − αxα2

y)y
2 = −α2

xαc

⇔ (αxαy − α2
y)y

2 = −αxαc

⇔ y = ±
√

αxαc

(αy−αx)αy
,

(17)
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should those two lines exist. Analogously, monotony in y can only change at y = 0 or if

x = ±
√

αyαc
(αx − αy)αx

. (18)

Note that if one of these pairs of lines exist (and is different from the coordinate axes),
the other does not, because

αxαc

(αy−αx)αy
· αyαc

(αx−αy)αx

= − α2
c

(αy−αx)2

< 0.

(19)

Thus, the terms under the square root have opposite signs: if one is positive, the other
is negative. The case than any α is zero can be ignored, because the pair of lines would
be collapse to a coordinate axis.

Our basic regions are fully contained in a quadrant. When restricted to a single quadrant,
we have proven that δ(x, y) consists of two regions where it is monotone in x and y.
These two regions are either separated by a horizontal or a vertical line and only a single
monotony direction changes across the line.

Now consider an axis-aligned rectangle R. If R is fully contained in either monotony
region, it is trivial to see that the extrema are assumed at a corner of R: Inside R, δ(x, y)
is monotone in x and y. If R contains both regions, the situation is a bit more complex.
If the regions are separated by a vertical line, then the monotony of y changes from
left to right. However, x is monotone in the complete quadrant and the extrema in R
cannot lie on the vertical line but must be on the left or right edge of R. Similarly, if the
change of monotony is along a horizontal line, the complete quadrant is monotony in y
and extrema must be on the upper or lower edge of R. Thus, while δ(x, y) might not be
completely monotone in R, we still have the useful property that the extrema of δ(x, y),
i.e. the minimum and maximum distortion, are assumed at a corner of R and can thus
be computed by 4 evaluations of δ(x, y).

5 Parabolic Cases

In the parabolic cases, the heightfield is h(x, y) = βxx
2 + βyy

2 + βc. The (unnormalized)
normal is:

n(x, y) =

−2βxx
−2βyy

1

 . (20)

The distortion then evaluates to

δ(x, y) = |n(x,y)|
n(x,y)2

=
√

4βxx2 + 4βyy2 + 1.
(21)

Inside any given quadrant, this function is monotone in x and y, thus also satisfying our
distortion-extrema-lie-on-AABB-corner property.
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For the decomposition into low-distortion regions, we solve |n(x, y)2| = |n(x, y)0| and
|n(x, y)2| = |n(x, y)1|, which yield the lines

x = ± 1

2βx
and y = ± 1

2βy
. (22)

6 Splat Box Height

When rendering the splats as surface-aligned boxes, we can use the distortion bounds
to compute the box thickness. The distortion δ is the local slope of the heightfield, the
extrema the local worst-case slopes (δ+ and δ−). Given a point p and radius r, we want
to compute a bound of the maximum deviation of the heightfield from the splat plane
within radius r. In 2D (cut across the highest curvature direction), the splat plane (which
is now a line) has the following direction vector:

d =
1√

1 + δ2

(
1
δ

)
(23)

Similarly, the maximum distortion gives rise to the following direction:

d+ =
1√

1 + δ+2

(
1
δ+

)
(24)

A bound on the half-extent of the splat box in positive normal direction is how far the
lines of d and d+ have diverged when measured in normal direction at distance r from p.
This can be computed as r · sinα, where α is the angle between d and d+:

r · sinα

= r ·
√

1− cos2 α

= r ·
√

1− (dTd+)2

= r ·

√
1−

(
1+δδ+√

(1+δ2)(1+δ+2)

)2

= r ·
√

1− (1+δδ+)2

(1+δ2)(1+δ+2)

= r ·
√

(1+δ2)(1+δ+2)−(1+δδ+)2

(1+δ2)(1+δ+2)

= r ·
√

(δ+−δ)2
(1+δ2)(1+δ+2)

= r · (δ+ − δ) · 1√
(1+δ2)(1+δ+2)

(25)

Similarly, in the other direction we obtain

r · (δ − δ−) · 1√
(1 + δ2)(1 + (δ−)2)

(26)

In our implementation, we dropped the 1√
(1+δ2)(1+δ+2)

factor, which is smaller than 1. We

only need an upper bound and r · (δ+ − δ−) was already small enough for most splats
that we could render a single quad instead of a box.
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