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In this document, we detail the proofs for the main contribution of the article: Theorems 1 (Section 1) and 2 (Section 2). We also provide
additional results where we have considered various settings for the radius r and the noise level. We also provide a test on a non-uniformly
sampled surface (Section 4).

1. Proof of Theorem 1 - Normalized parameters of the fitted algebraic sphere

This section contains the proof of Theorem 1 that relates the normalized parameters ûc, û` and ûq of the fitted algebraic sphere to the
differential properties of the surface. We first give the asymptotic expression of various differential quantities involved in the algebraic sphere
regression. Then we integrate these quantities, and we finally assemble the results to obtain Taylor expansions of the sphere parameters.

1.1. Differential quantities

We first give the Taylor polynomials of the coordinates f, the normal vectors n and their dot product in the local principal frame. Using
polar coordinates (ρ,θ) ∈ (0,r)× (0,2π), these quantities are given in the form of polynomials of variable ρ with coefficients depending on
variable θ. The coefficients also contain the different derivatives ak, j−k of the surface height defined by Equation 10.

Coordinates. The surface of Equation 9 is expressed in polar coordinates by

f(ρ,θ) =
[
ρcos(θ) ρsin(θ) z(ρ,θ)

]T
. (1)
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The Taylor expansion of the height field function z in Equation 10 is written in polar coordinates as z(ρ,θ) = ∑
5
k=2 ρ

kbk(θ)+O(ρ6) with the
coefficients bk equal to

b2(θ) =
1
2

(
κ1 cos2(θ)+κ2 sin2(θ)

)
,

b3(θ) =
1
6

(
a30 cos3(θ)+3a21 cos2(θ)sin(θ)+3a12 cos(θ)sin2(θ)+a03 sin3(θ)

)
,

b4(θ) =
1

24

(
a40 cos4(θ)+4a31 cos3(θ)sin(θ)+2a22 cos2(θ)sin2(θ)+4a13 cos(θ)sin3(θ)+a04 sin4(θ)

)
,

b5(θ) =
1

120

(
a50 cos5(θ)+5a41 cos4(θ)sin(θ)+10a32 cos3(θ)sin2(θ)+10a23 cos2(θ)sin3(θ)+5a14 cos(θ)sin4(θ)+a05 sin5(θ)

)
.

The squared height (that is required latter) is z(ρ,θ)2 = ∑
7
k=4 ck(θ)ρ

k + O(ρ8) with coefficients c4(θ) = b2(θ)
2, c5(θ) = 2b2(θ)b3(θ),

c6(θ) = b3(θ)
2 +2b2(θ)b4(θ), and c7(θ) = 2b2(θ)b5(θ)+2b3(θ)b4(θ).

Tangents Before introducing the normal vectors, the Taylor polynomials of the tangents are required. In the principal frame, the partial
derivatives of f with respect to x and y (denoted ∂xf(x,y) and ∂yf(x,y) respectively) are given by ∂xf(x,y)=

[
1 0 ∂xz(x,y)

]T and ∂yf(x,y)=[
0 1 ∂yz(x,y)

]T . In polar coordinates, the partial derivatives of z with respect to x and y are ∂xz(ρ,θ) = ∑
4
k=1 dxk(θ)ρ

k +O(ρ5) and
∂yz(ρ,θ) = ∑

4
k=1 dyk(θ)ρ

k +O(ρ5) with the following coefficients

dx1(θ) = κ1 cos2(θ),

dx2(θ) =
1
2

(
a30 cos2(θ)+2a21 cos(θ)sin(θ)+a12 sin2(θ)

)
,

dx3(θ) =
1
6

(
a40 cos3(θ)+3a31 cos2(θ)sin(θ)+3a22 cos(θ)sin2(θ)+a13 sin3(θ)

)
,

dx4(θ) =
1
24

(
a50 cos4(θ)+4a41 cos3(θ)sin(θ)+6a32 cos2(θ)sin2(θ)+4a23 cos(θ)sin3(θ)+a14 sin4(θ)

)
.

dy1(θ) = κ2 sin2(θ),

dy2(θ) =
1
2

(
a21 cos2(θ)+2a12 cos(θ)sin(θ)+a03 sin2(θ)

)
,

dy3(θ) =
1
6

(
a31 cos3(θ)+3a22 cos2(θ)sin(θ)+3a13 cos(θ)sin2(θ)+a04 sin3(θ)

)
,

dy4(θ) =
1
24

(
a41 cos4(θ)+4a32 cos3(θ)sin(θ)+6a23 cos2(θ)sin2(θ)+4a14 cos(θ)sin3(θ)+a05 sin4(θ)

)
.

The squared partial derivative of z with respect to x in polar coordinates is ∂xz(ρ,θ)2 = ∑
5
k=2 exk(θ)ρ

k +O(ρ6) with coefficients ex2(θ) =

dx1(θ)
2, ex3(θ) = 2dx1(θ)dx2(θ), ex4(θ) = dx2(θ)

2 +2dx1(θ)dx3(θ), and ex5(θ) = 2dx1(θ)dx4(θ)+2dx2(θ)dx3(θ). The formula for ∂yz and
its associated coefficients eyk are the same as ∂xz and exk using y subscript instead of x.

Normal vectors. We denote by v a vector orthogonal to the surface v(x,y)= ∂xf(x,y)×∂yf(x,y), which is equal to
[
−∂xz(x,y) −∂yz(x,y) 1

]T ,

so that the normal vector n is given by n(x,y) = v(x,y)
‖v(x,y)‖ . The squared norm of v is ‖v(ρ,θ)‖2 = 1+∑

5
k=2 fk(θ)ρ

k +O(ρ6), with fk(θ) =

exk(θ)+ eyk(θ). Using the Taylor expansion of 1/
√

1+X , the inverse of the norm is approximated by 1/‖v(ρ,θ)‖ = 1+∑
5
k=2 gk(θ)ρ

k +

O(ρ6), with g2(θ) =− 1
2 f2(θ), g3(θ) =− 1

2 f3(θ), g4(θ) =
1
8

(
3 f2(θ)

2−4 f4(θ)
)

, and g5(θ) =
1
4 (3 f2(θ) f3(θ)−2 f5(θ)).

Finally the normal vector n is asymptotically equivalent to

n(ρ,θ) =

nx(ρ,θ)
ny(ρ,θ)
nz(ρ,θ)

=

 ∑
4
k=1 hxk(θ)ρ

k +O(ρ5)

∑
4
k=1 hyk(θ)ρ

k +O(ρ5)

1+∑
5
k=2 gk(θ)ρ

k +O(ρ6)

 , (2)

with hx1(θ) = −dx2(θ), hx2(θ) = −dx3(θ), hx3(θ) = −dx4(θ)− g2(θ)dx2(θ), hx4(θ) = −dx5(θ)− g2(θ)dx3(θ)− g3(θ)dx2(θ), and using
similar formula for hyk(θ) using y subscript.
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Dot products. The asymptotic dot product between the coordinates and the normal vectors is f(ρ,θ) .n(ρ,θ) = ∑
5
k=2 mk(θ)ρ

k +O(ρ6) with
the following coefficients

m2(θ) = cos(θ)hx1(θ)+ sin(θ)hy1(θ)+b2(θ),

m3(θ) = cos(θ)hx2(θ)+ sin(θ)hy2(θ)+b3(θ),

m4(θ) = cos(θ)hx3(θ)+ sin(θ)hy3(θ)+b4(θ)+g2(θ)b2(θ),

m5(θ) = cos(θ)hx4(θ)+ sin(θ)hy4(θ)+b5(θ)+g2(θ)b3(θ)+g3(θ)b2(θ).

The dot product of the coordinates with themselves, which is the squared norm of the positions, is ‖f(ρ,θ)‖2 = f(ρ,θ) . f(ρ,θ) = ρ
2 +

z(ρ,θ)2 = ρ
2 +∑

7
k=4 ck(θ)ρ

k +O(ρ8).

1.2. Integrated quantities

We now give results of the integration of the previous quantities over the cylindrical neighborhood (see Equation 11). These calculations are
technical but fairly straightforward since they only involve polynomial integrations. Moreover, many integrals containing coefficients of the
form cosp(θ)sinq(θ) are discarded when p or q are odd. On the other hand, the coefficients are often tedious to write so we only give the
results.

Coordinates. The integration over Dr of the coordinates f of Equation 1 results in
∫∫
Dr

f(ρ,θ)ρdρdθ =
[
0 0 n4r4 +n6r6 +O(r8)

]T
,

with n4 =
πH
4 and n6 =

π∆H
96 . The coefficient n4 agrees with prior work on integral invariants [PWY∗07, Theorem 6].

Normal vectors. The integration over Dr of the normal vector n of Equation 2 yields

∫∫
Dr

n(ρ,θ)ρdρdθ =

 px4r4 + px6r6 +O(r7)

py4r4 + py6r6 +O(r7)

pz2r2 + pz4r4 + pz6r6 +O(r7)


with the following coefficients

px4 =−
π

8
(a30 +a12),

px6 =
π

48
(a30(2H2−K +4κ

2
1)+a12(6H2−K)− (a50 +2a32 +a14)/4),

py4 =−
π

8
(a03 +a21),

py6 =
π

48
(a03(2H2−K +4κ

2
2)+a21(6H2−K)− (a41 +2a23 +a05)/4),

pz2 = π,

pz4 =−
π

8
(κ2

1 +κ
2
2),

pz6 =
π

192
(144H2(H2−K)+24K2−4(a22 +a40)κ1−4(a22 +a04)κ2−3(a2

30 +a2
03)−2(a12a30 +a03a21)−7(a2

21 +a2
12)).

Dot products. The last quantities to integrate are the two dot products introduced in the previous section. Their integrals are
∫∫
Dr

f(ρ,θ) .n(ρ,θ)ρdρdθ=

q4r4 +q6r6 +O(r8) and
∫∫
Dr

f(ρ,θ) . f(ρ,θ)ρdρdθ = r4r4 + r6r6 + r8r8 +O(r10), with the coefficients equal to

q4 =−
πH
4

,

q6 =
π

96
(24H3−16KH−∆H)

r4 =
π

2
,

r6 =
π

24
(3H2−K),

r8 =
π

4068

(
3(5a40 +6a22 +a04)κ1 +3(a40 +6a22 +5a04)κ2 +2

(
5a2

30 +9a2
21 +6a30a12 +6a03a21 +9a2

12 +5a2
03

))
.
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1.3. Algebraic sphere regression

We gather the previous integrals following the smooth version of Equations 2-4 to obtain the asymptotic equivalents of uc, u` and uq of the
fitted algebraic sphere. We also give the asymptotic expression of the Pratt’s norm (see below Equation 6) in order to obtain the normalized
sphere parameters presented in Theorem 1.

Dot products. Before calculating the parameters of the sphere, we need to develop two intermediate expressions. The dot product between
the coordinates and the normal vectors integrals is

∫∫
Dr

f(ρ,θ)ρdρdθ .
∫∫
Dr

n(ρ,θ)ρdρdθ = s6r6 + s8r8 +O(r10) with s6 = π
2H
4 and s8 =

π
2

96 (−12H3 +6KH +∆H).

The second dot product that is applied to the coordinates integral with itself is
∫∫
Dr

f(ρ,θ)ρdρdθ .
∫∫
Dr

f(ρ,θ)ρdρdθ = u8r8 + u10r10 +

O(r12) with u8 =
π

2H2

16 and u10 =
πH∆H

192 .

Quadratic parameter. To calculate uq using Equation 4, we rewrite it as a fraction uq := 1
2

nume
deno with nume the numerator and deno the

denominator of uq (up to the constant 1/2). In the continuous setting, the numerator of uq is expressed by

nume := Ar

∫∫
Dr

f(ρ,θ) .n(ρ,θ)ρdρdθ −
∫∫
Dr

f(ρ,θ)ρdρdθ .
∫∫
Dr

n(ρ,θ)ρdρdθ, (3)

where Ar = πr2 is the area of Dr. Its asymptotic polynomials is

nume = v6r6 + v8r8 +O(r10) (4)

with v6 =− π
2H
2 and v8 =

π
2

48 (18H3−11KH−2∆H).

The denominator of uq is defined as

deno := Ar

∫∫
Dr

f(ρ,θ) . f(ρ,θ)ρdρdθ −
∫∫
Dr

f(ρ,θ)ρdρdθ .
∫∫
Dr

f(r,θ)ρdρdθ, (5)

which asymptotically leads to

deno =
π

2

2
r6
(

1+w2r2 +w4r4 +O(r6)
)
, (6)

with the coefficients

w2 =
1

24
(3H2−2K),

w4 = 3(5a40 +6a22 +a04)κ1 +3(a40 +6a22 +5a04)κ2 +2(5a2
30 +9a2

21 +6a30a12 +6a21a03 +9a2
12 +5a2

03).

The inverse of the denominator, obtained using the Taylor expansion of 1/(1+X), is

1
deno

=
2

π2r6 (1−w2r2 +O(r4)). (7)

Finally, the quadratic parameter uq of the algebraic sphere is obtained by multiplying nume of Equation 4 and 1/deno of Equation 7. It is
asymptotically expressed as

uq = uq0 +uq2r2 +O(r4) (8)

with the following coefficients

uq0 =−
H
2
,

uq2 =
1

48
(21H3−13HK−2∆H).

Linear parameter. The linear parameter u` of the sphere is defined as

u` :=
1
Ar

(∫∫
Dr

n(ρ,θ)−2uq

∫∫
Dr

f(ρ,θ)
)

(9)

Using previous results of Section 1.2, we obtain

u` =

 u`x2r2 +u`x4r4 +O(r5)

u`y2r2 +u`y4r4 +O(r5)

1+u`z2r2 +u`z4r4 +O(r6)

 , (10)
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with

u`x2 =−
a30 +a12

8
,

u`y2 =−
a03 +a21

8
,

u`x4 =
1
48

(
2(a30 +3a12)H

2− (a12 +a30)K +4a30κ
2
1− (a50 +2a32 +a14)/4

)
,

u`y4 =
1
48

(
2(a03 +3a21)H

2− (a03 +a21)K +4a03κ
2
2− (a41 +2a23 +a05)/4

)
,

u`z2 =−
H2−K

4
,

u`z4 =
1

192

(
165H4−157KH2 +24K2−4(a40 +a22)κ1−4(a04 +a22)κ2−3a2

30−2a12a30−7a2
21−2a03a21−7a2

12−3a2
03

)
,

Constant parameter. The constant parameter uc is defined in the smooth setting by

uc :=− 1
Ar

(
u` .

∫∫
Dr

f(ρ,θ)ρdρdθ+uq

∫∫
Dr

f(ρ,θ) . f(ρ,θ)ρdρdθ

)
. (11)

Its asymptotic expansion is

uc = uc4r4 +O(r5) (12)

with uc4 =− 1
96 (9H3−5KH−∆H).

Pratt’s norm. We first give the asymptotic expression of the squared norm of u`, which is required for the Pratt’s norm. Starting from
Equation. 10, we obtain

‖u`‖2 = 1− H2−K
2

r2 +O(r3).

By using the Taylor polynomial of
√

1+X , we obtain the asymptotic expression of the Pratt’s norm

p = 1− (κ1−κ2)
2

16
r2 +O(r3), (13)

which is discussed in Proposition 1.

Using the Taylor polynomial of 1/(1+X), we express the inverse of p as

1
p
= 1+

(κ1−κ2)
2

16
r2 +O(r3). (14)

Normalized sphere parameters To get the asymptotic expressions of the normalized sphere parameters (Equation 6), we multiply each
asymptotic expression of the sphere parameters given in Equations 8, 10 and 12 by the inverse of the Pratt’s norm given in Equation 14.

We obtain the normalized parameters of the fitted algebraic sphere presented in Theorem 1

ûq =−
H
2
+

15H3−7HK−2∆H
48

r2 +O(r3), (15)

û` =

0
0
1

−
 a30+a12

8
a03+a21

8
0

r2 +O(r3), (16)

ûc =−
1

96
(9H3−5KH−∆H)r4 +O(r5). (17)

2. Proof of Theorem 2 - Stability of the mean curvature estimator H̃

This section details the proof of Theorem 2 concerning the stability analysis of the mean curvature estimator H̃ obtained from the algebraic
sphere regression.

© 2021 The Author(s)
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2.1. Preliminaries on the Gaussian noise

In the asymptotic settings introduced in Section 4.1, the additive noise of Equation 23 amounts to

f?(x,y) = f(x,y)+ εεε(x,y) (18)

where f is the ’true’ surface coordinates given by Equation 9, and f? is the ’noisy’ surface coordinates. The coordinates of the noise dis-
placement vector εεε follows a Gaussian distribution with zero mean and a standard deviation σ defined by Equation 24. For this theorem, we
assume that σ > 2.

Before detailing the proof, we give some properties required latter on the integrals over Dr (Equation 11) of several quantities related to
the noise model we use ∫∫

Dr

εεε = 0, (19)∫∫
Dr

‖εεε‖2 = 3πσ
2r2 = 3πδ

2r2β+2 +O(r2β+3), (20)∫∫
Dr

‖εεε‖= 2
√

2πσr2 = 2
√

2πδrβ+2 +O(rβ+3). (21)

Equations 19, 20, and 21 are obtained from the expected value of a normal, a chi-square, and a chi distribution respectively.

2.2. Stability analysis

The goal of the stability analysis is to inject f? (Equation 18) instead of f in all the equations leading to the mean curvature estimator H̃ (Equa-
tion 7).

Quadratic parameter. We analyse the stability of the quadratic parameter uq of the algebraic sphere using the same ratio formulation
uq := 1

2
nume
deno as in Section 1.

For the numerator, we inject f? in Equation 3, which gives

nume? = nume+πr2
∫∫
Dr

εεε
T n−

∫∫
εεε

T
∫

nnn .

Using Equations 4 and 19, we obtain nume? =− π
2H
2 r6+O(r7)+πr2 ∫∫

Dr
εεε

T n. We develop the remaining integral
∫∫
Dr

εεε
T n=

∫∫
Dr

cos(θ)‖εεε‖,
where θ is the angle between εεε and n. By bounding cos(θ) in (−1,1), and using Equation 21, we obtain − π

2H
2 r6 +O(r7)−2π

√
2πδrβ+4 +

O(rβ+5)≤ nume? ≤− π
2H
2 r6 +O(r7)+2π

√
2πδrβ+4 +O(rβ+5). Since β > 2, then

nume? =−π
2H
2

r6 +O(r7) ,

which corresponds to the 6th-order Taylor expansion of nume in Equation 4.

Similarly, we inject f? in Equation 5, which gives

deno? = deno+πr2
∫∫
Dr

‖εεε‖2 +2πr2
∫∫

εεε
T f−

∫∫
Dr

εεε
T
(∫∫

Dr

εεε+2
∫∫
Dr

f
)
.

Using Equations 6, 19, and 20, we obtain

deno? =
π

2

2
r6 +O(r7)+3π

2
δ

2r2β+4 +O(r2β+5)+2πr2
∫∫
Dr

εεε
T f .

We also develop the remaining integral
∫∫
Dr

εεε
T f =

∫∫
Dr

cos(ϕ)‖εεε‖‖f‖, where ϕ is the angle between εεε and f. By bounding cos(θ) in (−1,1)
and ‖f‖ by r+O(r2), and using Equation 21, we bound the remaining integral by

−2
√

2πδrβ+3 +O(rβ+4)≤
∫∫
Dr

εεε
T f≤+2

√
2πδrβ+3 +O(rβ+4) (22)

Using these bounds, we obtain π
2

2 r6 +O(r7)+3π
2
δ

2r2β+4 +O(r2β+5)−4π
√

2πδrβ+5 +O(rβ+6)≤ deno? ≤ π
2

2 r6 +O(r7)+3π
2
δ

2r2β+4 +

O(r2β+5)+4π
√

2πδrβ+5 +O(rβ+6). Since β > 2, then

deno? =
π

2

2
r6 +O(r7),

which corresponds to the 6th-order Taylor expansion of deno in Equation 6.
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Finally, since β > 2 implies nume? = nume and deno? = deno, then

uq
? =

H
2
+O(r),

which corresponds to uq (Equation 8).

Linear parameter. The linear parameter u` defined by Equation 9 is transformed in u`
? = u`−

2uq
?

πr2

∫∫
Dr

εεε. Using Equation 19, we directly
obtain u`

? = u`.

Constant parameter. Injecting f? in uc (Equation 11) gives

uc
? = uc−

1
πr2

(
u`

?T
∫∫
Dr

εεε+uq
?
∫∫
Dr

‖εεε‖2 +2uq
?
∫∫
Dr

εεε
T f
)
.

Using Equations 12, 19, 20, and 22, we bound uc
? by O(r3)−

√
2πδ

3H2r3β+3 +O(r3β+4) ≤ uc
? ≤ O(r3)+

√
2πδ

3H2r3β+3 +O(r3β+4).
Since β > 2, then uc

? = O(r3), which corresponds to the 2nd-order Taylor expansion of uc (Equation 12).

Mean curvature estimator. We gather the previous results to obtain the perturbed version H̃? of the mean curvature estimator H̃ :=
2uq√

‖u`‖2−4ucuq
(Equation 7). Since uc

?, u`
?, and uq

? are similar to their theoretical counterparts uc, u`, and uq, these calculations are standard

and are thus skipped. We finally obtain H̃? = H̃, which ends the proof of Theorem 2.

3. Proof of Propositions 1, 2 and 3

The proof of Proposition 1 (Pratt’s norm) has already been addressed in Section 1, Equation (13).

The asymptotic expansion of the GLS geometric variation given in Proposition 2 is obtained by deriving Equations (12)-(14) with respect
to the neighborhood size r, and by combining the results in Equation (18).

Proposition 3 is obtained by simply injecting Equations (12)-(14) inside Equation (21) to express the projection operator presented in
Equation (22).

4. Additional results

© 2021 The Author(s)
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Figure 1: Additional results for APSS for various radii r (with signed mean curvature estimation).
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Figure 2: Additional results for ASO for various radii r (with signed mean curvature estimation).
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Figure 3: Additional results for OJets for various radii r (absolute value of mean curvature).
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Figure 4: Additional results for WJets for various radii r (absolute value of mean curvature).
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Figure 5: Additional results for PSS for various radii r (absolute value of mean curvature).
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Figure 6: Additional results for the distance-to-barycenter mean curvature estimation from [PWY∗07] for various radii r (absolute value of
mean curvature).
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Figure 7: Additional results for the distance-to-plane mean curvature estimation from [DMSL11] for various radii r (absolute value of mean
curvature).
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Figure 8: Additional results for PCPNET [GKOM18] using single and multi scale pretrained networks as provided by the authors.
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Figure 9: Mean curvature and normal vector estimations on an highly non-uniform sampling of the Goursat’s surface.
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Figure 10: Mean curvature and normal vector estimations on a non-uniform Lidar-like sampling strategy: from a source points, we regularly
sample the sphere of directions and shoot rays that intersect the surface (with an additional Gaussian noise with σ = 0.013 at the intersection
point along that ray), 14850 samples.
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