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Figure 1: Morphing sequence between a wolf’s face and a bat on the Poincaré disc.

Abstract
In recent years, game developers are interested in developing games in the hyperbolic space. Shape blending is one of the
fundamental techniques to produce animation and videos games. This paper presents two algorithms for blending between
two closed curves in the hyperbolic plane in a manner that guarantees that the intermediate curves are closed. We deal with
hyperbolic discrete curves on Poincaré disc which is a famous model of the hyperbolic plane. We use the linear interpolation
approach of the geometric invariants of hyperbolic polygons namely hyperbolic side lengths, exterior angles and geodesic
discrete curvature. We formulate the closing condition of a hyperbolic polygon in terms of its geodesic side lengths and exterior
angles. This is to be able to generate closed intermediate curves. Finally, some experimental results are given to illustrate that
the proposed methods generate aesthetic blending of closed hyperbolic curves.

CCS Concepts
• Theory of computation → Computational geometry; •Mathematics of computing → Interpolation; • Computing method-
ologies → Animation;

1. Introduction

Shape blending (or morphing) consists in making a continuous se-
quence of transformations from a source object to a target one.
Morphing has wide practical use in areas such as computer graph-
ics, animation and modeling. The blending between two closed
curves plays an important role in the area of generation of anima-
tion and especially computer games [CWKBC13, BBCW10]. Re-
cently, game developers are interested in developing games in the
hyperbolic space [GMV15, KCC17].
Our investigation in this paper is to deal with the blending problem
of closed curves in the hyperbolic plane. There are several models
of hyperbolic plane. The most famous is the Poincaré disc, whose
boundary represents infinity and in which the geodesics consist of
all circular arcs contained within that disc that are orthogonal to

the boundary of the disc, plus all diameters of the disc. Most exist-
ing closed curve blending methods were studied in the Euclidean
plane [DSL15, SSHS14, SGWM93]. They consist in approximat-
ing the source and target closed curves by inscribed closed poly-
gons. And use the linear interpolation approach. Precisely, they in-
terpolate the geometric invariants of the inscribed polygons (side
lengths, exterior angles or discrete curvatures). Then they recon-
struct the intermediate polygon from the linear interpolation of
these characteristics using the exterior angle blending method or
the curvature blending one. Intermediate polygons are not neces-
sarily closed. The closing is done by numerical optimization meth-
ods.
Another study of the blending of closed plane curves was made by
Masahiro Hirano et al. [HWI17]. Their approach is to formulate the
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closed curve blending problem in terms of curvature flow.
The closing condition of an oriented plane polygon can be easily
expressed as a function of its side lengths and its exterior angles.
But for a hyperbolic polygon (witch is a sequence of hyperbolic
geodesic connecting a set of vertices), the closing condition is not
easy to obtain. Because we do not have the notion of vector on
the hyperbolic plane, but only the notion of hyperbolic geodesics
and the Möbius group that act on the hyperbolic plane. This paper
is organized as follows. In Section 3, we derive the necessary and
sufficient conditions for a hyperbolic polygon to be closed in terms
of its hyperbolic side lengths and exterior angles by using Möbius
transformations and the geometry of the Poincaré disc. In Section
4, we give two algorithms for morphing between two closed hy-
perbolic polygons. Namely, the curvature blending algorithm and
the exterior angle blending one. The first algorithm is based on lin-
ear interpolation of hyperbolic side lengths and discrete geodesic
curvature of the source and target polygons. While the second, is
based on linear interpolation of the exterior angles instead of dis-
crete geodesic curvature. In Section 5, we give some experimental
examples to illustrate that the proposed methods generate aesthetic
blending of closed hyperbolic curves, and also a comparison be-
tween the two methods. We end this section by giving some sub-
stantial applications.

2. Related work

Many studies on blending between two Euclidean planar closed
curves have been carried out. Most of these methods consist in dis-
cretizing the curves and the problem of blending between closed
curves becomes then a problem of blending between closed poly-
gons. Not that even the source and target curves are closed, this
is not so for the intermediate curves. Sederberg et al. [SGWM93]
proposed an algorithm based on linearly interpolating edge lengths
and exterior angles of the source and target polygons. To ensure that
the intermediate polygon is closed, they change its edge lengths by
solving an optimization problem to find the perfect ones that al-
low to close the polygon. They were able to give an explicit so-
lution to their problem. Another approach was given in [SE02].
The authors linearly interpolate the signed curvatures of the source
and the target curves, and used it to construct the intermediate
curves. The results presented in [SE02] have a natural appear-
ance without artificial shrinks and distortions. Unfortunately, the
method presented does not guaranty for intermediate curves to have
no self-intersection. In both papers [SSHS14, DSL15], the authors
approximate the source and target curve by their inscribed poly-
gons, then they interpolate the discrete geodesic curvature and the
edge lengths to reconstruct intermediate curves. Again, the inter-
mediate polygon is not usually closed. to ensure that, they mod-
ify its intrinsic parameters and solve an optimization problem. Re-
cently, Hirano et al. gave a new method to blend between two given
curves [HWI17]. They use the notion of curvature flow to derive a
linear condition for closed curves, which makes the optimization
part faster. And the results of these methods seem to be perfect and
visually pleasing. All these methods mentioned above work for Eu-
clidean planar curves and there is no way to use them in hyperbolic
geometry for some reasons:
1. The notion of a planar polygon must be replaced by the geodesic
polygon.

2. The Euclidean planar closure condition of a polygon must be re-
placed by another condition that involves geodesics and the trans-
formations of the Poincaré disc.
3. The intermediate curves must lie within Poincaré disc.
Our work will answer these questions, using the hyperbolic geom-
etry of the Poincaré disc.

3. 2D hyperbolic geometry and the Poincaré disc model

Throughout this paper, we take the Poincaré disc as a model of the
hyperbolic geometry. In this section we recall the geometry of the
Poincaré disc. And we give the expression of the exponential map
and the one of the logarithm function. We also give the expres-
sion of the geodesic connecting two points in the Poincaré disc.
For more details see [IB92, ET97].
A Hyperbolic geometry is a non-Euclidean geometry having con-
stant sectional curvature -1. In hyperbolic geometry, the sum of
angles of a triangle is less than π, and triangles with the same an-
gles have the same areas. Furthermore, not all triangles have the
same angle sum. The best-known model of 2-dimensional hyper-
bolic geometry is the Poincaré disc, also called the conformal disc
model.

3.1. The Poincaré disc

The Poincaré disc is the open unit disc D= {z ∈C | | z |< 1} equipped
with the Riemannian metric

g = 4
| dz |2(

1− | z |2
)2

where dz = dx + idy and | dz |2= dx2 +dy2. The hyperbolic distance
between two given points z1,z2 ∈ D is given by

cosh(d (z1,z2)) = 1 +
| z1 − z2 |

2

(1− | z1 |2)(1− | z2 |2)
.

Proposition 3.1 The geodesics in the Poincaré disc are the line
segments through the origin and the circular arcs that intersect the
boundary orthogonally.

If we set

S U(1,1) :=
{(

a b
b̄ ā

)
|a,b ∈ C | aā−bb̄ = 1

}
.

we have

Proposition 3.2 The projective special unitary group
PS U(1,1) := S U(1,1)/± I acts transitively on the Poincaré disc D
as following:

ρ : PS U(1,1)×D → D,((
a b
b̄ ā

)
,z
)
7→

az + b̄
b̄z + ā

.
(1)

And the isotropy group of the origin O is
{(

eiθ 0
0 e−iθ

)
| θ ∈ R

}
.

Moreover, for each z ∈ C, there exists a matrix

Az =
1√

1− |z|2

(
−i iz
−iz̄ i

)
∈ PS U(1,1) such that

ρz(0) := ρ(Az,0) = z.
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Let z ∈ D and T ∈ C such that |T | = 1. Then the geodesic γ passing
through z and oriented by T has the following expression :

γ(t) = ρz

(
tanh(

t
2

)T
)
, for t ∈ R. (2)

Proposition 3.3 Let z1,z2 ∈ D and V ∈ Tz1 D = C. The exponential
map expz1

: Tz1D→ D is given by

expz1
(V) := ρz1

tanh(

√
g (V,V)

2
)

V
|V |

 . (3)

And the unit vector tangent at z1 which generates the geodesic join-
ing z1 to z2 is

logz1
(z2) :=

1

tanh
(

d
2

)ρ−1
z1

(z2) , (4)

where d = d (z1,z2).

Now, from the above, we can define the geodesic connecting two
given points z,w ∈ D by

γz,w(t) := ρz

(
tanh(

t
2

) logz (w)
)
, for t ∈ [0,d]; (5)

where d = d (z,w).

Definition 3.1 The rotation around the origin O by angle θ is

R(θ) :=

 e
iθ
2 0

0 e
−iθ
2

 .
And the translation of length d along the geodesic that maps -1 to
1 is

L(d) :=
(

cosh( d
2 ) sinh( d

2 )
sinh( d

2 ) cosh( d
2 )

)
.

4. Closure condition

In this section, we give the condition for a hyperbolic polygon
to be closed in terms of its hyperbolic side lengths and exterior
angles. Let P := [z0, ...,zn] be a hyperbolic polygon that is a se-

Figure 2: Hyperbolic polygon

quence of geodesics γk joining zk and zk+1 for k ∈ {0, ...,n−1}. We
denote by dk := d (zk,zk+1) the length of the geodesic γk. We de-
note δk := ^(logzk

(zk+1) ,− logzk
(zk−1)) the exterior angle at zk (see

Fig. 2). Note that the angle is positive, if it is clockwise.
If z0 = zn, then P is closed and δ0 is the exterior angle at z0. Other-
wise P is open.
We define the discrete geodesic curvature of P at the vertex zk (see
its meaning in the appendix (A)) by:

κk =
2δk

dk−1 + dk
. (6)

If P is closed, the discrete geodesic curvature at z0 is defined by:

κ0 =
2δ0

dn−1 + d0
.

This notion of discrete geodesic curvature will be used in the cur-
vature blending algorithm in Section 4.

4.1. Hyperbolic triangle

Let Π = [z0 = z3,z1,z2,z3] be a closed hyperbolic triangle with hy-
perbolic sides d0, d1, d2 and exterior angles δ0, δ1, δ2. Without loss
of generality we can assume that z0 = 0 and z2 is a point on the
geodesic that send -1 to 0 (see Fig. 3a).
The fact that z0 = z3 is equivalent to the following equation

ρ (R(δ0)L(d0)R(δ1)L(d1)R(δ2)L(d2),zk) = zk, for k = 0, ...,3.
(7)

Which means that

R(δ0)L(d0)R(δ1)L(d1)R(δ2)L(d2) = ±I. (8)

Set A∗Π := ρ (A, .), for A ∈ PS U(1,1) .
The explanation of Eq. (8) is as follows. The first action of
R(δ2)L(d2) on the triangle Π gives a new triangle Π1, where L(d2)
moves z2 to z0. In this way z2 is the origin of the disc D. While
the rotation R(δ2) brings z1 to a point in the geodesic that connects
-1 to 0 (see Fig. 3b). For the second action R(δ1)L(d1), the trans-
lation L(d1) moves z1 to z2 (z1 is the origin of the disc D), while
the rotation R(δ1) sends z0 to a point in the geodesic that connect-
ing -1 and 0 (see Fig. 3c). Finally, the translation L(d0) brings z0 to
its origin position, then the rotation R(δ0) returns all the vertices at
their original positions (see Fig. 3d). This sequence of actions let
the triangle Π invariant. Which means that, after this sequence of
transformations, we get Π3 = Π. That explains Eq. (8).

4.2. Hyperbolic polygon

Now, let P := [z0, ...,zn] be a hyperbolic polygon, with vertices
z0, ...,zn. With the same observations for the hyperbolic triangle
case, the condition for P to be closed is

R(δ0)L(d0)R(δ1)L(d1) · · ·R(δn−2)L(dn−2)R(δn−1)L(dn−1) = ±I.
(9)

In other words, if we put S :=
n−1∏
k=0

R(δn−1−k)L(dn−1−k), then Eq. (9)

can be written:

S = ±I. (10)
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(a) Triangle Π (b) Π1 = R(δ2)L(d2)∗Π

(c) Π2 = R(δ1)L(d1)∗Π1 (d) Π3 = R(δ0)L(d0)∗Π2

Figure 3: Illustration of closure condition for hyperbolic triangle.

Now, if we look at P as an open polygon, it has no exterior angle δ0
and no geodesic curvature κ0 at z0. We define the last as follows:

δ0 := ^(logz0
(z1) ,− logz0

(zn−1)); (11)

and

κ0 =
2δ0

d(zn−1,z0) + d0
.

According to the above remarks, we get

Proposition 4.1 Let P := [z0, ...,zn] be a hyperbolic polygon having
d1, ...,dn−1 as hyperbolic side lengths, and δ1, ..., δn−1 as exterior
angles. We denote by δ0 the exterior angle at z0 defined in Eq.
(11). Then the following propositions are equivalent:

1. P is closed.

2.

S = ±I. (12)

3. 
| tr(S ) | = 2,
det(S ) = 1,
s2s2 = 0.

(13)

Where S :=
(

s1 s2
s2 s1

)
.

5. Morphing of hyperbolic polygons

Let P0 = [z0
0, ...,z

0
n] and P1 = [z1

0, ...,z
1
n] be two hyperbolic polygons

of n + 1 vertices. A blending between P0 and P1 is a continuous
function t→ Pt ∈D defined for t ∈ [0,1] such that it coincides with
the source polygon P0 for t = 0 and with the target polygon P1

for t = 1. Our aim is to build the intermediate morph Pt. A natural
approach to construct a morph between P0 and P1 is to linearly
interpolate the intrinsic variables of source and target polygons.
In this section we propose two morphing algorithms: the curvature
blending and the exterior angle blending one.
For the first algorithm, the intermediate morph Pt is a polygon with
hyperbolic side lengths:

dt
k = (1− t)d0

k + t d1
k , for k = {0, ...n−1}, (14)

and with discrete geodesic curvatures:

κt
k = (1− t)κ0

k + tκ1
k , for k = {0, ...n−1}. (15)

For the second algorithm, the intermediate morph Pt is the poly-
gon of hyperbolic side lengths dt

k defined in (14) and with exterior
angles:

δt
k = (1− t)δ0

k + tδ1
k , for k = {0, ...n−1}. (16)

5.1. Construction of the intermediate polygon Pt

In this section we will give the process to construct the polygon Pt

by using its intrinsic variables dt
k and δt

k or κt
k.

Pt := [zt
0, ...,z

t
n] is constructed in two steps:

• Firstly, we construct the initial vertex zt
0 and the second one zt

1.
• Secondly, we use the hyperbolic side lengths dt

k and the exterior
angles δt

k to complete the construction of Pt.

The details of construction are given in the following.

5.1.1. Construction of zt
0 and zt

1

Let γ be the hyperbolic geodesic connecting the initial point z0
0 of

P0 and the initial point z1
0 of P1. If we let l0 := d

(
z0

0,z
1
0

)
, we take

zt
0 := γ (t l0) . (17)

Now, let α0 (respectively α1 ) be the angle between the x-axis and
T0 := logz0

0

(
z0

1

)
(respectively T1 =: logz1

0

(
z1

1

)
).

Set

αt := (1− t)α0 + tα1, t ∈ [0,1]. (18)

Let Tt = cos(αt)+ isin(αt). Then by Eq (2), the geodesic βt passing
through zt

0 and oriented by Tt is

βt(s) = ρzt
0

(
tanh(

s
2

)Tt

)
, for s ∈ R.

We choose zt
1 to be in the geodesic β as it shown in Fig. 4 such that

zt
1 := βt

(
dt

0

)
. (19)
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Figure 4: Construction of zt
0 and zt

1

5.1.2. Construction of zt
k for k = {2, ...n}

zt
0, zt

1 are respectively constructed in (17)-(19), and δt
k is computed

either directly by (16) or from κt
k in (15) using (6).

Now, by induction, we can construct the other vertices zt
k of Pt

using the edge lengths and the exterior angles as follows:

zt
k = ρzt

k−1

tanh
dt

k−1
2

T t
k−1

 , fork = {2, ...n} (20)

where T t
k−1 = −e

(
−iδt

k−1

)
logzt

k−1

(
zt
k−2

)
.

5.2. Morphing of two hyperbolic closed polygons

Let P0 and P1 be two closed polygons, and t ∈ [0,1]. The interme-
diate morph Pt constructed for both methods in Section 5.1 is not
necessary closed. For that, we will change the exterior angles δt

k in
the smallest possible way to close Pt.
This means we seek ε0, ...εn−1 such that the polygon P̄t, with hyper-
bolic side lengths dt

k and exterior angles δ̄t
k := δt

k + εk will be closed
and the norm ‖ κ̄t − κt ‖2 will be minimized.
Where κt (resp. κ̄t) denotes the vector of components κt

k (resp.

κ̄t
k :=

2δ̄t
k

dt
k−1 + dt

k
), and ‖ . ‖ is the Euclidean norm in Rn. In order

to solve this, we minimize the following problem:

min
(ε0,...εn−1)∈Rn

n−1∑
k=0

∣∣∣∣∣∣∣∣∣
4ε2

k(
dt

k−1 + dt
k

)2

∣∣∣∣∣∣∣∣∣ . (21)

Subject to constraint equality given in Proposition 4.1:
| tr(S ) | = 2,
det(S ) = 1,
s2s2 = 0.

(22)

where

S :=
n−1∏
k=0

R(δn−1−k + εn−1−k)L(dn−1−k),

This will ensure the closure of the hyperbolic polygon P̄t.

5.3. Algorithms

In the procedure of Section 4.1, we preserve the side lengths, and
we modify the exterior angles to ensure the closure of the polygon
P̄t. Unfortunately, this leads to a non-linear optimization problem
(21) - (22). To overcome it, we use the off-the-shelf solver fmin-
con in Matlab. So we can construct the polygon P̄t by applying the
following algorithms.

Algorithm 1: Exterior angle blending
Input:
Source and target polygons P0,P1.
A time-step t for which we evaluate Pt.
Output:
A closed polygon P̄t.
Do:

Compute the lengths dt
k and exterior angles δt

k using
Eqs. (14)-(16),

Compute εi, i ∈ {0, ...,n−1} solutions of (21)-(22) and
then δ̄t

i,
Reconstruct the polygon P̄t using Eqs. (17)-(19)-(20).

Algorithm 2: Curvature blending
Input:
Source and target polygons P0,P1.
A time-step t for which we evaluate Pt.
Output:
A closed polygon P̄t.
Do:

Compute the lengths dt
k and discrete geodesic

curvatures κt
k using Eqs. (14) - (15),

Compute δt
k using (6),

Compute εi, i ∈ {0, ...,n−1} solutions of (21)-(22) and
then δ̄t

i,
Reconstruct the polygon P̄t using Eqs. (17)-(19)-(20).

6. Results

In this section, we provide evaluation of our hyperbolic curve mor-
phing algorithms for different closed curves. All methods were
implemented in MATLAB R2016a and all the experiments were
run on a Intel(R) Core(TM) i7-4500U CPU @ 1.80 GHz 2.40
GHz machine. As we mentioned above, the optimization part was
done using the standard fmincon solver in Matlab with all its de-
faults settings except ’MaxFunctionEvaluations’ which we change
to 500000.

Approximation of curves in D. Let γ : [a,b]→ D be a closed
curve in the Poincaré disc D. We can approximate γ by a closed
hyperbolic polygon P := [z0, ...,zn] with n + 1 vertices by taking

zk = γ(tk), where tk = a + k
| b−a |

n
is an uniform subdivision

of [a,b]. P is an inscribed hyperbolic polygon in γ. It gives a
good approximation of γ as long as the integer n is large enough.
Furthermore, we show that the discrete hyperbolic geodesic of P at

© 2021 The Author(s)
Computer Graphics Forum© 2021 The Eurographics Association and John Wiley & Sons Ltd.

75



A. Ikemakhen & T. Ahanchaou / Blending of hyperbolic closed curves

E
xa

m
pl

e1
us

in
g

al
go

ri
th

m
1

E
xa

m
pl

e1
us

in
g

al
go

ri
th

m
2

E
xa

m
pl

e2
us

in
g

al
go

ri
th

m
1

E
xa

m
pl

e2
us

in
g

al
go

ri
th

m
2

E
xa

m
pl

e3
us

in
g

al
go

ri
th

m
1

E
xa

m
pl

e3
us

in
g

al
go

ri
th

m
2

t = 0 t =
1
5

t =
2
5

t =
3
5

t =
4
5

t = 1

Figure 5: Comparison of the results using both algorithms. The dot indicates the start and end point of the curves.

© 2021 The Author(s)
Computer Graphics Forum© 2021 The Eurographics Association and John Wiley & Sons Ltd.

76



A. Ikemakhen & T. Ahanchaou / Blending of hyperbolic closed curves

Example 1 Example 2 Example 3

Figure 6: Plots of geodesic curvature of the target curves and intermediate curves at time t =
1
2

used in Fig. 5.

Example 1 Example 2 Example 3

Figure 7: Norm of the difference between the geodesic curvature of intermediate curves and the target one of examples in Fig. 5.
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Figure 8: Morphing sequence between a butterfly and a bat at infinity on the Poincaré disc.
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Figure 9: Morphing sequence between a wolf’s face and a bat on the Poincaré disc using algorithm 2.
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Figure 10: Tiling the Poincaré disc using intermediate curves generated by blending two given motifs using algorithm 1.

Example 1 example 2 Example 3
number of samples 353 353 529

runtime using 1 423,6039 776,2036 831,8603
runtime using 2 288,0755 187,5172 2,7087 103

distance between first
and last point using 1

1,4355 10−6 1,7103 10−6 3,8671 10−6

distance between first
and last point using 2

3,2224 10−6 1,1159 10−6 2,8465 10−6

Table 1: Comparison of runtime (in seconds) for intermediate

curve at time t =
1
2

of examples in Fig. 5 and their closure error.

a point zk defined in Eq. (6) estimates the geodesic curvature of γ
at zk.
Now let γ0 and γ1 be two closed smooth curves in D (γ0 is the
source and γ1 is the target). Let n ∈ N. We approximate γ0,γ1
respectively by two closed hyperbolic polygons P0,P1 with the
same number of vertices n + 1.
Fig. 5 indicates three different examples. In each example we
plot intermediate curves between the source and target curves
using algorithm 1 or 2. We remark that for both methods, the
intermediate curves remain inside the disc and are closed and
aesthetic. Fig. 6 shows, for the three examples in Fig. 5, that the

geodesic curvatures for intermediate curves t =
1
2

are close to the
one of the target curve. Fig. 7 clearly shows for the two methods
that the norm of the difference between the geodesic curvature of
the intermediate curves and the target curve goes to 0 as t tends
to 1. In addition, there are no "spikes" in the two plots ( red and
blue). Therefore, the intermediate curves do not have cusps.
Note that, the increase in the number of vertices of the source and
target curves is done by the method of hyperbolic interpolatory
geometric subdivision schemes. This schemes give G1-continuous
limit curves. So by construction, if the two given curves are
G1-continuous so are the intermediate curves independently of
step-time. In addition, for each fixed time t, fmincon search
the εi so as to find a closed curve by keeping the property of
G1-continuity. In conclusion, even if we decrease the step-time,
our methods does not present a jump and they give aesthetic
curves.
Table 1 contains the computational results that we used to produce

curves at time t =
1
2

. It shows that the closure constraint has
been reached. However, in runtime perspective, we remark that it
depends on the number of vertices.
In practice, we remark the distance between the first point and
the last one remains constant even if we reduce the constraint
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tolerance. Another remark is that, in example 3 (Fig. 5), the shape
generated by the curve is almost preserved by the first method

during the blending while the second risks losing it at t =
3
5

.
Applications: In this part, we give three applications to our
methods. It could be used to develop some computer games on
hyperbolic plane.
Blending to infinity. This application consists to morph an object
to another that is at infinity. Here infinity is represented by the
border of the Poincaré disc. Fig. 8 illustrates an example of this
kind of morphing.
Blending network curves. This second application consists in
doing the blending between two network of curves with the same
number of curves in Poincaré disc. That means, we blend each
curve of the first network by its correspondent in the second
network. Fig. 1 indicates network blending between wolf’s face
and a bat using algorithm 1. Likewise for Fig. 9 using algorithm 2.
Hyperbolic tiling animation. This third application consists to
animate hyperbolic tiling, which produces a beautiful hyperbolic
images (animations). In Fig. 10 two given motifs γ0 and γ1 are
blended, and for each time t, we generate hyperbolic tiling using
in-between motif γt. Fig. 10 indicates a sequence of pictures that
could give a nice animation. We have used the hyperbolic tiling
{7,3} and {6,4}.

7. Conclusion

In this paper, we have presented two novel algorithms for blending
between two curves in the Poincaré disc, using their intrinsic vari-
ables. Both methods generate closed intermediate smooth curves
by using the closure condition and by solving an optimization prob-
lem. In practice, the algorithm 2 failed when we deal with polygons
with a large number of vertices ((n > 300)). It gives, sometimes, in-
termediate curves with self intersecting even if the source curve or
the target one is not self intersecting. While the algorithm 1 works
for any polygon with any number of vertices.
Limitation. Both algorithms take a long time to generate interme-
diate curves because of complexity of non linear constraint (matrix
2x2 ∈C). Therefore, these methods can’t be applied for a real-time
execution. The goal of our future work is to give a rapid blending
method which reduces the runtime.

Appendix A: Geodesic curvature

In general, a C2-curve σ (red one) on a Riemannian surface S can
be approximate by an inscribed geodesic polygon P (green one)
(see Fig. 11). And the geodesic curvature κ(p) of σ at a vertex p
can be approximate by the discrete geodesic curvature of P at p
and it is not hard to show that:

κ(p) = lim
p1,p2→p
p1,p2∈Σ

2 δ
d(p1, p) + d(p, p2)

,

where Σ is the support of σ, δ the exterior angle of the triangle
[p1, p, p2] at p and d the distance on the surface S .

Figure 11: Approximation of the geodesic curvature by the discrete
one.
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