
Eurographics Symposium on Geometry Processing 2021
K. Crane and J. Digne
(Guest Editors)

Volume 40 (2021), Number 5

Supplementary Materials for Roominoes:
Generating Novel 3D Floor Plans From Existing 3D Rooms

Kai Wang1 Xianghao Xu1 Leon Lei1 Selena Ling1 Natalie Lindsay1

Angel X. Chang2 Manolis Savva2 Daniel Ritchie1

1Brown University, United States
2Simon Fraser University, Canada

Original Rooms Decomposed Rectangles

Figure 1: Example of a floor plan before and after rectangle de-
composition

1. Optimizing Post-Retrieval Layouts

In this section, we describe the details optimization process
we take to align the rooms retrieved by the retrieval process
described in Section 5 of the main paper. Inspired by prior
work [WFLW18, PGK∗20], we adopt a mixed integer quadratic
programming (MIQP) based procedure for layout optimization.

1.1. Decomposing Rooms into Rectangles

Rooms in our representation are arbitrary rectilinear polygons. It
is intractable to define certain important constraints, such as non-
overlap, between such polygons. Thus, our first step is to decom-
pose each room into a set of rectangles. We then use constraints to
bind these rectangles together so they behave as a continuous room.

In general, the decomposition of a rectilinear polygon into rect-
angles is not unique. In our implementation, we use the maximal
decomposition, which is found by constructing a grid over all ver-
tex coordinates and then taking the grid cells which fall inside the
polygon as the decomposed rectangles (Figure 1). The maximal
decomposition is quick to compute and also has the property that
every pair of adjacent rectangles shares a complete edge. This edge-
sharing property makes it easy to impose additional constraints to
bind the decomposed rectangles of a given room together.

1.2. Optimization Variables

In our solver, we express each rectangle i in terms of four variables:
its upper-left vertex position 〈xi,yi〉, its width wi, and its height hi.
In addition to the room shapes, we must also represent and optimize
for the positions and sizes of portals between rooms (e.g. doors), so
that the resulting floor plan is navigable. We describe a portal j as a
line segment with centroid position 〈px j, py j〉 and radius (i.e. half-
length) pr j . Each portal is permitted to slide along certain walls of
the room which contains it, as the next section will describe.

1.3. Constraints

Non-negativity

All variables must be non-negative so that our solution lies in the
positive quadrant and no output rectangles or portals have a (non-
physical) negative width or height:

xi,yi,wi,hi, px j, py j, pr j ≥ 0 ∀i, j

Minimal Room Size

To prevent the optimization from collapsing certain rooms in favor
of others, we enforce that each room has a width and height of at
least s. To do this, we identify a sequence of indices Rx of rectangles
that spans the horizontal extent of the room, as well as a sequence
of Ry for rectangles that spans its vertical extent. Then:

|Rx|

∑
i=0

wRx
i
> s,

|Ry|

∑
i=0

hRy
i
> s ∀i ∈ r

Non-overlap

We require the solution to have no overlapping pairs of rectangles
i, j. There are four possible relationships to account for: i is either
to the top, bottom, left, or right side of j. Let D ∈ {T,B,L,R} rep-
resent these relationships respectively. We let the MIQP optimizer
select from this set of possible relationships by introducing an aux-
iliary binary variable σ

D
i, j , where σ

D
i, j = 1 if and only rectangles i

and j have the relationship D. This results in the following set of

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

K. Wang et al. / Supplementary Materials for Roominoes:Generating Novel 3D Floor Plans From Existing 3D Rooms

constraints for each pair of rectangles i, j:

xi−w j ≥ x j−M · (1−σ
R
i, j)

xi +wi ≤ x j +M · (1−σ
L
i, j)

yi−h j ≥ y j−M · (1−σ
B
i, j)

yi +di ≤ y j +M · (1−σ
T
i, j)

4

∑
D=1

σ
D
i, j ≥ 1

where M is a large constant to ensure that rectangles i and j do not
overlap in direction D when σ

D
i, j = 1 (we set M = xmax + ymax in

our implementation). The last constraint requires that at least one
of the four auxiliary variables has a value of 1.

Decomposition constraints

For each decomposed room, we introduce the following constraints
for all pairs of its rectangles i, j such that i is to the left of j (the
rectangles share a vertical edge):

xi +wi = x j yi = y j hi = h j

and the following constraints for all pairs of rectangles i, j such that
i is to the top of j (the rectangles share a horizontal edge):

yi +hi = y j xi = x j wi = w j

These constraints bind the rectangles together such that they main-
tain shared edges.

Portal connection

If two portals i, j are specified as connected, then their positions
and half-lengths must be equivalent:

pxi = px j pyi = py j pri = pr j

Portal sliding

We require that portals stay on the same wall that they are initially
defined to be on, and that their position and length do not extend
beyond this wall. If a room decomposes to a single rectangle, then
the portal can slide along one edge D of this rectangle (for example,
D = T means the portal lies on the top wall). The sliding constraint
thus takes on one of four cases:

if D = T


py j = yi

px j ≥ xi + pr j

px j ≤ xi +wi− pr j

if D = B


py j = yi +hi

px j ≥ xi + pr j

px j ≤ xi +wi− pr j

if D = L


px j = xi

py j ≥ yi + pr j

py j ≤ yi +hi− pr j

if D = R


px j = xi +wi

py j ≥ yi + pr j

py j ≤ yi +hi− pr j

In general, a room decomposes into multiple rectangles. Here, we
must handle the case where a portal lies on a room wall that is
shared by more than one decomposed rectangle. This scenario uses
the same form of constraint as above, but requires us to know the
indices of the rooms between which the portal can slide. For in-
stance, if a portal l slides along the left side of a wall shared by

three rectangles i, j,k where i is the top-most rectangle and k is the
bottom-most, then the constraints would be:

pxl = xi pyl ≥ yi + prl pyl ≤ yk +hk− prl

1.4. Objective

There may be multiple floor plan configurations which satisfy all
the constraints defined above. Within this feasible set, there are cer-
tain configurations which are preferable. Primarily, we prefer lay-
outs that change room shapes and portal positions/sizes as little as
possible, as such changes will introduce distortion when transferred
to the 3D mesh.

Secondarily, we prefer layouts which maximize the number of
wall-to-wall adjacencies between rooms, as this results in more
plausibly compact/space-efficient layouts and also avoids introduc-
ing interior voids in the layout. To keep track of adjacenciies, we
use a similar formulation to the non-overlap constraint. We add a
binary variable σ

A
i, j for every pair of rectangles (i, j) to indicate

whether the two rectangles should be adjacent, and then we add the
following constraints to account for possible adjacency relation-
ships: 

xi ≤ x j +w j−L ·θi, j +M · (1−σ
A
i, j)

xi +wi ≥ x j +L ·θi, j−M · (1−σ
A
i, j)

yi ≤ y j +h j−L · (1−θi, j)+M · (1−σ
A
i, j)

yi +hi ≥ y j +L · (1−θi, j)−M · (1−σ
A
i, j)

where θi, j is a binary variable for whether the rectangles are hori-
zontally or vertically adjacent, and L is the minimum length of the
line segment i and j must share to be considered adjacent (we use
L = 6).

Finally, we minimize the following overall objective function:

λ1(‖w− ŵ‖2 +
∥∥h− ĥ

∥∥2
)+λ2 ‖pr− p̂r‖2−λ3 ∑

i, j
σ

A
i, j ·1(i, j)

+λ4 ∑
i∈Pvert

((pyi− yTi)− (p̂yi− ŷTi))
2 +((pyi− yBi)− (p̂yi− ŷBi))

2

+λ4 ∑
i∈Phorz

((pxi− xLi)− (p̂xi− x̂Li))
2 +((pxi− xRi)− (p̂xi− x̂Ri))

2

where the x̂ version of a variable x denotes its initial value. The
first term penalizes changes in room rectangle shape; the second
penalizes changes in portal radius. The third term rewards pairs
of adjacent rectangles from different rooms, but only if the rooms
containing those two rectangles i, j have already had all rooms
marked adjacent to them in the input graph placed into the lay-
out (this is the role of the indicator function 1(i, j)). Finally, the
last two terms penalize deviations in all portals’ positions along
their respective walls. Here, Pvert and Phorz return the indices of
all vertical and horizontal portals, respectively; Ti,Bi,Li, and Ri
give the index of the top, bottom, left, and right adjacent rectan-
gle to portal i’s wall, respectively. In our implementation, we use
λ1 = 1,λ2 = 5,λ3 = 100,λ4 = 3, with all rooms scaled with a ratio
of 18 meters to 256 units.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

K. Wang et al. / Supplementary Materials for Roominoes:Generating Novel 3D Floor Plans From Existing 3D Rooms

Table 1: Evaluating the impact of data augmentation with data
generated by our methods. Higher values are better. Evaluation is
done on the Gibson [XZH∗18] dataset, in scenes unseen at training
time.

Scene Source Success Rate SPL

Smart Portal Stitching + MP3D Scenes 0.831 0.662
MP3D Scenes 0.818 0.628

2. Qualitative Results for the Navigation Experiment

Figure 2 shows example trajectories of a pre-trained
DDPPO [WKM∗20] agent walking through scenes generated
by our methods, as well an original Matterport3D [CDF∗17] scene.
The full videos can be found at DDPPO_portal_stitching.mp4,
DDPPO_match_2d.mp4, DDPPO_mp3d.mp4 respectively. In
these videos, the left side shows the depth image that the agent
is seeing, whereas the right side shows the navigable areas of the
scene, with the shortest trajectory to goal visualized in green and
the trajectory the agent took visualized in blue.

3. Walk-through of a Generated Scene

Figure 3 shows a trajectory of a first-person walk through of one
of the generated scenes. The original semantic annotation of Mat-
terpot3D meshes are done on meshes reconstructed with a different
pipeline, and subsequently of lower visual quality. To produce this
trajectory, we manually annotated the higher quality meshes of the
set of rooms contained in a layout generated by the smart portal
stitching strategy, and then manually performed a walk through.
The full video can be found at first_person_walkthrough.mp4

4. Evaluating the Effect of Data Augmentation with Our Data

Directly evaluating the impact of data augmentation with our data is
challenging, as it has been shown that navigation agents continue to
learn from data after billions of steps [WKM∗20]. Here, we provide
an approximation by evaluating two agents that perform similarly
on their respective training sets. We train one of the agent on 184
floor plans from the Matterport3D dataset, and the other the 184
Matterport3D floor plans, as well as 104 floor plans generated by
the Smart Portal Stitching strategy. For the second agent, we con-
struct the training set such that half of the episodes are from Mat-
terport3D, and the other half from the generated data. We train the
first agent for 30 million steps. We record the training success rate
(about 0.67) and SPL (about 0.49), and then train the second agent
until it reaches similar performances, at around 50 million steps.
We then evaluate the trained agents on the Gibson validation set.
The results are summarized in table 1. The agent trained on Matter-
port3D + Smart Portal Stitching outperforms the agent trained on
only Matterport3D with respect to both success rate and SPL. We
do stress that this is only an approximation, and it is possible the
better performance results from other factors. We leave rigorous,
full-scale evaluation to future works.

References
[CDF∗17] CHANG A., DAI A., FUNKHOUSER T., HALBER M., NIESS-

NER M., SAVVA M., SONG S., ZENG A., ZHANG Y.: Matterport3D:
Learning from RGB-D data in indoor environments. In 3DV (2017). 3

[PGK∗20] PARA W., GUERRERO P., KELLY T., GUIBAS L., WONKA
P.: Generative layout modeling using constraint graphs, 2020. arXiv:
2011.13417. 1

[WFLW18] WU W., FAN L., LIU L., WONKA P.: MIQP-based layout
design for building interiors. Computer Graphics Forum 37, 2 (2018),
511–521. 1

[WKM∗20] WIJMANS E., KADIAN A., MORCOS A., LEE S., ESSA I.,
PARIKH D., SAVVA M., BATRA D.: DD-PPO: Learning near-perfect
pointgoal navigators from 2.5 billion frames. In International Confer-
ence on Learning Representations (ICLR) (2020). 3

[XZH∗18] XIA F., ZAMIR A. R., HE Z., SAX A., MALIK J., SAVARESE
S.: Gibson Env: Real-world perception for embodied agents. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion (2018), pp. 9068–9079. 3

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

http://arxiv.org/abs/2011.13417
http://arxiv.org/abs/2011.13417

K. Wang et al. / Supplementary Materials for Roominoes:Generating Novel 3D Floor Plans From Existing 3D Rooms

Smart Portal Stitching

Match 2D Layout Shape

Matterport 3D

Figure 2: Trajectory taken by a DDPPO agent through scenes generated by the proposed methods, as well as a scene taken directly from
Matterport3D. Top row: top down view of the navigable areas. Bottom row: agent’s first-person view of the scene, depth only.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

K. Wang et al. / Supplementary Materials for Roominoes:Generating Novel 3D Floor Plans From Existing 3D Rooms

Figure 3: Trajectory of a first person walk through for a scene generated by the smart portal stitching strategy.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

