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An analytic BRDF for materials with spherical Lambertian
scatterers
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Figure 1: We derive a new analytic BRDF (right) for porous materials where scattering and absorption is well approximated by spherical
Lambertian particles. Here we show a sequence of stochastic microgeometries consisting of independent random placement of opaque Lam-
bertian spheres occupying 7% of the volume. As the scale of the microgeometry is varied inside the fixed spherical domain, the appearance
approaches our BRDF where no spatial variability is resolved across pixels.

Abstract
We present a new analytic BRDF for porous materials comprised of spherical Lambertian scatterers. The BRDF has a single
parameter: the albedo of the Lambertian particles. The resulting appearance exhibits strong back scattering and saturation
effects that height-field-based models such as Oren-Nayar cannot reproduce.

CCS Concepts
• Computing methodologies → Reflectance modeling;

1. Introduction

The bidirectional reflectance distribution function (BRDF) is a fun-
damental building block in computer graphics and other fields.
BRDF measurements have shown that real world materials exhibit
a wide range of reflectance behaviours [MPBM03, DJ18]. While
measured data can be used directly, it is bulky and difficult to edit.
In contrast, parametric BRDFs are compact and permit artist con-
trol, but no one parametric BRDF spans the full breadth of real-
world appearances. It is therefore important to define a small set
of flexible analytic parametric BRDFs that cover a wide range of
materials.

The most popular parametric BRDFs derive from Smith’s
[Smi67] geometrical and statistical treatment of random height
fields [CT82,Bli82,vGSK98,Sta01,WMLT07,Hei14]. These mod-
els support a variety of surface statistics [RBMS17], anisotropy
[Hei14], importance sampling [Hd14] and multiple scattering
with specular, diffuse, or mixed microfacets [HD15, HHdD16,

MBT∗17]. These BRDFs have been highly successful and cover
a wide range of materials, but the assumption of a height
field is not always valid [DHd16]: these BDRFs cannot model
porous/granular/volumetric/particulate microgeometry, such as
the synthetic example shown in Figure 1 or the surface profiles of
materials such as carbon soot [SOPB08].

To simulate a wide range of diffusive behaviours that extend
beyond the limitations of a diffuse heightfield, volumetric BRDFs
can be derived by considering scalar radiative transfer in slabs un-
der a plane-parallel assumption [vdH80, Yan97, KP03]. This mod-
els the microstructure as a randomly distributed array of absorb-
ing and scattering particles in a volume. Multiple volumetric slabs
can be interleaved between random height fields to form fully gen-
eral layer stacks [Sta01] that can be stochastically evaluated in a
“position-free” way [GHZ18] or numerically pretabulated using
adding/doubling or related methods [Sta01, JdJM14, ZJ18, Bel18].
A great variety of parametric layered materials can be evaluated us-
ing these methods, but they can significantly exceed the complex-
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ity, cost and memory requirements of simpler analytical BRDFs.
More efficient layering is possible [WW07], but at the cost of
losing reciprocity and accuracy. One exception is the half space
with isotropic scattering, which has a known semi-analytic BRDF
(Chandrasekhar’s BRDF) [Cha60, KC17].

Chandrasekhar’s BRDF is the unique exact volumetric BRDF
that can be applied as efficiently and broadly as other analytic
height-field BRDFs. It has inspired BRDFs for lunar regoliths
[Hap81] and has been extended to support Fresnel reflection at the
boundary [WNO98, Wil06]. A stochastic geometry that is consis-
tent with Chandrasekhar’s BRDF (under geometrical-optics) is a
sparse suspension of mirror sphere particles in a purely absorbing
matrix. In this paper we derive what is the Oren-Nayar [ON94]
equivalent of this BRDF, by making the scatterers white Lamber-
tian spheres. By the equivalence principle of classical radiative
transfer [vdH80], this is equivalent to a void matrix with absorb-
ing Lambertian spherical particles. The result is a new approximate
analytic BRDF for dusty/porous materials (Figure 1) that offers a
distinct appearance from Oren-Nayar’s height field BRDF and from
azimuthally-symmetric diffuse BRDFs such as Chandrasekhar’s
and Disney’s diffuse BRDF [Bur12].

We begin by recalling the far-field phase function for a Lam-
bertian sphere in section 2. We derive importance-sampling and
adding-doubling integrals for this phase function and note that it
is well approximated by a three-term Legendre expansion. This al-
lows application of a known result for the exact BRDF of a three-
term halfspace, which we use in section 3 to derive an accurate
analytic approximation for the Lambert sphere BRDF. The result
is more accurate than previous general approximations that assume
azimuthally-symmetric multiple scattering [Hap81,Hap02]. In sec-
tion 4 we compare the appearance of the new BRDF to previous
analytic diffuse BRDFs and also compare the performance in lay-
ered material configurations using both position-free and doubling
approaches.

2. Lambertian sphere phase function

The far-field geometrical-optics phase function for a smooth, white
Lambertian sphere (LS) is [Bli82]

p(µ) =
2
(√

1−µ2−µcos−1(µ)
)

3π2 =
2(sin(θ)−θcos(θ))

3π2 (1)

where µ = cosθ. This phase function was first derived by Lam-
bert himself in 1760, complete with an accurate numerical ta-
ble [Lam60, p.471]. The mean cosine of the LS phase function is
g = −4/9 ≈ −0.444444 and, unlike many parametric models, it
scatters no light directly forward, p(1) = 0. The overall behaviour
of this phase function is sufficiently distinct from other popular
parametric models such as Henyey-Greenstein (HG) [Bli82] to
warrant a unique investigation (see Figure 2 [right] where we com-
pare to HG with the same mean cosine).

For the Legendre expansion of the LS phase function

p(µ) =
1

4π

∞
∑
k=0

AkPk(µ), (2)

-1.0 -0.5 0.0 0.5 1.0

-0.0005

0.0000

0.0005

0.0010

0.0015

μ

p
(μ
)-
p
ap
pr
ox

(μ
)

HG

LS

Figure 2: Left: A three-term Legendre expansion of the phase func-
tion of the Lambertian sphere (LS) particle is accurate to within
0.2%. Right: The LS phase function is significantly different from
Henyey-Greenstein (HG) with the same mean cosine.

where expansion coefficients are defined as

Ak = 2π(2k+1)
∫ 1

−1
p(µ)Pk(µ)dµ, (3)

we find the first few expansion coefficients

A0 = 1, A1 =−
4
3
, A2 =

5
16

, A3 = 0, A4 =
1

64
, A5 = 0.

(4)
Observing that the majority of the phase function is represented by
the first three terms in the expansion (Figure 2), we approximate
the phase function using only these first three terms, yielding

p(µ)≈ 1
4π

(
27
32
− 4µ

3
+

15µ2

32

)
. (5)

This permits us to apply an exact derivation for half space BRDFs
[HC61], which we use to derive a practical fully-analytic approxi-
mation.

2.1. Importance Sampling

For ground-truth validation of our approximate model, we use
Monte Carlo simulation of particle transport in a homogeneous half
space with the LS phase function. To the best of our knowledge,
there is no published procedure for importance-sampling this phase
function, and we propose two such procedures here. For an exact
result, we note (by considering a uniform disk projection onto a
sphere together with Lambertian BRDF sampling and some sim-
plifications) that deflection cosines can be randomly sampled with

µ(ξ1,ξ2,ξ3) =
√

(1−ξ1)(1−ξ2)sin(2πξ3)−
√

ξ1ξ2 (6)

where ξ1,ξ2,ξ3 are three independent random numbers drawn uni-
formly from [0,1). Alternatively, with a single uniform random real
ξ, µ can be sampled using an approximate inverse CDF,

µ(ξ)≈ 1−2
(

1−ξ
0.0401885ξ+1.01938

)0.397225
, (7)

which has a maximum absolute error of |µ−µexact | < 0.0005. The
latter procedure is likely more efficient and we recommend this
sampling for use with low-discrepancy random sequences.
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2.2. Fourier Integrals

To use a phase function in a Fourier framework such as
adding/doubling [vdH80,JdJM14], we require the Fourier integrals:

pl(µi,µo) =
2−δ0l

π

∫ π

0
p(µi,µo,φ)cos(lφ)dφ. (8)

Using a three-term Legendre approximation for the Lambertian-
sphere phase function (Equation 5 replacing p in Equation 8) and
evaluating the phase function p(µ) using the cosine

µ = µiµo +
√

1−µ2
i

√
1−µ2

o cos(φ) (9)

we find

p0(µi,µo) =
45µ2

i

(
3µ2

o−1
)
−256µiµo−45µ2

o +207

768π
, (10)

p1(µi,µo) =
(45µiµo−64)

√(
µ2

i −1
)(

µ2
o−1

)
192π

, (11)

p2(µi,µo) =
15
(

µ2
i −1

)(
µ2

o−1
)

256π
, (12)

(13)

with pk = 0 for k > 2.

3. BRDF derivation

Horak and Chandrasekhar [HC61] derive the exact BRDF of a half
space with a general three-term phase function,

c p(cosθ) = ϖ0 +ϖ1P1(cosθ)+ϖ2P2(cosθ) (14)

where P1 and P2 are Legendre polynomials. Their result general-
izes the special case for the non-absorbing half space, given ear-
lier [Cha60, p.158] (see also page 6 of [Aue61] for more on the
non-absorbing case, [Smo76] for a four-term phase function and
[CLCC63, Sob68, VdH70] for more on the general problem). In
their notation, the single-scattering albedo c (which here is the dif-
fuse albedo of the spherical particles) is folded into the phase func-
tion and so, in the case of the three-term truncation given by the
coefficients in Equation 4, we have

ϖ0 = c, ϖ1 =
−4c

3
, ϖ2 =

5c
16

. (15)

The BRDF of a three-term half space is given exactly as a sum of
three Fourier modes

fr(~ωi,~ωo)= f (0)(µi,µo)+ f (1)(µi,µo)cos(φ)+ f (2)(µi,µo)cos(2φ).
(16)

The functions f (i)(µi,µo) are cone-to-cone transfer functions and
are closely related to transfer matrices used in adding/doubling
and related numerical methods [vdH80, JdJM14]. For light arriv-
ing from a direction with cosine µi, theaverage radiance leaving
the material along the cone with cosine µo is f (0)(µi,µo), and the
higher order terms give the discrete cosine series that determine the
variation of the outgoing radiance within that cone, parametrized
by relative azimuth φ.

The functions f (i)(µi,µo) include all orders of scattering and

are complex expressions in the case of a three-term phase func-
tion. We would like to take advantage of the known simple ana-
lytic expression for the single-scattering component of the BRDF
[Cha60, HK93]

f1(~ωi,~ωo) = c
p(−~ωi ·~ωo)

µi +µo
. (17)

To exploit this result, and to further ensure that single-scattering is
represented exactly, we will represent our final BRDF as the sum
of single-scattering and multiple-scattering terms

fr(~ωi,~ωo) = f1(~ωi,~ωo)+ fm(~ωi,~ωo) (18)

where the single-scattering portion is computing using Equation 17.
We will therefore use the three-term expansion of the phase func-
tion only for solving for the multiple-scattering components

fm(~ωi,~ωo)= f (0)m (µi,µo)+ f (1)m (µi,µo)cos(φ)+ f (2)m (µi,µo)cos(2φ).

These functions can be determined from the general derivation
[HC61] once the corresponding H functions and constants are
solved for.

3.1. The H functions

Horak and Chandrasekhar [HC61] use invariance principles to de-
rive the BRDF for a half space with a three-term phase function.
Their derivation leads to three pseudo problems [Cha60, p.351]
with three corresponding H functions. As these concepts are new
to computer graphics, we briefly give some context here. For plane-
parallel transport in a homogeneous half space with isotropic scat-
tering, the integral equation of transport is a Fredholm integral
equation of the second kind

C(x) =C0(x)+ c
∫ ∞

0
C(x′)KC(x− x′)dx′ (19)

for the collision density C(x). Solution of this equation (in particu-
lar, the Laplace transform of the solution) is related to what Chan-
drasekhar calls the H function, the solution of a related nonlinear
integral equation

1
H(µ)

= 1−µ
∫ 1

0

H(x)Ψ(x)
µ+ x

dx. (20)

Once the H function is found, the BRDF for the half space is com-
pletely determined and follows rather simply [Cha60]

fr(µi,µo) =
c

4π

H(µi)H(µo)

µi +µo
. (21)

However, once the scattering becomes anisotropic, the BRDF in-
volves more than one H function. Each of these H functions (one
for each non-zero order in the Legendre expansion of the phase
function) satisfies Equation 20, but with different characteristic
Ψ(µ). While each of these H functions resembles the original
isotropic transport problem, on their own they do not correspond
to any physical problem and so Chandrasekhar called them pseudo
problems. In the following, we will apply known results about the
solution of pseudo problems and refer the reader to related work for
more details. We highly recommend Ivanov’s excellent summary as
a starting point [Iva94].

The characteristic functions Ψ
(i)(µ) for our three-term half space
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BRDF follow from inserting Equation 15 into the general solution
[HC61, p.55], and we find

Ψ
(0)(µ) =

1
384

c
(
−15(c−1)(4c+9)µ4 +(c(20c+281)−346)µ2 +207

)
,

Ψ
(1)(µ) =−

1
192

c
(

µ2−1
)(

5(4c+9)µ2−64
)
,

Ψ
(2)(µ) =

15
256

c
(

µ2−1
)2

.

We can then numerically evaluate the H functions using the

Fok/Chandrasekhar equation [Foc44, Kre62]

H(i)(µ) = exp
(
− µ

π

∫ ∞
0

1
1+µ2t2 logK(i)(t)dt

)
, (22)

where the functions K(i)(t) are given by [Kre62]

K(i)(t) = 1−
∫ ∞

1

(
1

s− it
+

1
s+ it

)
Ψ

(i)
(

1
s

)
s

ds. (23)

Working these out, we find

K(0)(t) = 1−
c
(
(256c−301)t3 +

(
(346− c(20c+281))t2−15(c−1)(4c+9)+207t4

)
tan−1(t)+15(c−1)(4c+9)t

)
192t5 , (24)

K(1)(t) = 1−
c
(
(40c+282)t3−3

(
t2 +1

)(
20c+64t2 +45

)
tan−1(t)+15(4c+9)t

)
288t5 , (25)

K(2)(t) = 1−
5c
(

3
(

t2 +1
)2

tan−1(t)− t
(

5t2 +3
))

128t5 . (26)

Figure 3: Using Monte Carlo reference, we observe comparatively
weak signal in the second-order mode of the multiple-scattering
portion of the BRDF, f (2)(µi,µo) (bottom row).

We will use these with Equation 22 to numerically evaluate the H
functions and form more efficient analytic approximations suitable
to direct use in rendering. Alternatively, the H functions can also
be evaluated using quadrature methods [Cha60, HC61].

3.2. Second-order Fourier mode

For the second-order Fourier mode f (2)(µi,µo) of the full BRDF
(Equation 16), we observe (Figure 3), using MC reference, that
the multiple-scattering component f (2)m (µi,µo) is very weak when
compared to the total energy (and even just the multiply-scattered
energy) in the BRDF. This happens because the already low-
frequency phase function is convolved into a nearly linear-cosine
shape after two or more collisions. We exploit this properly to sim-
plify our analytic BRDF by simply setting f (2)m (µi,µo) ≈ 0. Thus,
in our approximation all azimuthal variation of the order cos(2φ) is
implicitly contained in the single-scattering term (Equation 17).

3.3. First-order Fourier mode

In Figure 3 we see that the first-order Fourier mode f (1)m of the
multiple scattering is non-negligible. This requires that fm has a
term of the form f (µi,µo)cos(φ) for some function f . We approxi-
mate this term from the exact solution and this one of the key dif-
ferences of our BRDF to previous approximations, which assume
f (1)m = 0 [Hap81, Hap02].

The exact first-order mode of the BRDF is [HC61, Eq.(43)]

f (1)(µi,µo) =
cH(1) (µi)H(1) (µo)

6π(µi +µo)

√(
1−µ2

i
)(

1−µ2
o
)
×

×
(

1+
(

l2 +
45m
64

)
µiµo + l (µi +µo)

)
, (27)

requiring determination of two constants {l,m}, and the H func-
tion. We used Equation 22 and Equation 25 to fit an approximation
for H(1)(µ). We found that the separable approximation

H(1)(µ)≈ H(1)(1)H(1)
c=1(µ) (28)

with

H(1)
c=1(µ)≈ e−0.0894878µ−1.12831µ3+1.85728µ2−1.07879µ+0.459442

(29)

and

H(1)(1)≈ e0.0242851c2−0.144839c (30)

was accurate to within 0.5% (relative error).

Two constants {l,m} appear in the first-order mode, and these
follow from moments of the H function [HC61, p. 56]. Using nu-
merical evaluation of the H function moments we found the fol-
lowing approximations to be very accurate (Figure 4),

l ≈−0.00473696c2−0.0589037c, (31)

m≈ 0.44038c+1. (32)

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

156



E. d’Eon / An analytic BRDF for materials with spherical Lambertian scatterers

0.0 0.2 0.4 0.6 0.8 1.0

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

c

l

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.1

1.2

1.3

1.4

c

m

Figure 4: The constants l and m appearing in the first-order mode
of our BRDF are well approximated by simple approximations
(continuous).

Equation 27 contains all orders of scattering. In order to use the
single-scattering result exactly, we need to subtract out the approx-
imate single-scattering from f (1)(µi,µo) using the three-term phase
function approximation. Since vectors point away from the surface
in BRDF notation, we evaluate the single-scattering component us-
ing the approximate phase function evaluated with the negative co-
sine (Equation 9),

f (1)1 (µi,µo) =
1
π

∫ π

−π

c
µi +µo

p(−µ)cosφdφ (33)

=
c(45µiµo +64)

√(
µ2

i −1
)(

µ2
o−1

)
384π(µi +µo)

(34)

and the final multiple scattering term is

f (1)m (µi,µo) = f (1)(µi,µo)− f (1)1 (µi,µo). (35)

3.4. Zeroth-order Fourier mode

For the zeroth-order mode we use the exact solution [HC61,
Eq.(57)] to write f (0)(µi,µo) as

f (0)(µi,µo) =
1

2π

H(0)(µi)H(0)(µo)

µi +µo
×(

A+B(µi +µo)+Cµiµo +Dµiµo (µi +µo)+Eµ2
i µ2

o +F
(

µ2
i +µ2

o

))
.

(36)

Evaluation of f (0)(µi,µo) requires numerically integrating
H(0)(µ) using Equation 22 and Equation 24. To avoid this cost,
we derived an approximate form inspired by the simple form that
arises from the two-stream approximation with isotropic scatter-
ing [Hap81],

H(0)(µ)≈ 1+aµd

1+ aµd

H(0)(∞)

, (37)

where the value at infinity is [Iva94]

H(0)(∞) =
1√

K(0)(0)
=

12√
(c−16)(c−1)(4c+9)

.

We used numerical-fitting methods to solve for constants a and d,

a=
1.50112s6.05435 +8.21644

4.17593 −1.21222s
, d =

7.7731 −0.565811s0.961546

8.65912 −0.159974s7 ,

Figure 5: Error analysis of our approximate fit for the zeroth-order
transfer matrix f (0)(µi,µo) versus a Monte Carlo (MC) reference
simulation.

where s =
√

1− c. We found this to have a relative error of less
than 1% in the range {µ,c} ∈ [0,1].

To evaluate Equation 36 we require the constants A,B,C,D,E,F .
Two of these follow from simple relations [HC61, Eq.(63)]

A =
69c
128

, E =
15

128
(1− c)c

(
4c
3
+3
)
. (38)

The other four constants involve the moments of the H function and
are involved equations so we fit the following approximations

B =
0.346689(1− c)3/2−0.777574(1− c)+0.515357

√
1− c−0.084463

0.182602(1− c)−0.665502
√

1− c+0.964893
(39)

C =
−5602.45(1− c)3/2 +7487.99(1− c)−2567.74

√
1− c+682.848

1480.25(1− c)−4008.33
√

1− c+5850.6
(40)

D =
166.883(1− c)3/2−327.428(1− c)+160.397

√
1− c+0.285529

596.423(1− c)−412.984
√

1− c+674.191
(41)

F =
266.063(1− c)3/2−21.9141(1− c)−242.16

√
1− c−1.9209

215.773(1− c)+457.42
√

1− c+1499.9
.

(42)

The accuracy of these approximations is shown in Figure 6. We
note that the last term of the last equation (for t) on page 55 of
[HC61] should read +[ξa(0)1 −a(0)3 ]F , correcting the minus sign.

Equation 36 contains all orders of scattering. In order to use the
single-scattering result exactly, we need to subtract out the approx-
imate single-scattering from f (0)(µi,µo) using the three-term phase
function approximation. Similar to the first-order case, we compute

f (0)1 (µi,µo) =
1

2π

∫ π

−π

c
µi +µo

p(−µ)dφ (43)

=
c
(

207+135µ2
i µ2

o−45(µ2
i +µ2

o)+256µiµo

)
768π(µi +µo)

(44)

and the final multiple scattering term is

f (0)m (µi,µo) = f (0)(µi,µo)− f (0)1 (µi,µo). (45)

This completes the derivation of our approximate BRDF for the
LS half space. Our analytic approximation was derived from a re-
ciprocal and energy-conserving exact result. By construction (and
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Figure 6: Four fitted constants (Eqs.(39) to (42)) in the zeroth-
order expansion of the BRDF as a function of single-scattering
albedo c. Approximation (thin) vs Exact (dots).

easily verified by inspection) our BRDF is reciprocal. For the non-
absorbing case (c = 1) our approximation loses a small (< 1%)
amount of energy at grazing angles.

3.5. Albedo Mapping

We use the following fitted approximations for mapping between
single-scattering albedo c of the particles in the material and kd ,
the spherical/bond albedo of the material (the diffuse color kd is
more intuitive for artist control),

c =
1− (1− kd)

2.73556

1−0.184096(1− kd)2.48423 , (46)

kd =
1−0.453029(1− c)−0.544162

√
1− c

1.42931
√

1− c+1
. (47)

These were derived using a fitting optimization in Mathematica
where the input was a table of bond albedos generated by numeri-
cally integrating our approximate BRDF.

3.6. Fast Variant

The analytic fitting in the previous sections still amounts to a BRDF
with considerable compute cost relative to other analytic BRDFs
and may be too costly for real-time applications. For more effi-
ciency (with less accuracy) we also found the following approxi-
mation using symbolic regression software TuringBot,

fr(~ωi,~ωo) = max

(
0, f1(~ωi,~ωo)+0.234459k1.85432

d +

+
0.0151829(c−0.249978)

(
|φ|+√µiµo

)
cos−1(S)

S +0.113706

)
, (48)

where S =
√

1−µ2
i

√
1−µ2

o. Figure 7 compares the accuracy of
this approximation to that of the previous section. We also com-
pare to Hapke’s approximation for general phase function [Hap81]
which also includes the single-scattering component exactly but

H
ap
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O
ur

Fa
st

O
ur

A
cc
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Figure 7: Comparison of our accurate analytic derivation to our
fast variant (Equation 48) and an approximation due to Hapke
[Hap81]. Hapke’s model underpredicts the reflectance at graz-
ing angles (right). Our fast approximation offers a more accurate
method with a similar computational cost to Hapke’s model.

assumes and azimuthally-invariant multiple-scattering component
based on the H function for the half space with isotropic scattering.
All other results in the paper use the full derivation.

4. Results

We implemented our LS BRDF in Mitsuba [Jak10], parameterized
by diffuse color kd , which is converted to a particle albedo using
Equation 46. The BRDF was implemented using Equation 18 (and
related equations) and uses Lambertian importance sampling. We
noted a general trend of up to 30% increase in render time rela-
tive to the simpler Lambertian and Oren-Nayar [ON94] BRDFs.
Some exact timings are provided in the results below. We also
implemented the phase function itself for testing stochastic layer
evaluations [GHZ18] and a Fourier implementation in the layer-
laboratory adding/doubling framework built on Mitsuba 2 [ZJ18].
Source code will be made available.

Our LS BRDF differs significantly in appearance from stan-
dard diffusive BRDFs such as Lambertian, Oren-Nayar [ON94],
and Chandrasekhar’s BRDF for mirror sphere particles (Figure 8,
Figure 9, Figure 10). Note the increased backscattering and satu-
rated colors for back lighting compared to the other models. Our
BRDF looks most similar to the other volumetric BRDF (Chan-
drasekhar’s), but the bright silhouettes of Chandrasekhar’s are
avoided with our new BRDF (Figure 9, Figure 10).

Our volumetric BRDF can accurately model the appearance of
sparse diffuse granular materials. Figure 1 shows how our model
closely matches the granular microgeometry of sparse Lambertian
spheres, where stochastic independent configurations of spheres in-
crease in density to the right (300 to 1.2 million in number) while a
fixed volume fraction is maintained. To compare to various sphere
packings that violate the assumptions of classical radiative trans-
fer (that the scatterers are spatially independent), in Figure 12 we
consider a denser array of packings with the Lambertian albedo
held fixed in all cases. We observe that height-field models can do
a reasonable job at approximating such sphere cluster geometries
up until about roughness α = 2.4, although this requires signifi-
cant stochastic evaluation to account for the many orders of scat-
tering required to represent the full BRDF. (The Oren Nayar model
only accounts for 2 bounces, and does not extend to such a range
of roughnesses, appearing overly bright). Around this point the
height-field assumption is inconsistent and a spherical NDF would
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Figure 8: Comparison of our new BRDF to two height-field BRDFs
and one volumetric BRDF (mirror-sphere) for a variety of lighting
directions. Note the increased back-scattering and saturated sil-
houettes for back-lighting compared to the other models.

(a) Lambertian (b) Mirror-sphere (c) Lambert-sphere

Figure 9: Comparison of 3 diffuse BRDFs.

be more appropriate [DHd16]. Past this roughness level, the rough
diffuse Beckmann BRDF [HD15] shows dark artifacts because the
roughness simply scales a height field until the profile is unreason-
ably spiky [DHd16].

To validate our implementation we compare (Figure 11) to a re-
sult rendered using adding/doubling [JdJM14]. For a scalar RGB
implementation with diffuse albedo kd = (0.18,0.05,0.6), and n =
60 expansion order in µ to avoid differences at the silhouette, the
Fourier BRDF representation requires 152KiB of storage for three
channels. The analytic result rendered faster with similar noise
levels, despite using a simpler Lambertian importance-sampling

Figure 10: Comparison of our LS BRDF to three diffuse BRDFs
under front lighting (left) and back lighting (right). The LS BRDF
shows increased backscattering (left) and doesn’t result in glowing
silhouettes like Chandrasekhar’s isotropic BRDF (right).

6.2min

(a) Analytic (LS)

8.4min

(b) Doubling (LS)

9.6min

(c) Doubling (HG)

Figure 11: Our analytic LS BRDF (a) renders faster than the cor-
responding doubling method (b) and has similar noise levels de-
spite having inferior importance-sampling. The HG BRDF with
matched mean cosine has a flatter appearance under side lighting
(c). kd = (0.18,0.05,0.6).

Stochastic geometry BRDF Roughness
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Figure 12: An array of granular microgeometries where the pack-
ing density and microgeometry scale vary while the diffuse albedo
of the Lambertian geometry is fixed. The fine-scale appearance
darkens and saturates with increased sparsity because more colli-
sions occur (on average) before a given ray escapes the sphere and
finds the light source. For dense packings (bottom rows), a random
height-field is a reasonable assumption for the surface and height-
field BRDFs accurately approximate the reflectance of fine-scale
microgeometry (bottom right). However, for sparse granular media
(top rows), the height-field assumption is inconsistent with the mi-
crogeometry, causing either dark artifacts [Heitz and Dupuy 2015]
or bright unsaturated results [Oren and Nayar 1994] (top right).

scheme. The corresponding g-matched HG render is also included,
showing a flatter appearance.

The assumption of sparseness challenges the physical motivation
of our BRDF in isolation as there needs to be something to sus-
pend the spheres: either a thin much sparser connective structure
or a dielectric non-participating matrix suspending the Lambertian
particles with an index near that of air. A more plausible scenario
is the case of particles imbedded in a dielectric matrix with gen-
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Figure 13: Rough dielectric coating (α = 0.05) over a variety of
diffusive base BRDFs.

eral index η > 1, which we can simulate either using the doubling
method or the position-free stochastic approach. We compare such
dielectric coatings in Figure 13 where we layer our BRDF below a
rough dielectric interface with a Beckmann roughness of α = 0.05.
The doubling BRDF computation produced 2 MiB of data for three
channels. The position-free evaluation (b) matches the appearance
of the doubling method (c) with significantly higher render time
and higher noise, because the doubling method composes the entire
BRDF into a single well-sampled result. However, the stochastic
approach can permit non-rough coatings and requires no precom-
puted data. The position-free evaluation shown uses our analytic
BRDF as a surface, as opposed to evaluating the LS phase function
in a volume layer (which rendered 130 times slower and presented
much more noise). This illustrates a clear limitation of the position-
free approach for highly-scattering, high-albedo, thick volumes and
likewise shows the benefits of analytic results that encapsulate such
complexity in a single result. Lambertian (a) and HG (d) bases are
also shown, and the differences between them are less apparent in
the coated context, but the overall trends observed in the non-coated
cases remain present.

5. Conclusion

We have presented a new practical analytic BRDF for dusty/porous
surfaces that exhibits back-scattering and saturation effects that are
missing from prior models. Our derivation follows directly from an
important, but nevertheless impractical, exact semi-analytic bench-
mark solution [HC61], beautifully summarized by van de Hulst
[VdH70] as “a set of equations for which the letters in the alpha-
bet did not suffice”. Our derivation has introduced pseudo-problem
and related approximation techniques to graphics, which might in-
spire similar practical approximations for other low-order phase
functions. The resulting BRDF offers new intuitive appearance be-
haviours to artists and for fitting measured data. We have also in-
cluded new results for sampling the Lambertian-sphere phase func-
tion and including it in the doubling framework.

Future work includes investigation of measured data to see if
this behaviour is found in real-world materials. We also want to de-
rive a single analytic BRDF that blends from Lambertian through
height-field models and into our new BRDF by considering a se-
quence of microgeometry like that illustrated in Figure 12 modeled
using a spherical Gaussian NDF and a novel form of Smith’s model
for handling such media [d’E16]. In such a formulation our new LS
BRDF becomes the infinite roughness endpoint of a new expressive
family of rough diffuse materials, which was the primary motiva-
tion for its derivation.

6. Acknowledgements

We thank the reviewers for helpful feedback, including a sugges-
tion for improving the albedo mapping. We also thank M.M.R.
Williams and Jakub Boksansky for reviewing an early draft, Lionel
Simonot for tracking down the Lambertian-sphere phase function
in Lambert’s book, and Matt Pharr for providing access to his En-
glish translation of the book.

References
[Aue61] AUERBACH T.: Some applications of Chandrasekhar’s method

to reactor theory. Tech. rep., Brookhaven National Lab., Upton, NY,
1961. URL: https://doi.org/10.2172/4792262. 3

[Bel18] BELCOUR L.: Efficient rendering of layered materials using
an atomic decomposition with statistical operators. ACM Transactions
on Graphics (TOG) 37, 4 (2018). URL: https://doi.org/10.
1145/3197517.3201289. 1

[Bli82] BLINN J. F.: Light reflection functions for simulation of clouds
and dusty surfaces. In Computer Graphics (Proceedings of ACM SIG-
GRAPH 1982) (1982), vol. 16, ACM, pp. 21–29. URL: https://
doi.org/10.1145/965145.801255. 1, 2

[Bur12] BURLEY B.: Physically-based shading at Disney. In ACM SIG-
GRAPH (2012), vol. 2012, pp. 1–7. 2

[Cha60] CHANDRASEKHAR S.: Radiative Transfer. Dover, 1960. 2, 3, 4

[CLCC63] CHU C., LEACOCK J., CHEN J., CHURCHILL S.: Numerical
solutions for multiple, anisotropic scattering. In ICES, Electromagnetic
Scattering (1963), vol. 1, ICES, p. 567. 3

[CT82] COOK R. L., TORRANCE K.: A reflectance model for computer
graphics. In ACM Trans. Graphic. (1982), pp. 7–24. URL: https:
//doi.org/10.1145/357290.357293. 1

[d’E16] D’EON E.: The anisotropic cross-section for the spherical Gaus-
sian medium. Tech. rep., 2016. URL: http://www.eugenedeon.
com/wp-content/uploads/2016/07/sgcross.pdf. 8

[DHd16] DUPUY J., HEITZ E., D’EON E.: Additional progress to-
wards the unification of microfacet and microflake theories. In EGSR
(EI&I) (2016), pp. 55–63. URL: https://doi.org/10.5555/
3056507.3056519. 1, 7

[DJ18] DUPUY J., JAKOB W.: An adaptive parameterization for effi-
cient material acquisition and rendering. ACM Transactions on graphics
(TOG) 37, 6 (2018), 1–14. URL: https://doi.org/10.1145/
3272127.3275059. 1

[Foc44] FOCK V.: Some integral equations of mathematical physics.
Doklady AN SSSR 26, 4-5 (1944), 147–151. URL: http://mi.
mathnet.ru/eng/msb6183. 4

[GHZ18] GUO Y., HAŠAN M., ZHAO S.: Position-free Monte Carlo
simulation for arbitrary layered BSDFs. ACM Transactions on Graph-
ics (ToG) 37, 6 (2018), 1–14. URL: https://doi.org/10.1145/
3272127.3275053. 1, 6

[Hap81] HAPKE B.: Bidirectional reflectance spectroscopy: 1. the-
ory. Journal of Geophysical Research: Solid Earth (1978–2012)
86, B4 (1981), 3039–3054. URL: https://doi.org/10.1029/
JB086iB04p03039. 2, 4, 5, 6

[Hap02] HAPKE B.: Bidirectional reflectance spectroscopy: 5. The coher-
ent backscatter opposition effect and anisotropic scattering. Icarus 157,
2 (2002), 523–534. URL: https://doi.org/10.1006/icar.
2002.6853. 2, 4

[HC61] HORAK H. G., CHANDRASEKHAR S.: Diffuse Reflection by a
Semi-Infinite Atmosphere. Astrophys. J. 134 (July 1961), 45. doi:
10.1086/147126. 2, 3, 4, 5, 8

[Hd14] HEITZ E., D’EON E.: Importance sampling microfacet-based
BSDFs using the distribution of visible normals. In Computer Graph-
ics Forum (2014), vol. 33, Wiley Online Library, pp. 103–112. URL:
https://doi.org/10.1111/cgf.12417. 1

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

160

https://doi.org/10.2172/4792262
https://doi.org/10.1145/3197517.3201289
https://doi.org/10.1145/3197517.3201289
https://doi.org/10.1145/965145.801255
https://doi.org/10.1145/965145.801255
https://doi.org/10.1145/357290.357293
https://doi.org/10.1145/357290.357293
http://www.eugenedeon.com/wp-content/uploads/2016/07/sgcross.pdf
http://www.eugenedeon.com/wp-content/uploads/2016/07/sgcross.pdf
https://doi.org/10.5555/3056507.3056519
https://doi.org/10.5555/3056507.3056519
https://doi.org/10.1145/3272127.3275059
https://doi.org/10.1145/3272127.3275059
http://mi.mathnet.ru/eng/msb6183
http://mi.mathnet.ru/eng/msb6183
https://doi.org/10.1145/3272127.3275053
https://doi.org/10.1145/3272127.3275053
https://doi.org/10.1029/JB086iB04p03039
https://doi.org/10.1029/JB086iB04p03039
https://doi.org/10.1006/icar.2002.6853
https://doi.org/10.1006/icar.2002.6853
https://doi.org/10.1086/147126
https://doi.org/10.1086/147126
https://doi.org/10.1111/cgf.12417


E. d’Eon / An analytic BRDF for materials with spherical Lambertian scatterers

[HD15] HEITZ E., DUPUY J.: Implementing a simple anisotropic rough
diffuse material with stochastic evaluation. Tech. rep., 2015. URL:
https://eheitzresearch.wordpress.com/research/. 1,
7

[Hei14] HEITZ E.: Understanding the masking-shadowing function in
microfacet-based BRDFs. Journal of Computer Graphics Techniques 3,
2 (2014), 32–91. URL: http://jcgt.org/published/0003/
02/03/. 1

[HHdD16] HEITZ E., HANIKA J., D’EON E., DACHSBACHER C.:
Multiple-scattering microfacet BSDFs with the Smith model. ACM
Transactions on Graphics (TOG) 35, 4 (2016), 58. URL: https:
//doi.org/10.1145/2897824.2925943. 1

[HK93] HANRAHAN P., KRUEGER W.: Reflection from layered sur-
faces due to subsurface scattering. In Proceedings of ACM SIGGRAPH
1993 (1993), pp. 164–174. URL: https://doi.org/10.1145/
166117.166139. 3

[Iva94] IVANOV V.: Resolvent method: exact solutions of half-space
transport problems by elementary means. Astronomy and Astrophysics
286 (1994), 328–337. 3, 5

[Jak10] JAKOB W.: Mitsuba renderer, 2010. http://www.mitsuba-
renderer.org. 6

[JdJM14] JAKOB W., D’EON E., JAKOB O., MARSCHNER S.: A com-
prehensive framework for rendering layered materials. ACM Transac-
tions on Graphics (ToG) 33, 4 (2014), 1–14. URL: https://doi.
org/10.1145/2601097.2601139. 1, 3, 7

[KC17] KULLA C., CONTY A.: Revisiting physically based shading
at imageworks. ACM SIGGRAPH Course, Physically Based Shading
(2017). 2

[KP03] KOENDERINK J., PONT S.: The secret of velvety skin. Mach.
Vision Appl. 14, 4 (2003), 260–268. URL: https://dx.doi.org/
10.1007/s00138-002-0089-7. 1

[Kre62] KREIN M.: Integral equations on a half-line with kernel depend-
ing upon the difference of the arguments. Amer. Math. Soc. Transl.(2) 22
(1962), 163–288. 4

[Lam60] LAMBERT J. H.: Photometria sive de mensura et grodibus lim-
inis colorum et umbrae. Augustae Vindelicorum, 1760. English transla-
tion by David L. DiLaura. 2

[MBT∗17] MENEVEAUX D., BRINGIER B., TAUZIA E., RIBARDIÈRE
M., SIMONOT L.: Rendering rough opaque materials with interfaced
Lambertian microfacets. IEEE transactions on visualization and com-
puter graphics 24, 3 (2017), 1368–1380. URL: https://doi.org/
10.1109/TVCG.2017.2660490. 1

[MPBM03] MATUSIK W., PFISTER H., BRAND M., MCMILLAN L.:
Efficient Isotropic BRDF Measurement. In Proceedings of the 14th Eu-
rographics Workshop on Rendering (Goslar, DEU, 2003), EGRW ’03,
Eurographics Association, p. 241–247. URL: https://dl.acm.
org/doi/abs/10.5555/882404.882439. 1

[ON94] OREN M., NAYAR S. K.: Generalization of lambert’s reflectance
model. In Proceedings of the 21st annual conference on Computer
graphics and interactive techniques (1994), ACM, pp. 239–246. URL:
https://doi.org/10.1145/192161.192213. 2, 6

[RBMS17] RIBARDIÈRE M., BRINGIER B., MENEVEAUX D., SI-
MONOT L.: Std: Student’s t-distribution of slopes for microfacet based
bsdfs. In Computer Graphics Forum (2017), vol. 36, Wiley Online
Library, pp. 421–429. URL: https://doi.org/10.1111/cgf.
13137. 1

[Smi67] SMITH B.: Geometrical shadowing of a random rough surface.
IEEE transactions on antennas and propagation 15, 5 (1967), 668–671.
URL: https://doi.org/10.1109/TAP.1967.1138991. 1

[Smo76] SMOKTIY O.: Exact solution of a problem of diffuse reflection
of solar radiation by a semiinfinite planetary atmosphere with a four-term
scattering phase function. Izvestiya, Atmospheric and Oceanic Physics
12, 10 (1976), 1053–1066. 3

[Sob68] SOBOLEV V.: Anisotropic Scattering of Light in a Semi-
infinite Atmosphere. II. Soviet Astronomy 12 (Dec. 1968), 420.
URL: https://ui.adsabs.harvard.edu/abs/1968SvA...
.12..420S. 3

[SOPB08] SHKURATOV Y. G., OVCHARENKO A. A., PSAREV V. A.,
BONDARENKO S. Y.: Laboratory measurements of reflected light inten-
sity and polarization for selected particulate surfaces. In Light Scattering
Reviews 3. Springer, 2008, pp. 383–402. URL: https://doi.org/
10.1007/978-3-540-48546-9_10. 1

[Sta01] STAM J.: An illumination model for a skin layer bounded by
rough surfaces. In Rendering Techniques (2001), pp. 39–52. URL:
https://doi.org/10.1007/978-3-7091-6242-2_4. 1

[VdH70] VAN DE HULST H.: Reduction to h-functions in radiative trans-
fer with a general anisotropic phase function. Astronomy and Astro-
physics (1970), 9. URL: https://ui.adsabs.harvard.edu/
abs/1970A&A.....9..359V. 3, 8

[vdH80] VAN DE HULST H.: Multiple light scattering. Academic Press,
1980. 1, 2, 3

[vGSK98] VAN GINNEKEN B., STAVRIDI M., KOENDERINK J. J.: Dif-
fuse and specular reflectance from rough surfaces. Appl. Opt. 37, 1
(1998), 130–139. URL: http://ao.osa.org/abstract.cfm?
URI=ao-37-1-130. 1

[Wil06] WILLIAMS M. M. R.: The albedo problem with Fresnel reflec-
tion. Journal of Quantitative Spectroscopy and Radiative Transfer 98, 3
(2006), 358–378. URL: https://doi.org/10.1016/j.jqsrt.
2005.05.095. 2

[WMLT07] WALTER B., MARSCHNER S., LI H., TORRANCE K.: Mi-
crofacet models for refraction through rough surfaces. In Rendering
Techniques (Proc. EG Symposium on Rendering) (2007), pp. 195–206.
URL: https://dl.acm.org/doi/abs/10.5555/2383847.
2383874. 1

[WNO98] WOLFF L. B., NAYAR S. K., OREN M.: Improved diffuse re-
flection models for computer vision. International Journal of Computer
Vision 30, 1 (1998), 55–71. URL: https://doi.org/10.1023/
A:1008017513536. 2

[WW07] WEIDLICH A., WILKIE A.: Arbitrarily layered micro-facet
surfaces. In Proceedings of the 5th international conference on Com-
puter graphics and interactive techniques in Australia and Southeast
Asia (2007), pp. 171–178. URL: https://doi.org/10.1145/
1321261.1321292. 2

[Yan97] YANOVITSKIJ E. G.: Light scattering in inhomogeneous at-
mospheres. Springer, 1997. URL: https://doi.org/10.1007/
978-3-642-60465-2. 1

[ZJ18] ZELTNER T., JAKOB W.: The layer laboratory: a calculus for
additive and subtractive composition of anisotropic surface reflectance.
ACM Transactions on Graphics (TOG) 37, 4 (2018), 1–14. URL:
https://doi.org/10.1145/3197517.3201321. 1, 6

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

161

https://eheitzresearch.wordpress.com/research/
http://jcgt.org/published/0003/02/03/
http://jcgt.org/published/0003/02/03/
https://doi.org/10.1145/2897824.2925943
https://doi.org/10.1145/2897824.2925943
https://doi.org/10.1145/166117.166139
https://doi.org/10.1145/166117.166139
https://doi.org/10.1145/2601097.2601139
https://doi.org/10.1145/2601097.2601139
https://dx.doi.org/10.1007/s00138-002-0089-7
https://dx.doi.org/10.1007/s00138-002-0089-7
https://doi.org/10.1109/TVCG.2017.2660490
https://doi.org/10.1109/TVCG.2017.2660490
https://dl.acm.org/doi/abs/10.5555/882404.882439
https://dl.acm.org/doi/abs/10.5555/882404.882439
https://doi.org/10.1145/192161.192213
https://doi.org/10.1111/cgf.13137
https://doi.org/10.1111/cgf.13137
https://doi.org/10.1109/TAP.1967.1138991
https://ui.adsabs.harvard.edu/abs/1968SvA....12..420S
https://ui.adsabs.harvard.edu/abs/1968SvA....12..420S
https://doi.org/10.1007/978-3-540-48546-9_10
https://doi.org/10.1007/978-3-540-48546-9_10
https://doi.org/10.1007/978-3-7091-6242-2_4
https://ui.adsabs.harvard.edu/abs/1970A&A.....9..359V
https://ui.adsabs.harvard.edu/abs/1970A&A.....9..359V
http://ao.osa.org/abstract.cfm?URI=ao-37-1-130
http://ao.osa.org/abstract.cfm?URI=ao-37-1-130
https://doi.org/10.1016/j.jqsrt.2005.05.095
https://doi.org/10.1016/j.jqsrt.2005.05.095
https://dl.acm.org/doi/abs/10.5555/2383847.2383874
https://dl.acm.org/doi/abs/10.5555/2383847.2383874
https://doi.org/10.1023/A:1008017513536
https://doi.org/10.1023/A:1008017513536
https://doi.org/10.1145/1321261.1321292
https://doi.org/10.1145/1321261.1321292
https://doi.org/10.1007/978-3-642-60465-2
https://doi.org/10.1007/978-3-642-60465-2
https://doi.org/10.1145/3197517.3201321

